

2ND FLOOR, SATKOUDI COMPLEX, THANA CHOWK, RAMGARH, JHARKAHAND - 829122

SIMILAR Theorems Triangles

THEOREMS

SIMILAR TRIANGLES

I. THEOREM :1-[BASIC PROPORTIONALITY THEOREM - (THALES THEOREM)] Statement – In a triangle, a line drawn parallel to one side to intersect the other side in distinct

point divide the other two side in the same ratio.

Or

If a line drawn parallel to one side of a Δ divides the other two side in the same ratio.

<u>Given</u> : – <u>To prove</u> : -	In a Δ ABC, DE is drawn to BC <u>AD</u> = AE DB EC A
Construction:	- we draw DM \perp AC and EN \perp AD and join BE and DC
Proof: -	We know that, Δ'^{s} on the same base
	(DE) and between same ,s (BD CE) are equal in area.
.:.	ar. Δ BED = ar. Δ DCE(I)
Now	<u>ar. $\Delta ADE = \frac{1}{2} \times DM \times AE = AE$ (II) ['.'area of $\Delta = \frac{1}{2} \times b \times h$] D</u>
	ar. Δ CDE $\frac{1}{2}$ x $\frac{D}{M}$ x CE CE
Again,	$\underline{\text{ar.}\Delta \text{ADE}} = \frac{1}{2} \times E_{\text{M}} \times AD = \underline{\text{AD}} - \dots - (\text{III})$
_	ar. Δ DBE $\frac{1}{2}$ x EN x BD BD
But,	ar. \triangle BED = ar. \triangle CDE [from (I)]
··	$\underline{\operatorname{ar.} \Delta \operatorname{ADE}} = \underline{\operatorname{AD}} (IV) \qquad \qquad B \swarrow \checkmark C$
From /	ar. $\Delta CDE DB$
From	
t.	Hence Proved.
1 st Corollary	- AD_= <u>AE</u> [Proved above] DB EC
■1 st Corollary Adding	 AD_= <u>AE</u> [Proved above] DB EC g 1 to both sides, WE get
■1 st Corollary Adding	$- AD_{=} \underline{AE} $ [Proved above] DB EC g 1 to both sides, WE get $\underline{AD} + 1 = \underline{AE} + 1$
■1 st Corollary Adding	$-AD_{=} \underline{AE}$ [Proved above] DB EC g 1 to both sides, WE get $\frac{AD}{DB} + 1 = \underline{AE} + 1$ DB EC
■1 st Corollary Adding ⇒	$-AD = \underline{AE} \qquad [Proved above] \\DB = EC \\g \ 1 to both sides, WE get \\\underline{AD} + 1 = \underline{AE} + 1 \\DB = EC \\\underline{AD + DB} = \underline{AE + EC} \qquad \therefore \qquad \qquad$
■1 st Corollary Adding	-AD = AE [Proved above] $DB = EC$ $a 1 to both sides, WE get$ $AD + 1 = AE + 1$ $DB = EC$ $AD + DB = AE + EC$ $DB = CE$ $AB = AE + EC$ $BA = EC$
■1 st Corollary Adding ⇒ ■2 nd Corollary	$-AD = \underline{AE} \qquad [Proved above] \\DB = EC \\g = 1 to both sides, WE get \\\underline{AD} + 1 = \underline{AE} + 1 \\DB = EC \\\underline{AD + DB} = \underline{AE + EC} \\DB = CE \\\vdots \\BA = EC \\i $
■1 st Corollary Adding ⇒ ■2 nd Corollary	$-AD = \underline{AE} \qquad [Proved above] \\DB = EC \\g = 1 to both sides, WE get \\\underline{AD} + 1 = \underline{AE} + 1 \\DB = EC \\\underline{AD + DB} = \underline{AE + EC} \\DB = CE \\\hline\underline{AD} = \underline{AE} \qquad [proved above] \\DB = EC \\DC = $
■1 st Corollary Adding ⇒ ■2 nd Corollary	$-AD = \underline{AE} \qquad [Proved above] \\DB = EC \\g = 1 to both sides, WE get \\\underline{AD} + 1 = \underline{AE} + 1 \\DB = EC \\\underline{AD + DB} = \underline{AE + EC} \\DB = CE \\CE \\\hline\underline{AD} = \underline{AE} \qquad [proved above] \\DB = EC \\\underline{DB} = EC \\\underline{AD} = \underline{AE} \qquad [proved above] \\DB = EC \\\underline{AD} = \underline{AE} \qquad [proved above] \\CE \\\underline{AD} = \underline{AE} \qquad [proved above] \[proved above] \\CE \\\underline{AD} = \underline{AE} \qquad [proved above] \[proved abo$
■1 st Corollary Adding ⇒ ■2 nd Corollary	$-AD = \underline{AE} \qquad [Proved above] \\DB = EC \\g = 1 to both sides, WE get \\\underline{AD} + 1 = \underline{AE} + 1 \\DB = EC \\\underline{AD + DB} = \underline{AE + EC} \\CE \\\hline\underline{AD + DB} = \underline{AE + EC} \\CE \\\underline{AD + DB} = \underline{AE} \qquad [proved above] \\\underline{DB} = EC \\\underline{DB} = EC \\\underline{AD} = \underline{AE} \qquad [proved above] \\\underline{DB} = EC \\\underline{AD} = AC \\adding 1 to both sides.$
■1 st Corollary Adding ⇒ ■2 nd Corollary	$-AD = \underline{AE} \qquad [Proved above] \\ DB EC \\ g \ 1 \text{ to both sides, WE get} \\ \underline{AD} + 1 = \underline{AE} + 1 \\ DB EC \\ \underline{AD + DB} = \underline{AE + EC} \qquad \therefore \qquad \boxed{AB : = \underline{AE} : 1} \\ DB CE \\ - \underline{AD} = \underline{AE} \qquad [proved above] \\ DB EC \\ \underline{DB} = \underline{EC} \\ AD AC \\ adding 1 \text{ to both sides.} \\ \underline{DB} + 1 = \underline{EC} + 1 \\ \end{bmatrix}$
■1 st Corollary Adding ⇒ ■2 nd Corollary	$-AD = \underline{AE} \qquad [Proved above] \\DB = EC \\AD + 1 = \underline{AE} + 1 \\DB = \underline{EC} \\AD + DB = \underline{AE + EC} \\CE \\ - \underline{AD} = \underline{AE} \qquad [proved above] \\DB = \underline{EC} \\DB = \underline{EC} \\AD = AC \\adding 1 to both sides. \\\underline{DB} + 1 = \underline{EC} + 1 \\AD = AC \\ \end{array}$
■1 st Corollary Adding ⇒ ■2 nd Corollary	$-AD = \underline{AE} \qquad [Proved above] \\DB = EC \\a 1 to both sides, WE get \\AD + 1 = \underline{AE} + 1 \\DB = \underline{EC} \\AD + DB = \underline{AE + EC} \\CE \\c \\DB = \underline{AE} \qquad [Proved above] \\DB = \underline{EC} \\DB = \underline{EC} \\AD = AC \\adding 1 to both sides. \\DB + 1 = \underline{EC} + 1 \\AD = AC \\DB + AD = EC + AC \\c \\c \\AB = \underline{AE} \\c \\c \\AB = \underline{AE} \\c \\c \\c \\AB = \underline{AE} \\c \\c \\c \\AB = \underline{AE} \\c \\c \\c \\c \\AB = \underline{AE} \\c \\c \\c \\c \\AB = \underline{AE} \\c $
■ 1 st Corollary Adding ⇒ ■ 2 nd Corollary	$-AD = \underline{AE} \qquad [Proved above] \\DB = EC \\a 1 to both sides, WE get \\\underline{AD} + 1 = \underline{AE} + 1 \\DB = EC \\\underline{AD + DB} = \underline{AE + EC} \\CE \\\hline\underline{AD + DB} = \underline{AE + EC} \\CE \\\underline{AD + DB} = \underline{AE + EC} \\CE \\\underline{AD + DB} = \underline{C} \\CE \\\underline{AD + DB} = \underline{C} \\CE \\\underline{AD + DB} = \underline{EC} \\CE \\\underline{BA - EC} \\CE \\\underline{BA - EC} \\CE \\\underline{AD - AC} \\CE \\\underline{AD - AC} \\$
■1 st Corollary Adding ⇒ ■2 nd Corollary	$-AD = \underline{AE} \qquad [Proved above] \\ DB EC \\ g \ 1 to both sides, WE get \\ \underline{AD} + 1 = \underline{AE} + 1 \\ DB EC \\ \underline{AD + DB} = \underline{AE + EC} \qquad \therefore \qquad \underbrace{AB = \underline{AE} \\ DB CE \\ \hline BA EC \\ \hline BA EC \\ \hline BB = \underline{EC} \\ AD AC \\ \hline \underline{DB} = 1 = \underline{EC} + 1 \\ AD AC \\ \hline \underline{DB + AD} = EC + AC \\ AD AC \\ \hline \underline{AD} = AC \\ \hline \underline{AD} = \underline{AE} \\ \underline{AD} = \underline{AE} \\ \hline \underline{AD} = \underline{AE} \\ \underline{AD}$

CBSE-MATHEMATICS

<u>Converse of</u>	$\frac{\textbf{B.P.T}}{\textbf{bound for a side}} \rightarrow \text{ If line divergence}$ to 3^{rd} side	/ides any t e.	wo side of a tr	iangle in the sa	me ratio than it	is parallel
Given: -	In a Δ ABC, D	E is a straight	t-line meeting AB	& AC resp. at D & E		
	such that AD	= AE	0			
	DE	EC			D	E
To prove: -	DE BC					
Construction:	<u>-</u> Consider that, DE∦B	C, but it is t	o BM			
	AC is produced to int	ersect BM at	M.			C
Proof: -	In Δ ABM, DE BM [b	y assumption	n]		В	M
.:.	<u>AD</u> = <u>AE</u>		(1] [If a line drawn or	n other of a Δ , divid	les
	DB EM			the other sides in	the same ratio.(B.I	Р.Т)]
But	<u>AD</u> = <u>AE</u>			(II) (given)	
	DB EC					
	From (I) and (II), we g	et				
	<u>AE</u> = <u>AE</u>					
	EM EC					
	EM = EC					
Which	is possible only when I	V coincides v	with C,			
i.e., E	BC = BM _, which cont	radicts our su	upposition.			
Hence	e, DE BC Hence p	oved.				
3. <u>Internal bis</u>	sector theorem: -	The bisecto	r of an angle of	a triangle, divides	the opposite sid	e in ratio of side
		containing	the angle.			
Given: -	Δ ABC, in which AN is	an internal b	Disector of $\angle A$ me	ets BC at N.		
To Prove: -	<u>AB = BN</u>					M 1
	AC NC					
Construction:	- Through C we draw N	1C AN. Also	, BM is produced	to M to meet CM.	Ă	·
Proof: -	Since AN CM and BI	M is transvers	sal			4
	∴ ∠1=	:∠2	(correspon	ding angles) (I)		
	Again, since AN CIVI	and AC is tra	insversal	((5)	Å	
	∴ ∠2=	÷∠3	(alternate 2	<u>/</u> ''')()		
	But, $\angle 1 =$	$\simeq 2$ [\simeq AN is	s internal bisector	of \angle A (given)]	(III)	
	From (I), (II) and (III)				
	∠3=	∠4				
	Now in Δ ACM,	_				3
	∠ 3 =	∠4 [ŗ	proved above]			<mark>∖</mark> Ω
	∴ AC	= AM [si	ides opposite to equa	I ∠'s are also equal <mark>./</mark>		
	Now in ∆ MBC, AN ∥ I	MC. (B	By construction.)	В	Ν	C
	∴ <u>AB</u> =	<u>BN</u>		[BY (BPT)]	
	AM	NC	_			
	or, <u>AB</u> =	BN	[∵AM = A	C (proved above)]	Hence Proved.	
	(<u>••• AC</u> •	NC J				

4.	Converse: -	If a line through one vertex of a triangle divides the opposite side in the ratio of the the line bisects the angle of the vertex.	of other two side,
	Given: -	A \triangle ABC in which AD is a line from vertex A such that $\underline{AB} = \underline{BD}$	M
	T	AC DC	
	To prove: -	AD is disector of \angle BAC or \angle A. Through C, we draw MC AD and produce AB to most MC at M	
	Proof: -	In \land BCM \land D \parallel MC (By construction)	
		$\therefore \qquad AB = BD \qquad [Bv (BPT)]$	
		AM DC A	
	I	But, $\underline{AB} = \underline{BD}$	
		AC DC 3 4	
		$\therefore \underline{AB} = \underline{AB}$	
		AM AC	
		Now in ACM	
		AC = AM [Proved above]	c
		$\angle 1 = \angle 2$ [angles opposite to equal side are also equal] (I)	-
		Now AD MC (by construction.) and AC is a transversal.	
		$\therefore \qquad \angle 2 = \angle 4 \qquad (alternate \angle's) (II)$	
		Also, AD MC (by construction.) and BM is a transversal.	
		$\angle 3 = \angle 1$ (III) [corresponding $\angle s$]	
		From (I), (II) and (III),	
		$\angle 3 = \angle 4$	
		AD is bisector of \angle BAC, hence proved.	
5	. <u>External Bis</u>	ector Theorem – The external bisector of an angle of a triangle divides the opposite s	ide in the ratio
		of sides containing the angle.	К
	Given: -	In \square ABC, AQ is an eternal bisector of exterior \angle CAK.	
	To prove: -	$\underline{AB} = \underline{BD}$	
	Construction	AC CD ,	
	Proof: -	Since NC AD and AC is a transversal (By construction) $A \sqrt{4}$	
		$\angle 1 = \angle 2$ (alternate $\angle 's$)	
		Again NC AD and AB is a transversal	
	.:.	$\angle 3 = \angle 4$ (Corresponding \angle ,s)	
		But, $\angle 2 = \angle 4$ (Given) 3	`
	·:-	$\angle 3 = \angle 1$ N/	
		Now, In 🖸 ANC	
		$\angle 3 = \angle 1$ [Proved above]	λ
		AN = AC [Sides opposite to equal \angle s are also equal.]	
		$AB = BD$ [:: a line drawn to one side of a \square divides the other side in same ratio]	U
		AN CD	
		But, AN = AC [Proved above]	
	.:.	$\underline{AB} = \underline{BD}$	
		AC CD	
		Hence proved	
L	<u>BSE-M</u> A	THEMATICS	
			ACCENTS EDUCATIONAL PROMOTERS

BSE-MATHEMATICS

6. Area <u>Theorem</u>: - The ratio of areas of two similar Δ 's is equal to ratio of square on their corresponding

BSE-MATHEMATICS

F

BSE-MATHEMATICS

II. Characteristic property of similar $\Delta :- \rightarrow$ S-S-S Similarity

II. Criara	ng sides of two triangles	$ = similar \Delta - \rightarrow 3-3-3 similar ity $	
Civere	Ing sides of two triangles	s are proportional than they are similar	
Given: -	In Δ ABC and Δ DEF		
	$\overline{AB} = \overline{BC} = \overline{AC}$	A D	
_	DE EF DF		
To prove: -	$\Delta ABC \sim \Delta DEF$		
Construction: -	: - We mark point M and N on DE and DF respectively.		
	Such that AB = DM and	I AC = DN. Join MN	
Proof: -	Since <u>AB</u> = <u>AC</u>	(Given) / M	
	DE DF	/ $E/2$ F	
	But, AB = DM and A	$C = DN$ (by construction) B $\sim C$	
<i>.</i> .	<u>DM = DN</u>		
	DE DF		
	Now In Δ DEF, DM = [<u>DN (</u> proved above)	
	DE	DF	
·.	MN EF [by the	e converse of BPT)	
	$\angle 1 = \angle 2$ (Corres	sponding ⁷ (s)	
	Now. In Λ DMN and	A DEE	
	/1 = / 2	(proved above)	
		(Common)	
•		(b) (A) cimilarity (A)	
••		(Dy AA Similarity) (A)	
	$\underline{Divi} = \underline{ivin}$	In the Δ s are similar then their corresponding sides are in the same ratio.)	
	$\underline{AB} = \underline{IMIN}$	[∵ AB = DM]	
	DE EF		
	But, $AB = BC$		
	DE EF		
<i>.</i>	<u>BC</u> = <u>MN</u>		
	,£F EF		
	In ΔABC and ΔDMN		
	BC = MN	(proved above)	
	AB = DM	(by construction)	
	And AC = DN	(by construction)	
<i>:</i> .	$\Delta \operatorname{ABC} \cong \Delta \operatorname{DMN}$	(by SSS congruency) (B)	
	From (A) and (B)		
	$\Delta ABC \sim \Delta DEF$	Hence proved	
III. Charac	teristic property of simi	lar $\Delta: \rightarrow$ S-A-S Similarity –	
If in two Δ 's or	ne pair of corresponding	sides are proportional and the included angles are equal than the two	
Δ 's are similar	•		
Given: -	In Δ 's ABC and	PQR	
	AB = AC and \angle A = \angle F		
	PQ PR	A P	
To prove: -	Δ ABC ~ Δ PQR		
Construction: -	We mark point M and	N on PQ and PR respectively	
	such that AB = DM and	AC = DN and join MN.	
Proof: -	In BABC and PMN		
	AB = PM	(by construction) $M \wedge N$	
	$\Delta = / P$	(given)	
	AC = PN	(By construction) $B \xrightarrow{/} C \xrightarrow{/} B$	
1			
BSE-MA	THEMATICS.		
		ACCENTS EDUCATIONAL PROMOTERS	

.:.	$\triangle ABC and \cong \triangle PMN$ (by SAS)	
	△ABS ~△PMN [∵ congruent 🗹's are always similar]	(A)
	Now, <u>AB</u> = <u>AC</u>	
	PQ PR	
	But, AB = DM and AC = DN	
<i>.</i> :.	<u>PM = PN</u>	
	PQ PR	
	Again, In Δ PQR <u>PM</u> = <u>PN</u> (proved above)	
	PQ PR	
<i>:</i> .	MN QR (by the converse of BPT)	
	$\angle 1 = \angle 2$ (Corresponding $\angle s$)	
	Now, In Δ PMN and Δ PQR	
	$\angle 1 = \angle 2$ (proved above)	
	$\angle P = \angle P$ (common)	
·	$\Delta PMN \sim \Delta PQR$ (by AA) (B)	
	From (A) and (B)	
	$\triangle ABC \sim \triangle PQR$ Hence proved	
	-	

8. <u>Pythagoras Theorem</u>: -

BSE-MATHEMATICS

In a triangle, the square on the hypotenuse is equal to the sum of square of other two sides.

Given: - To prove: - Construction: - Proof: -	In rt \triangle ABC rt. $\angle e^{d}$ at A BC ² = AB ² + AC ² We draw AB \perp BC In \triangle ABD and ABC	
	$\angle B = \angle B$	(Common)
	\angle BAD = \angle ADB	(each 90 ⁰)
.:.	$\Delta \text{ ABD} \sim \Delta \text{ ABC}$	(by AA similarity) A
÷.	AB = BD	[If two triangles are similar than their
	BC AB	corresponding side are in the same ratio]
	$AB^2 = BD \times BC$	
	Again, In Δ ADC and Δ	ABC
	$\angle C = \angle C$	(common)
	\angle ADC = \angle BAC	(each 90°) B D
<i>.</i>	Δ ADC ~ Δ ABC	(by AA similarity)
	<u>AC = DC</u>	[if two Δ 's are similar than their corresponding
	BC AC	side are in the same ratio]
	$AC^2 = BC \times DC$	(II)
	Adding (I) and (II)	
	$AB^2 + AC^2 = BC \times DC + B$	C x BD
	$AB^2 + AC^2 = BC (DC + BC)$	
	$AB^2 + AC^2 = BC \times BC$	
··	$BC^2 = AB^2 + AC^2$. Hence	proved

9. Converse of Pythagoras theorem: -

In a triangle if the square of one side is equal to the sum of square of other two sides than the angle opposite to The 1st side is a right angle.

CBSE-MATHEMATICS

10. Obtuse Angle Theorem: -

In a \triangle ABC, \angle ACB is greater than 90° and side AC is produced to D such that segment BD \perp AD. Prove that $AB^2 = BC^2 + AC^2 + 2 CA \times CD$ Given: - \triangle ABC is a \triangle in which \angle BCA > 90^o also AC is produced to D such that $BD \perp AD$. $AB^2 = BC^2 + AC^2 + 2 CA \times CD$ To prove: -Proof: -In rt. \square ABD, rt. $\angle^{ed.}$ at D $AB^2 = BD^2 + AD^2$ (by Pythagoras theorem) *.*.. $AB^2 = BD^2 + (DC + AC)^2$ $AB^2 = DB^2 + DC^2 + AC^2 + 2 DC \times AC$ $AB^{2} = (BD^{2} + DC^{2}) + AC^{2} + 2 DC \times AC$ กั Hence Proved

