

SIMOLAR TRIANGLES

- 1. THDOREM :1——BASTC PROPORTONAMYY THDORMN - (THALBS THDOREM)]

Statement - In a triangle, a line drawn parallel to one side to intersect the other side in distinct point divide the other two side in the same ratio.

Or
If a line drawn parallel to one side of a Δ divides the other two side in the same ratio.
Given: - \quad In a $\triangle A B C, D E$ is drawn || to $B C$
To prove: - $\quad \frac{A D}{D B}=A E$
Construction: - we draw $\mathrm{DM} \perp \mathrm{AC}$ and $\mathrm{EN} \perp \mathrm{AD}$ and join BE and DC
Proof: - \quad We know that, $\Delta^{\prime s}$ on the same base
(DE) and between same \|,s (BD \| CE) are equal in area.
$\therefore \quad$ ar. \triangle BED $\quad=$ ar. \triangle DCE --------------------------- (I)
Now
Again,

$$
\frac{\text { ar. } \triangle \mathrm{ADE}}{\text { ar. } \triangle \mathrm{DBE}}=\frac{1 / 2 \times E \mathrm{E} \times \mathrm{AD}}{1 / 2 \times \mathbb{1} \times \mathrm{ND} \times \frac{\mathrm{AD}}{\mathrm{BD}}-2 .}
$$

But,
ar. $\triangle \mathrm{BED}=$ ar. $\triangle \mathrm{CDE}$ \qquad -- [from (I)]
$\therefore \quad \frac{\text { ar. } \triangle \mathrm{ADE}}{\text { ar. } \triangle \mathrm{CDE}}=\frac{\mathrm{AD}}{\mathrm{DB}}$
(IV)

From (III) and (IV), we have

Hence Proved.
-1 $\mathbf{1}^{\text {st }}$ Corollary $-A D=\frac{A E}{E C} \quad$ [Proved above]
Adding 1 to both sides, WE get

$\Rightarrow \quad \frac{A D+D B}{D B}=\frac{A E+E C}{C E}$
$\therefore \quad \because \quad \therefore B A B A$

- $\mathbf{2}^{\text {nd }}$ Corollary - $\frac{A D}{D B}=\frac{A E}{E C} \quad$ [proved above]

$$
\frac{D B}{A D}=\frac{E C}{A C}
$$

adding 1 to both sides.

$$
\frac{\mathrm{DB}}{\mathrm{AD}}+1=\frac{\mathrm{EC}}{\mathrm{AC}}+1
$$

$$
\Rightarrow \quad \frac{D B+A D}{A D}=E C+A C
$$

Converse of B.P.T \rightarrow If line divides any two side of a triangle in the same ratio than it is parallel to $3^{\text {rd }}$ side.

Given: -
In a $\triangle A B C, D E$ is a straight-line meeting $A B$ \& $A C$ resp. at $D \& E$ such that $\frac{A D}{D B}=\frac{A E}{E C}$
To prove: -
DE || BC
Construction: - Consider that, DE H BC , but it is || to BM
$A C$ is produced to intersect $B M$ at M.
Proof: - In \quad ABM, DE || BM [by assumption]

$\therefore \quad \frac{A D}{D B}=\frac{A E}{E M}$
(I) [If a line drawn on other of a Δ, divides the other sides in the same ratio.(B.P.T)]
But

$$
\frac{A D}{D B}=\frac{A E}{E C}
$$

(II) (given)

From (I)and (II), we get
$\frac{A E}{E M}=A E$
$E M=E C$
Which is possible only when M coincides with C ,
i.e., $\quad B C=B M \quad$, which contradicts our supposition.

Hence, $D E \| B C \quad$ Hence proved.
3. Internal bisector theorem: - The bisector of an angle of a triangle, divides the opposite side in ratio of side containing the angle.
Given: - $\quad \triangle \mathrm{ABC}$, in which AN is an internal bisector of $\angle \mathrm{A}$ meets BC at N .
To Prove: - $\quad A B=B N$

$$
A C \quad N C
$$

Construction: - Through C we draw MC \| AN. Also, BM is produced to M to meet CM.
Proof: - \quad Since AN || CM and BM is transversal

$$
\therefore \quad \angle 1=\angle 2 \quad \text { (corresponding angles) }
$$

Again, since $A N|\mid C M$ and $A C$ is transversal

$$
\begin{equation*}
\text { (alternate } \angle^{\text {s }} \text {) } \tag{II}
\end{equation*}
$$

\qquad

$$
\angle \mathbf{1}=\angle \mathbf{2}[\because \mathrm{AN} \text { is internal bisector of } \angle \mathrm{A} \text { (given) }]
$$

$\therefore \quad \frac{A B}{A M}=\frac{B N}{N C}$
[sides opposite to equal \angle 's are also equal
(By construction.)
or,
(By construction.)
 [BY (BPT)]

$$
\because A B=B N \cdot \because
$$

$$
[\because \mathrm{AM}=\mathrm{AC}(\text { proved above })] \quad \text { Hence Proved. }
$$

$$
\begin{aligned}
& \therefore \quad \angle 2=\angle 3 \\
& \text { But, } \\
& \text { From (I), (II) and (III) } \\
& \angle 3=\angle 4 \\
& \text { Now in } \triangle \mathrm{ACM} \text {, } \\
& \angle 3=\angle 4 \\
& \therefore \quad \mathrm{AC}=\mathrm{AM} \\
& \text { Now in } \triangle M B C, A N| | M C \text {. }
\end{aligned}
$$

4. Converse: - If a line through one vertex of a triangle divides the opposite side in the ratio of other two side, then the line bisects the angle of the vertex.
Given: - $\quad A \triangle A B C$ in which $A D$ is a line from vertex A such that $\quad \frac{A B}{A C}=\frac{B D}{D C}$
To prove: - $\quad A D$ is bisector of $\angle B A C$ or $\angle A$.
Construction: - Through C, we draw $M C \| A D$ and produce $A B$ to meet $M C$ at M. Proof: - $\quad \ln \triangle B C M, A D \| M C \quad$ (By construction.)
$\therefore \quad \frac{A B}{A M}=\frac{B D}{D C} \quad[B y$ (BPT)]
But,
$\frac{A B}{A C}=\frac{B D}{D C}$
$\therefore \quad \frac{A B}{A M}=\frac{A B}{A C}$

$$
\mathrm{AM}=\mathrm{AC}
$$

Now in ACM

$$
\begin{align*}
& \mathrm{AC}=\mathrm{AM} \text { [Proved above] } \\
& 2 \text { [angles opposite to equa } \tag{I}
\end{align*}
$$

$$
\overline{\mathrm{AC}} \overline{\mathrm{DC}}
$$

$\therefore \quad \angle 1=\angle 2$ [angles opposite to equal side are also equal]
Now AD || MC (by construction.) and AC is a transversal.
$\therefore \quad \angle 2=\angle 4 \quad$ (alternate \angle 's) ------- (II)
Also, $A D \| M C$ (by construction.) and $B M$ is a transversal.
$\therefore \quad \angle 3=\angle 1 \quad------$ (III) [corresponding \angle 's]
From (I), (II) and (III), $\angle 3=\angle 4$
$\therefore \quad A D$ is bisector of $\angle B A C$, hence proved.
5. External Bisector Theorem - The external bisector of an angle of a triangle divides the opposite side in the ratio of sides containing the angle.
Given: - \quad In ${ }^{2} A B C, A Q$ is an eternal bisector of exterior $\angle C A K$.
To prove: - $\quad \frac{A B}{A C}=\frac{B D}{C D}$
Construction: - Through C we draw CN || $A D$
Proof: - \quad Since, $N C \| A D$ and $A C$ is a transversal (By construction.)
$\therefore \quad \angle 1=\angle 2 \quad$ (alternate $\angle \prime$'s)
Again NC \| $A D$ and $A B$ is a transversal
$\therefore \quad \angle 3=\angle 4 \quad$ (Corresponding \angle,s)
But, $\angle 2=\angle 4 \quad$ (Given)
$\therefore \quad \angle 3=\angle 1$
Now, In ${ }^{\text {a ANC }}$
$\angle 3=\angle 1 \quad$ [Proved above]
$\therefore \quad \mathrm{AN}=\mathrm{AC} \quad$ [Sides opposite to equal \angle 's are also equal.]
Now, In ⿴囗 ADB, AD || NC (by construction.)

$\therefore \quad \quad \frac{A B}{A N}=\frac{B D}{C D} \quad\left[\because\right.$ a line drawn $\|$ to one side of a ${ }^{2}$ divides the other side in same ratio $]$
AN CD
But, AN = AC [Proved above]
$\therefore \quad \underline{A B}=\underline{B D}$
$A C \quad C D$
6. Area Theorem: - The ratio of areas of two similar Δ 's is equal to ratio of square on their corresponding

$\triangle \mathrm{ABC} \sim \triangle \mathrm{DEF}$
Given: -
$\frac{\text { ar. } \Delta \mathrm{ABC}}{\text { ar. } \Delta \mathrm{DEF}}=\quad \frac{\mathrm{BC}^{2}}{\mathrm{EF}^{2}}=\quad \frac{\mathrm{AB}^{2}}{\mathrm{DE}^{2}}=\frac{\mathrm{AC}^{2}}{\mathrm{DF}^{2}}$
Proof: -
$\frac{\text { ar. } \Delta \mathrm{ABC}}{\text { ar. } \Delta \mathrm{DEF}}=\frac{\pi / 2 \times B C \times A N}{\frac{1}{2} \times E F \times D M} \quad \frac{B C}{E F} \times \frac{\mathrm{AN}}{\mathrm{DM}}$
Now, In \triangle ANB and \triangle DME
$\angle \mathrm{ANB}=\angle \mathrm{DME} \quad$ [each 90°]
$\angle \mathrm{B}=\angle \mathrm{E} \quad[\because \Delta \mathrm{ABC} \sim \Delta \mathrm{DEF}]$
$\therefore \quad \triangle \mathrm{ANB} \sim \triangle \mathrm{DME}$ [by AA similarity]
$\therefore \quad \quad \mathrm{AB}=\underline{A N} \quad$ [If two Δ^{\prime} s are similar then the ratio of corresponding sides are same.]
DE DM
Also, $\quad \underline{B C}=\underline{A B} \quad[\because \Delta A B C \sim \Delta D E F]$---- (II) EF DE
From (I) and (II)
$\therefore \quad A N=B C$
MD EF
ar. $\triangle A B C=B C \times B C=B C^{2}$
ar. $\triangle \mathrm{DEF} \quad \mathrm{EF} \quad \mathrm{EF} \quad \mathrm{EF}^{2}$
Similarly, we prove that
$\frac{\text { ar. } \triangle A B C}{\text { ar. } \triangle D E F}=\frac{A B^{2}-----------}{D E^{2}}$ (B)
ar. \triangle DEF $\quad \mathrm{DE}^{2}$
Also, $\frac{\text { ar. } \triangle A B C}{\text { ar. } \triangle D E F}=\frac{A C^{2}}{D F^{2}}$
From (A), (B) and (C)
$\frac{\text { ar. } \triangle \mathrm{ABC}}{\text { ar. } \triangle \mathrm{DEF}}=\frac{\mathrm{BC}^{2}}{E F^{2}}=\frac{A B^{2}}{D E^{2}}=\frac{A C^{2}}{D F^{2}}$

7. Ohareacteristics propercty of simnilar tieianoles -
 - (I) A - A Similarity

1.

Given: - In $\Delta^{\prime} \mathrm{s} \mathrm{ABC}$ and $\mathrm{DEF} . \angle \mathrm{A}=\angle \mathrm{D}$, $\angle \mathrm{B}=\angle \mathrm{E}$ and $\angle \mathrm{C}=\angle \mathrm{F}$.
To prove: - $\quad \triangle \mathrm{ABC} \sim \triangle \mathrm{DEF}$
Construction: - We draw mark point M and N on DE and DF respectively such that $A B=D M$ and $A C=D N$ and join MN
Proof: - Three cases arise
Case - I: $\quad A B=E D$, Here M coincides with E
Case - II: $\quad A B<D E$, Here M lies on $D E$

Case - III: $A B>D E$, Here M lies on DE produced.
\rightarrow Case - I: - AB = ED, here, M coincides with E

In $\triangle \mathrm{ABC}$ and $\triangle \mathrm{DEF}$
$\mathrm{AB}=\mathrm{DE} \quad$ [By construction]
$\angle \mathrm{A}=\angle \mathrm{D} \quad$ [Given]
$A C=D E \quad[\because N$ coincides with $F]$
$\therefore \quad \triangle \mathrm{ABC} \cong \triangle \mathrm{DEF}$ [by SAS]
$\therefore \quad \mathrm{BC}=\mathrm{EF} \quad[\mathrm{CPCTC}]$
$B C=1$
EF
Similarly,
$\underline{A C}=1$ and $\quad A B=1$
$D F \quad D E$
$\therefore \quad \frac{B C}{E F}=\frac{A C}{D F}=A B$
Also, $\angle \mathrm{A}=\angle \mathrm{D}, \angle \mathrm{B}=\angle \mathrm{E}$ and $\angle \mathrm{C}=\angle \mathrm{F}$ [Given]
$\therefore \quad \triangle \mathrm{ABC} \sim \triangle \mathrm{DEF} \quad$ Hence proved
\rightarrow Case - II
$A B<D E$, Here M lies on $D E$,
In $\triangle \mathrm{ABC}$ and $\triangle \mathrm{DMN}$,
$\mathrm{AB}=\mathrm{DM} \quad$ (by construction.)
$\angle \mathrm{A}=\angle \mathrm{D} \quad$ (given)
$\mathrm{AC}=\mathrm{DN} \quad$ (by construction.)
$\therefore \quad \triangle \mathrm{ABC} \cong \triangle \mathrm{DMN} \quad$ (by SAS)
$\therefore \quad \angle \mathrm{B}=\angle \mathrm{DMN} \quad$ (CPCTC)
But, $\quad \angle \mathrm{B}=\angle \mathrm{E} \quad$ (given)

$\therefore \quad \angle \mathrm{DMN}=\angle \mathrm{E}$
But these are corresponding angle and are equal
$\therefore \quad \mathrm{MN} \| \mathrm{EF}$
Now, in \triangle DEF, MN || EF (Proved above)

ACCENTS EDUCATIONAL PROMOTERS

II. Characteristic property of similar Δ :- \rightarrow S-S-S Similarity

If Corresponding sides of two triangles are proportional than they are similar
Given: - $\quad \ln \triangle \mathrm{ABC}$ and $\triangle \mathrm{DEF}$

$$
\frac{A B}{D E}=\frac{B C}{E F}=\frac{A C}{D F}
$$

To prove: - $\quad \triangle A B C \sim \triangle D E F$
Construction: - We mark point M and N on DE and DF respectively.
Such that $A B=D M$ and $A C=D N$. Join MN
Proof: -
Since $\underline{A B}=\underline{A C} \quad$ (Given)
But, $\quad A B=D M$ and $A C=D N$ (by construction)
$\therefore \quad \frac{\mathrm{DM}}{\mathrm{DE}}=\frac{\mathrm{DN}}{\mathrm{DF}}$
Now $\ln \Delta \mathrm{DEF}, \quad \mathrm{DM}_{-}=\underline{\mathrm{DN}}$ (proved above)
DE DF
$\therefore \quad \mathrm{MN} \| \mathrm{EF} \quad$ [by the converse of BPT)
$\therefore \quad \angle 1=\angle 2 \quad$ (Corresponding \angle 's)
Now, $\quad \ln \triangle \mathrm{DMN}$ and \triangle DEF
$\angle 1=\angle 2$
(proved above)
$\angle \mathrm{D}=\angle \mathrm{d} \quad$ (Common)
$\therefore \quad \triangle \mathrm{DMN} \sim \triangle \mathrm{DEF} \quad$ (by AA similarity)
 F

```
\therefore }\quad\triangle\textrm{ABC}\mathrm{ and }\cong\trianglePMN (by SAS
    \triangleABS ~\trianglePMN [ [ congruent l`'s are always similar]
                                    (A)
    Now, }\frac{AB}{PQ}=\frac{AC}{PR
    But, AB = DM and AC=DN
\therefore\quad PM
    Again, In }\trianglePQR\frac{PM}{PQ}=\frac{PN}{PR}\quad\mathrm{ (proved above)
\therefore MN || QR (by the converse of BPT)
        \angle1=\angle2 (Corresponding }\angle's
    Now, In }\triangle\textrm{PMN}\mathrm{ and }\triangle\textrm{PQR
    \angle1=\angle2 (proved above)
    \angleP=\angleP (common)
\therefore\quad }\quad\trianglePMN~\trianglePQR (by AA
From (A) and (B)
\(\triangle A B C \sim \triangle P Q R \quad\) Hence proved
```


8. Pythagoras Theorem:-

In a triangle, the square on the hypotenuse is equal to the sum of square of other two sides.

```
Given: - In rt }\triangle\textrm{ABCrt.}<\mathrm{ ed. at A
```

To prove: - $\quad B C^{2}=A B^{2}+A C^{2}$
Construction: - We draw $A B \perp B C$
Proof: - $\quad \ln \triangle A B D$ and $A B C$
$\angle B=\angle B \quad$ (Common)
$\angle B A D=\angle A D B \quad\left(\right.$ each $\left.90^{\circ}\right)$
$\therefore \quad \triangle \mathrm{ABD} \sim \triangle \mathrm{ABC} \quad$ (by AA similarity)
$\therefore \quad \frac{A B}{B C}=\frac{B D}{A B} \quad$ [If two triangles are similar than their
$A B^{2}=B D \times B C$---------- (I)
Again, In $\triangle A D C$ and $\triangle A B C$
$\angle \mathrm{C}=\angle \mathrm{C} \quad$ (common)
$\angle A D C=\angle B A C \quad\left(\right.$ each $\left.90^{\circ}\right)$

$\therefore \quad \triangle A D C \sim \triangle A B C \quad$ (by AA similarity)
$\underline{A C}=\underline{D C} \quad$ [if two Δ 's are similar than their corresponding
$B C \quad A C \quad$ side are in the same ratio]
$\mathrm{AC}^{2}=\mathrm{BC} \times \mathrm{DC}$

Adding (I) and (II)
$A B^{2}+A C^{2}=B C \times D C+B C \times B D$
$A B^{2}+A C^{2}=B C(D C+B D)$
$A B^{2}+A C^{2}=B C \times B C$
$\therefore \quad B C^{2}=A B^{2}+A C^{2}$. Hence proved

A

9. Converse of Pythagoras theorem: -

In a triangle if the square of one side is equal to the sum of square of other two sides than the angle opposite to The $1^{\text {st }}$ side is a right angle.

Given: - $\quad \ln \triangle A B C, A C^{2}=A B^{2}+B C^{2}$
To prove: - $\quad \triangle \mathrm{ABC}$ is a rt. $\angle^{\text {ed }} \Delta$
Construction: - We draw rt. $\angle^{\text {ed. }} \Delta \mathrm{rt}$. $\angle^{\text {ed. }}$ at E such that $\mathrm{AB}=\mathrm{DE}$ and $\mathrm{EF}=\mathrm{BC}$
Proof: -
In rt. $\triangle \mathrm{ABC}, \mathrm{rt} . \angle^{\text {ed. at } \mathrm{E}}$ (by construction)
$\begin{array}{ll}\therefore \quad & \mathrm{DF}^{2}=\mathrm{DE}^{2}+\mathrm{EF}^{2} \\ & \mathrm{DF}^{2}=\mathrm{AB}^{2}+\mathrm{BC}^{2}\end{array}$ (by Pythagoras theorem) $[\because \mathrm{AB}=\mathrm{DE}$ and $\mathrm{BC}=\mathrm{EF}$ (by construction)]
But, $\quad A C^{2}=A B^{2}+B C^{2}$ (II)

From (I) and (II)
$D F^{2}=A C^{2}$
$D F=\sqrt{A C^{2}}$
$D F=A C$
Now, In $\triangle D E F$ and $A B C$
$D E=A B \quad$ (by construction)
$E F=B C \quad$ (by Construction)
$\mathrm{DE}=\mathrm{AB} \quad$ (proved above)
$\therefore \quad \triangle \mathrm{DEF} \cong \triangle \mathrm{ABC} \quad$ (by SSS congruence)
$\therefore \quad \angle \mathrm{B}=\angle \mathrm{E} \quad$ (CPCPTC)
But, $\angle \mathrm{E}=90^{\circ} \quad$ (by construction)
$\therefore \quad \angle \mathrm{B}=90^{\circ}$
Hence $\triangle \mathrm{ABC}$ is a rt. $\angle^{\text {ed. triangle }}$
Proved

10．Obtuse Angle Theorem：－

In $a \triangle A B C, \angle A C B$ is greater than 90° and side $A C$ is produced to D such that segment $B D \perp A D$ ．
Prove that $A B^{2}=B C^{2}+A C^{2}+2 C A x C D$
Given：－$\quad \triangle A B C$ is a \triangle in which $\angle B C A>90^{\circ}$ also $A C$ is
produced to D such that $\mathrm{BD} \perp \mathrm{AD}$ ．
To prove：－$\quad \mathrm{AB}^{2}=\mathrm{BC}^{2}+\mathrm{AC}^{2}+2 \mathrm{CA} \times \mathrm{CD}$
Proof：－
In rt．⿴囗十ABD，rt．$\angle^{\text {ed．}}$ at D
$\therefore \quad A B^{2}=B D^{2}+A D^{2}$
（by Pythagoras theorem）
$A B^{2}=B D^{2}+(D C+A C)^{2}$
$A B^{2}=D B^{2}+D C^{2}+A C^{2}+2 D C x A C$
$A B^{2}=\left(B D^{2}+D C^{2}\right)+A C^{2}+2 D C \times A C$

Hence Proved

11．Acute Angle Theorem：－
In $\triangle A B C, \angle B<90^{\circ} A D$ is drawn perpendicular to $B C$ ．Prove that $A C^{2}=A B^{2}+B C^{2}-2 B C \times B D$
Given：－$\quad A B C$ is a ］in which $\angle A=90^{\circ}$ also $A D \perp B C$
To Prove：－$\quad A C^{2}=A B^{2}+B C^{2}-2 B C \times B D$
Proof：－Inrt．⿴囗十⺝ADC rt．$\angle^{\text {ed．}}$ at D
\therefore $A C^{2}=A D^{2}+D C^{2} \quad$（by Pythagoras theorem） $A C^{2}=A D^{2}+(B C-D B)^{2}$
$A C^{2}=A D^{2}+B C^{2}+B D^{2}-2 B C \times B D$

$A C^{2}=\left(A D^{2}+B D^{2}\right)+B C^{2}-2 B C \times B D$
$A C^{2}=A B^{2}+B C^{2}-2 B C \times B D \quad$［in rt．$\triangle A B C, A B^{2}=A D^{2}+B D^{2}, B y$ Pythagoras theorem］

