## TRIANGLE

DEFINITION: A plane figure bounded by three lines in a plane is called a triangle.
Let $A, B, C$ be three points such that all are not in a line. Then, the line segments $A B, B C$ and $C A$ form a triangle with vertices $A, B$ and $C$. The segments $A B, B C$ and $C A$ are called the sides and the angles $B A C, A B C$ and $A C B$ are called the angles of the triangle $A B C$.


For the sake of convenience we shall denote $\angle B A C, \angle A B C$ and $\angle A C B$ by $\angle A, \angle B$ and $\angle C$ respectively. We shall also use the symbol ' $\Delta$ ' (read as 'delta') in place of the word "triangle". Thus, triangle ABC will be denoted by the $\triangle \mathrm{ABC}$.

## TYPES OF TRIANGLES

Triangles are classified into various types on the basis of the lengths their sides as well as on the basis of the measures of their angles. Following are the types of triangles on the basis of sides:
II SCALENE TRIANGLE: A triangle, no two of whose sides are equal is called a scalene triangle.
ๆ ISOSCELES TRIANGLE: A triangle, two of whose sides are equal in length is called an isosceles triangle.
I EQUILATERAL TRIANGLE: A triangle, all of whose sides are equal is called an equilateral triangle. Following are the types of triangles on the basis of angles.
ๆ ACUTE TRIANGLE: A triangle, each of whose angles is acute, is called on an acute triangle or an acute angled triangle.
If RIGHT TRIANGLE: A Triangle with one angle a right angle is called a right triangle or a right angled triangle.
II OBTUSE TRIANGLE: A triangle with one angle an obtuse angle, is known as an obtuse triangle or obtuse angled triangle.

- It should be noted that an equilateral triangle is an isosceles triangle but the converse is not true.

ANGLE SUM PROPERTY OF A TRIANGLE
$\square$ THEOREM 1: The sum of the three angles of a triangle is $180^{\circ}$.
GIVEN:
A triangle ABC.

(i)

(ii)

To prove: $\angle A+\angle B+\angle C=180^{\circ}$ i.e., $\angle 1+\angle 2+\angle 3=180^{\circ}$
Construction: Through A, draw a line $l$ parallel to $B C$.
Proof: Since $l \| \mathrm{BC}$. Therefore,

$$
\begin{aligned}
& \angle 2=\angle 4 \quad \text { [Alternate interior angles] } \\
& \text { and, } \quad \angle 3=\angle 5 \quad \text { [Alternate interior angles] } \\
& \therefore \quad \angle 2+\angle 3=\angle 4+\angle 5 \\
& \Rightarrow \quad \angle 1+\angle 2+\angle 3=\angle 1+\angle 4+\angle 5 \quad \text { [Adding } \angle 1 \text { on both sides] } \\
& \Rightarrow \quad \angle 1+\angle 2+\angle 3=\angle 4+\angle 1+\angle 5 \\
& \Rightarrow \quad \angle 1+\angle 2+\angle 3=180^{\circ} \\
& \text { [ } \because \text { Sum of angles at a point on a line is } 180^{\circ} \text { ] } \\
& \therefore \angle 4+\angle 2+\angle 5=180^{\circ} \\
& \text { Thus, the sum of the three angles of a triangle is } 180^{\circ} \text {. }
\end{aligned}
$$

$\square$ COROLLARY: If the bisector of angles $\angle A B C$ and $\angle A C B$ of a triangle $A B C$ meet at a point $O$, then

$$
\angle B O C=90^{\circ}+1 / 2 \angle A
$$

GIVEN: $A \triangle A B C$ such that the bisector of $\angle A B C$ and $\angle A C B$ meet at a point $O$.

To prove: $\angle B O C=90^{\circ}+1 / 2 \angle A$
Proof: In BOC, we have

$$
\angle 1+\angle 2+\angle B O C=180^{\circ}
$$

In $\triangle A B C$, we have

$$
\begin{array}{ll} 
& \angle A+\angle B+\angle C=180^{\circ} \\
= & \angle A+2(\angle 1)+2(\angle 2)=180^{\circ} \\
= & \angle A+2(\angle 1)+2(\angle 2)=180^{\circ} \\
= & \frac{\angle A+}{2} \angle 1+\angle 2=90^{\circ} \\
= & \angle 1+\angle 2=90^{\circ}-\angle A
\end{array}
$$

Substituting this value of $\angle 1+\angle 2$ in (i), we get

$$
\begin{array}{ll} 
& 90^{\circ}-\angle A+\angle B O C=180^{\circ} \\
= & \angle B O C=180^{\circ}-90^{\circ}+\frac{\angle A}{2} \\
= & \angle B O C=90^{\circ}+\frac{\angle A}{2}
\end{array}
$$

$\binom{\because B O$ and $C O$ are bisectors of $\angle A B C$ and $\angle A C B$ respectively }{$\therefore \angle B=2 \angle 1$ and $\angle C=2 \angle 2}$
[Dividing both sides by 2]
(ii)

[THEOREM 2: If two parallel lines are intersected by a transversal, prove that the bisectors of the two pairs of interior angles enclose a rectangle.
Given: Two parallel lines $A B$ and $C D$ and a transversal $E F$ intersecting them at $G$ and $H$ respectively. $G M, H M, G L$ and $H L$ are the bisectors of the two pairs of interior angles.
To Prove: GMHL is a rectangle.
Proof: We have,

$$
\begin{array}{ll} 
& \angle A G H=\angle D H G \quad \text { [Alternate interior angles] } \\
= & 1 / 2 \angle A G H=1 / 2 \angle D H G \\
\Rightarrow & \angle H G M=\angle G H L
\end{array}
$$



Thus, lines GM and HL are intersected by a transversal GH at G and H respectively such that pair of alternate angles are equal i.e., $\angle H G M=\angle G H L$.
$\because \quad G M \| H L$
Similarly, we can prove that GL || HM. So, GMHL is a parallelogram
Since $A B \| C D$ and $E F$ is a transversal.

$$
\begin{array}{lll}
\therefore & \angle B G H+\angle D H G=180^{\circ} & {\left[\because \text { Sum of interior angles on the same side of a transversal }=180^{\circ}\right]} \\
\Rightarrow & 1 / 2 \angle B G H+1 / 2 \angle D H G=90^{\circ} & \\
\Rightarrow & \angle L H G+\angle L H G=90^{\circ} & {[\because 1 / 2 \angle B G H=\angle L G H \text { and, } 1 / 2 D H G=\angle L H G]} \\
\text { But, } & \angle L G H+\angle L H G+\angle G L H=180^{\circ} & {\left[\text { Sum of the angles of a triangle is } 180^{\circ}\right]} \\
\therefore & 90^{\circ}+\angle G L H=180^{\circ} & {\left[\because \angle L G H+\angle L H G=90^{\circ}\right]} \\
\Rightarrow & \angle G L H=180^{\circ}-90^{\circ} & \\
\Rightarrow & \angle G L H=90^{\circ} &
\end{array}
$$

Thus, in the parallelogram GMHL, we have $\angle \mathrm{GLH}=90^{\circ}$
Hence, GMHL is a rectangle.

## Illustrative Examples.

Q. 1. In a $\triangle A B C, \angle B=105^{\circ}, \angle C=50^{\circ}$. Find $\angle A$.

Sol. We have,

$$
\begin{aligned}
& \angle A+\angle B+\angle C=180^{\circ} \\
\Rightarrow \quad & \angle A+105^{\circ}+50^{\circ}=180^{\circ} \quad \Rightarrow \quad \angle A=180^{\circ}-155^{\circ}=25^{\circ}
\end{aligned}
$$

Q. 2. The sum of two angles of a triangle is equal to its third angle. Determine the measure of the third angle.

Sol. Let $A B C$ be a triangle such that

$$
\begin{equation*}
\angle A+\angle B=\angle C \tag{i}
\end{equation*}
$$

We know that $\angle A+\angle B+\angle C=180^{\circ}$
We know that $\angle A+\angle B+\angle C=180^{\circ}$
Putting $\angle A+\angle B=\angle C$ in (ii), we get

$$
\angle C+\angle C=180^{\circ} \quad \Rightarrow \quad 2 \angle C=180^{\circ} \quad \Rightarrow \quad \angle C=90^{\circ}
$$

Thus, measure of the third angle is of $90^{\circ}$.
Q. 3. Of the three angles of a triangle, one is twice the smallest and another is three times the smallest. Find the angles.

Sol. Let the smallest angle of the given triangle be of $x^{\circ}$. Then, the other two angles are of $2 x^{\circ}$ and $3 x^{\circ}$.

$$
\begin{array}{ll}
\text { So, } & x+2 x+3 x=180 \\
\Rightarrow & 6 x=180 \Rightarrow x=\frac{180}{6}=30
\end{array}
$$

Hence, measures of the angles of the triangle are $30^{\circ}, 60^{\circ}$ and $90^{\circ}$.
Q. 4. If the angles of a triangle are in the ratio $2: 3: 4$, determine three angles.

Sol. Let the angles of the triangle be $2 x^{\circ}, 3 x^{\circ}$ and $4 x^{\circ}$. Then,

$$
\therefore \quad 2 x+3 x+4 x=180 \Rightarrow 9 x=180 \Rightarrow x=20
$$

Hence, the angles of the triangle are $40^{\circ}, 60^{\circ}$ and $80^{\circ}$.
Q. 5. The sum of two angles of a triangle is $80^{\circ}$ and their difference is $20^{\circ}$. Find all the angles.

Sol. Let $A B C$ be a triangle such that

$$
\angle A+\angle B=80^{\circ} \text { and } \angle A-\angle B=20^{\circ}
$$

Adding and subtracting these two, we get

$$
\begin{array}{ll} 
& (\angle A+\angle B)+(\angle A-\angle B)=80^{\circ}+20^{\circ} \\
\text { and, } & (\angle A+\angle B)-(\angle A-\angle B)=80^{\circ}-20^{\circ} \\
=> & 2(\angle A)=100^{\circ} \text { and } 2(\angle B)=60^{\circ} \\
= & \angle A=50^{\circ} \text { and } \angle B=30^{\circ}
\end{array}
$$

Putting the values of $\angle A$ and $\angle B$ in $\angle A+\angle B+\angle C=180^{\circ}$, we get

$$
\begin{array}{ll} 
& 50^{\circ}+30^{\circ}+\angle C=180^{\circ} \\
=> & \angle C=180^{\circ}-\left(50^{\circ}+30^{\circ}\right)=100^{\circ} \\
\text { Hence, } & \angle A=50^{\circ}, \angle B=30^{\circ} \text { and } \angle C=100^{\circ}
\end{array}
$$

Q. 6. In a $\triangle A B C$, if $2 \angle A=3 \angle B=6 \angle C$, determine $\angle A, \angle B$ and $\angle C$.

Sol. We have,

$$
\begin{array}{ll} 
& 2 \angle A=3 \angle B=6 \angle C \\
\Rightarrow & \frac{\angle A}{3}=\frac{\angle B}{2}=\frac{\angle C}{1} \quad[\text { Dividing throughout by } 6 \text { i.e., the I.c.m of } 2,3 \text { and } 6] \\
\Rightarrow & \angle A: \angle B: \angle C=3: 2: 1 \\
\text { Let } & \angle A=3 x, \angle B=2 x \text { and } \angle C=x \text {. Then, } \\
& \angle A+\angle B+\angle C=180^{\circ} \\
\Rightarrow \quad & 3 x+2 x+x=180^{\circ}=>\quad 6 x=180^{\circ} \Rightarrow>x=30^{\circ}
\end{array}
$$

Q. 7. $A, B, C$ are the three angles of a triangle. If $A-B=15^{\circ}, B-C=30^{\circ}$, find $\angle A, \angle B$ and $\angle C$.

Sol. We have,

$$
\begin{array}{ll} 
& A-B=15^{\circ} \text { and } B-C=30^{\circ} \\
\Rightarrow \quad & A=15^{\circ}+B \text { and } C=B-30^{\circ} \tag{i}
\end{array}
$$

```
Now, \(\quad A+B+C=180^{\circ}\)
\(\Rightarrow \quad 15^{\circ}+B+B+B-30^{\circ}=180^{\circ} \Rightarrow \quad 3 B-15^{\circ}=180^{\circ} \Rightarrow 3 B=195^{\circ} \Rightarrow B=65^{\circ}\)
Putting \(B=65^{\circ}\) in (i), We get, \(A=15^{\circ}+65^{\circ}=80^{\circ}\) and \(C=65^{\circ}-30^{\circ}=35^{\circ}\)
```

Q. 8. In fig. $A B \| D C$. If $x=4 y$ and $y=\underline{3 z}$, find $\angle B C D, \angle A B C$ and $\angle B A D$.

$$
\begin{array}{ll}
3 & 8
\end{array}
$$

Sol. Since $A B \| D C$ and transversal $B C$ intersects them at $B$ and $D$ respectively.

$$
\begin{array}{lll}
\therefore & \angle A B C=\angle B D C \text { and }, \angle \mathrm{CBD}=\angle \mathrm{ADB} & \\
\Rightarrow & \angle \mathrm{BDC}=\mathrm{x} \text { and } \mathrm{y}=36 & \\
\left.\Rightarrow \angle \because \angle \mathrm{ABD}=\mathrm{x}^{\circ} \text { and } \angle \mathrm{ADB}=36^{\circ} \text { (Given) }\right]
\end{array}
$$

But, it it given that:

$$
\begin{array}{ll} 
& x=\frac{4 y}{3} \text { and } y=\frac{3 z}{8} \\
\therefore & x=\frac{4}{3} \times 36 \text { and } 36=\frac{3 z}{8} \\
\Rightarrow & x=48 \text { and } z=\frac{36 \times 8}{3}=96
\end{array}
$$

IN $\triangle B A D$, we have

$\Rightarrow \quad \angle B A D+36+x=180$
$\Rightarrow \quad \angle B A D+36+48=180$
$\Rightarrow \quad \angle B A D=96$
Thus, $\angle B C D=z^{\circ}=96^{\circ}, \angle A B C=x^{\circ}+y^{\circ}=48^{\circ}+36^{\circ}=84^{\circ}$ and $\angle B A D=96^{\circ}$
Q. 9. $\quad A$ triangle $A B C$ is right angled at $A$. $A L$ is drawn perpendicular to $B C$. Prove that $\angle B A L=\angle A C B$.

Sol. IN $\Delta A B L$, we have

$$
\begin{array}{llll} 
& \angle B A L+\angle A L B+\angle B=180^{\circ} & & \\
=> & \angle B A L+90^{\circ}+\angle B=180^{\circ} & {[\because A L \perp B C} & \left.\therefore \angle A L B=90^{\circ}\right] \\
=> & \angle B A L+\angle B=90^{\circ} & & \\
=> & \angle B A L=90^{\circ}-\angle B & \ldots \text { (i) } & \tag{i}
\end{array}
$$

In $\triangle A B C$, we have

$$
\begin{array}{ll} 
& \angle A+\angle B+\angle C=180^{\circ} \\
\Rightarrow & 90^{\circ}+\angle B+\angle C=180^{\circ} \\
\Rightarrow & \angle B+\angle C=180^{\circ}-90^{\circ} \\
\Rightarrow & \angle B+\angle C=90^{\circ} \\
\Rightarrow & \angle C=90^{\circ}-\angle B \\
\Rightarrow & \angle A C B=90^{\circ}-\angle B \tag{ii}
\end{array}
$$

From (i) and (ii), we get


In $\triangle A B C$, we have
$\angle A+\angle B+\angle C=180^{\circ}$
$\Rightarrow \quad 90^{\circ}+\angle B+\angle C=180^{\circ}$
$\Rightarrow \quad \angle B+\angle C=180^{\circ}-90^{\circ}$
$\Rightarrow \quad \angle B+\angle C=90^{\circ}$
$\Rightarrow \quad \angle C=90^{\circ}-\angle B$
$\Rightarrow \quad \angle A C B=90^{\circ}-\angle B$
From (i) and (ii), we get
$\angle B A L=\angle A C B$
Q. 10. In Fig. PS is the bisector of $\angle Q P R$ and $P T \perp Q R$. Shown that $\angle T P S=1 / 2(\angle Q-\angle R)$.

Sol. Since PS is the bisector of $\angle Q P R$.
$\therefore \quad \angle \mathrm{QPS}=\angle \mathrm{SPR}$
In $\triangle$ PQT, we have

$$
\begin{equation*}
\angle \mathrm{PQT}+\angle \mathrm{PTQ}+\angle \mathrm{QPT}=180^{\circ} \tag{i}
\end{equation*}
$$

Q. 10. In Fig. $P S$ is the bisector of $\angle Q P R$ and $P T \perp Q R$. Shown that $\angle T P S=1 / 2(\angle Q-\angle R)$.

$$
\begin{array}{lc}
\Rightarrow & \angle \mathrm{PQT}+90^{\circ}+\angle \mathrm{QPT}=180^{\circ} \\
\Rightarrow & \angle \mathrm{PQT}+\angle \mathrm{QPT}=90^{\circ} \\
= & \angle \mathrm{PQT}=90^{\circ}-\angle \mathrm{QPT} \\
\Rightarrow & \angle Q=90^{\circ}-\mathrm{QPT} \tag{ii}
\end{array}
$$

In $\triangle$ PTR, we have

$$
\begin{array}{ll} 
& \angle P R T+\angle T P R+\angle P T R=180^{\circ} \\
=> & \angle P R T+\angle T P R=90^{\circ} \\
=> & \angle P R T+\angle T P R=90^{\circ} \\
= & \angle P R T=90^{\circ}-\angle T P R \\
\Rightarrow & \angle R=90^{\circ}-\angle T P R
\end{array}
$$



Subtracting (iii) from (ii), we get

```
    \(\angle Q-\angle R=\left(90^{\circ}-\angle Q P T\right)-\left(90^{\circ}-\angle T P R\right)\)
\(\Rightarrow \quad \angle Q-\angle R=\angle T P R-\angle Q P T\)
\(=>\quad \angle Q-\angle R=(\angle T P S+\angle S P R)-(\angle Q P S-\angle T P S)\)
\(=>\quad \angle Q-\angle R=2 \angle T P S\)
\(\Rightarrow \quad \angle T P S=1 / 2(\angle Q-\angle R)\)
```

Q. 11. If two parallel lines are intersected by a transversal, prove that the bisectors of the interior angles on the same side of transversal intersect each other at right angles.
Sol. We know that the sum of the interior angles on the same side of the transversal is $180^{\circ}$.
$\therefore \quad \angle \mathrm{BMN}+\angle \mathrm{DNM}=180^{\circ}$
$\Rightarrow \quad 1 / 2 \angle B M N+1 / 2 \angle D N M=90^{\circ}$
$\Rightarrow \quad \angle P M N+\angle P N M=90^{\circ}$
$\Rightarrow \quad \angle 1+\angle 2=90^{\circ}$
In $\triangle$ PMN, we have
$\angle 1+\angle 2+\angle 3=180^{\circ}$
From (i) and (ii), we get

$90^{\circ}+\angle 3=180^{\circ}$
$=\quad \angle 3=90^{\circ}$
=> $\quad$ PM and PN intersect at right angles.
Q. 12. In Fig. $T Q$ and $T R$ are the bisectors of $\angle Q$ and $\angle R$ respectively. If $\angle Q P R=80^{\circ}$ and $\angle P R T=30^{\circ}$, determine $\angle T Q R$ and $\angle Q T R$.

Sol. Since the bisector of $\angle \mathrm{Q}$ and $\angle \mathrm{R}$ meet at $T$.

$$
\begin{array}{ll}
\therefore & \angle Q R T=90^{\circ}+1 / 2 \angle Q P R \\
\Rightarrow & \angle Q T R=90^{\circ}+1 / 2\left(80^{\circ}\right) \\
\Rightarrow & \angle Q T R=90^{\circ}+40^{\circ}=130^{\circ}
\end{array}
$$

In $\Delta$ QTR, we have

$$
\begin{array}{ll} 
& \angle T Q R+\angle Q T R+\angle T R Q=180^{\circ} \\
=> & \angle T Q R+130^{\circ}+30^{\circ}=180^{\circ} \\
=> & \angle T Q R=20^{\circ} \\
\text { Thus, } & \angle T Q R=20^{\circ} \text { and } \angle Q T R=130^{\circ}
\end{array}
$$

[By corollary on page 2]


Q
R
Q. 13. In Fig. $m$ and $n$ are twp plane mirrors perpendicular to each other. Show that the incident ray CA is parallel to the reflected ray BD.
Sol. In order to prove that $C A|\mid B D$. It is sufficient to show that

$$
\angle C A B+\angle A B D=180^{\circ}
$$

In $\triangle$ BOA, we have

$$
\begin{array}{lll}
= & \angle 2+\angle 3+\angle B O A=180^{\circ} & \\
= & \angle 2+\angle 3+90^{\circ}=180^{\circ} & {\left[\because \angle B O A=90^{\circ}\right]} \\
= & \angle 2+\angle 3=90^{\circ} & \\
= & 2(\angle 2+\angle 3)=180^{\circ} & {[\text { Multiply both sides by 2] }} \\
= & 2(\angle 2)+2(\angle 3)=180^{\circ} & \\
= & \angle C A B+\angle A B D=180^{\circ} & \left(\begin{array}{l}
\angle \text { of incidence }=\angle \text { of reflection } \\
\therefore \angle 1=\angle 2 \text { and } \angle 3=\angle 4 \\
=2 \angle 2=\angle C A B \text { and } 2 \angle 3=\angle B A D
\end{array}\right)
\end{array}
$$



Thus, $C A$ and $B D$ are two lines intersected by a transversal $A B$ such that $\angle C A B+\angle A B D=180^{\circ}$ i.e., the sum of the interior angles on the same side of $A B$ is $180^{\circ}$. Hence, $C A|\mid B D$.
Q. 14. In $\triangle A B C, \angle B=45^{\circ}, \angle C=55^{\circ}$ and bisector of $\angle A$ meets $B C$ at a point $D$. Find $\angle A D B$ and $\angle A D C$.

Sol. In $\triangle A B C$, we have

$$
\begin{array}{ll} 
& \angle A+\angle B+\angle C=180^{\circ} \\
\Rightarrow & \angle A+45^{\circ}+55^{\circ}=180^{\circ} \\
\Rightarrow & \angle A=180^{\circ}-100^{\circ} \\
\Rightarrow & \angle A=80^{\circ}
\end{array}
$$

Since $A D$ is the bisector of $\angle A$.
$\therefore \quad \angle B A D=\angle C A D=1 / 2 \angle A$
$\Rightarrow \quad \angle B A D=\angle C A D=40^{\circ}$


In $\triangle$ ADB, we have

$$
\begin{array}{ll} 
& \angle B A D+\angle A B D+\angle A D B=180^{\circ} \\
\Rightarrow & 40^{\circ}+45^{\circ}+\angle A D B=180^{\circ} \\
\Rightarrow & \angle A D B=180^{\circ}-85^{\circ}=95^{\circ}
\end{array}
$$

Since $\angle A D B$ and $\angle A D C$ from a linear pair.
$\therefore \quad \angle A D B+\angle A D C=180^{\circ}$
$\Rightarrow \quad 95^{\circ}+\angle A D C=180^{\circ}$
$\Rightarrow \quad \angle A D B=95^{\circ}$ and $\angle A D C=85^{\circ}$
Q. 15. In Fig. prove that $\mathbf{p} \| \mathrm{m}$.

Sol. In $\triangle P^{\prime} \mathrm{Q}$, we have

$$
\begin{array}{ll} 
& \angle O^{\prime} P Q+\angle P Q^{\prime} O+\angle P O^{\prime}=180^{\circ} \\
=> & \angle 1+45^{\circ}+35^{\circ}=180^{\circ} \\
=> & \angle 1=180^{\circ}-80^{\circ} \\
\Rightarrow & \angle 1=100^{\circ}
\end{array}
$$

Since $\angle Q P D$ and $\angle Q P D^{\prime}$ from a linear pair.

$$
\begin{array}{ll}
\therefore & \angle Q P D+\angle Q P D^{\prime}=180^{\circ} \\
=> & \angle Q P D+100^{\circ}=180^{\circ} \\
=> & \angle Q P D=80^{\circ}
\end{array}
$$



Now, $p$ and $m$ are two lines such that a transversal $n$ intersects them at 0 and $P$ respectively such that the corresponding angles on the same side are equal i.e.,
$\angle A O B=\angle Q P D=80^{\circ}$. Hence, $\mathrm{p} \| \mathrm{m}$.

## EXEDCISE T.1

1. In a $\triangle A B C$, if $\angle A=55^{\circ}, \angle B=40^{\circ}$, find $\angle C$.
2. If the angles of a triangle are in the ratio 1:2:3, determine three angles.
3. The angles of the triangle are $(x-40)^{\circ},(x-20)^{\circ}$ and $[1 / 2 x-10]^{\circ}$. Find the value of $x$.
4. The angles of a triangle are arranged in ascending order of magnitude. If the difference between two consecutive angles is $10^{\circ}$, find the three angles.
5. Two angles of a triangle are equal and the third angle is greater than each of those angles by $30^{\circ}$. Determine all the angles of the triangle.
6. If one angle of a triangle is equal to the sum of the other two, show that the triangle is a right triangle.
7. $A B C$ is a triangle in which $\angle A=72^{\circ}$, the internal bisectors of angles $B$ and $C$ meet in $O$. Find the magnitude of $\angle B O C$.
8. The bisectors of base angles of a triangle cannot enclose a right angle in any case.
9. If the bisectors of the base angles of a triangle enclose an angle of $135^{\circ}$, prove that the triangle is a right triangle.
10. In a $\triangle A B C, \angle A B C=\angle A C B$ and the bisectors of $\angle A B C$ and $\angle A C B$ intersect at $O$ such that $\angle B O C=120^{\circ}$. Show that $\angle A=\angle B=\angle C=60^{\circ}$.
11. Can a triangle have:
(i) Two right angles?
(ii) Two obtuse angles?
(iii) Two acute angles?
(iv) All angles more than $60^{\circ}$ ?
(vi) All angles equal to $60^{\circ}$ ?
(v) All angles less than $60^{\circ}$ ? Justify your answer in each case.
12. If each angle of a triangle is less than the sum of the other two, show that the triangle is acute angled.

## ANSWERS

## 1. $85^{\circ}$

2. $30^{\circ}, 60^{\circ}, 90^{\circ}$
3. $100^{\circ}$
4. $50^{\circ}, 60^{\circ}, 70^{\circ}$
5. $50^{\circ}, 50^{\circ}, 80^{\circ}$
6. $126^{\circ}$ 11. (i) No
(ii) No
(iii) Yes (iv) No
(v) No
(vi) Yes

CBSE-MATHEMATICS

## EXTERIOR ANGLES OF A TRIANGLE

EXTERIOR ANGLES: If the side $B C$ of a triangle $A B C$ is produced to form ray $B D$, then $\angle A C D$ is called an exterior angle of $\triangle A B C$ at $C$ and is denoted by ext. $\angle A C D$.

With respect to ext $\angle A C D$ of $\triangle A B C$ at $C$, the angles $A$ and $B$ are called remote interior angles or interior opposite angles. Now, if we produce side $A C$ to form ray $A E$, then $\angle B C E$ is also an exterior angle of $\triangle A B C$ at $C$. Clearly, these two angles viz. ext $\angle A C D$ and ext. $\angle B C E$ are vertically opposite angles.
$\therefore \quad$ ext. $\angle A C D=$ ext. $\angle B C E$
Also, angles $A$ and $B$ are the interior opposite angles with respect to ext. $\angle B C E$.
It follows from the above discussion that at each vertex of a triangle, there are two exterior angles of the triangle and these two angles are equal.

An exterior angle of a triangle is closely related to the interior opposite angles as proved in the following theorem.

- THEOREM 1 (Exterior Angle Theorem): If a side of a triangle is produced, the exterior angle so formed is equal to the sum of the two interior opposite angles.
GIVEN: A triangle $A B C$. $D$ is a point on $B C$ produced, forming exterior angle $\angle A$.
PROOF In triangle $A B C$, we have

$$
\angle 1+\angle 2+\angle 3=180^{\circ}
$$



Also, $\quad \angle 3+\angle 4=180^{\circ}$
[ $\because \angle 3$ and $\angle 4$ form a linear pair]
From (i) and (ii), we have

$$
\begin{array}{ll} 
& \angle 1+\angle 2+\angle 3=\angle 3+\angle 4 \\
=> & \angle 1+\angle 2=\angle 4 \\
\text { Hence, } & \angle 4=\angle 1+\angle 2 \text { i.e., } \angle A C D=\angle C A B+\angle C B A
\end{array}
$$

COROLLARY An exterior angle of a triangle is greater than either of the interior opposite angles. PROOF Let $A B C$ be a triangle whose side $B C$ is produced to form exterior angle $\angle A$. Then,

$$
\begin{array}{ll} 
& \angle 1+\angle 2=\angle 4 \\
=> & \angle 4>\angle 1 \text { and } \angle 4>\angle 2 \text { i.e., } \angle \mathrm{ACD}>\angle \mathrm{CAB} \text { and } \angle \mathrm{ACD}>\angle \mathrm{CBA}
\end{array}
$$



■THEOREM 2 The sides $A B$ and $A C$ of a $\triangle A B C$ are produced to $P$ and $Q$ respectively. If the bisectors of $\angle P B C$ and $\angle Q C B$ intersect at 0 , then $\angle B O C=90^{\circ}-1 / 2 \angle A$

GIVEN $A \triangle A B C$ in which sides $A B$ and $A C$ are produced to $P$ and $Q$ respectively. The bisectors of $\angle P B C$ and $\angle Q C B$ intersect at $O$. 8
A


PROVE $\angle B O C=90^{\circ}-1 / 2 \angle A$
PROOF Since $\angle A B C$ and $\angle C B P$ form a linear pair.
$\therefore \quad \angle A B C+\angle C B P=180^{\circ}$
$\Rightarrow \quad \angle B+2 \angle 1=180^{\circ} \quad[B O$ is the bisector of $\angle C B P \therefore \angle C B P=2 \angle 1]$
$\Rightarrow \quad 2 \angle 1=180^{\circ}-\angle B \quad \Rightarrow$
Again, $\angle A C B$ and $\angle Q C B$ form a linear pair.
$\therefore \quad \angle A C B+\angle Q C B=180^{\circ}$

```
= }\angleC+2\angle2=18\mp@subsup{0}{}{\circ}\quad[\becauseDC\mathrm{ is the bisector of }\angleQCB:\angleQCB=2\angle2
=> 2\angle2=180}-\angle
=> }\angle2=9\mp@subsup{0}{}{\circ}-1/2\angle

In \(\triangle\) BOC, we have
\[
\begin{array}{ll} 
& \angle 1+\angle 2+\angle B O C=180^{\circ} \\
=> & 90^{\circ}-1 / 2 \angle B+90^{\circ}-1 / 2 \angle C+\angle B O C=180^{\circ} \\
= & 180^{\circ}-1 / 2(\angle B+\angle C)+\angle B O C=180^{\circ} \\
= & \angle B O C=1 / 2(\angle B+\angle C) \\
= & \angle B O C=1 / 2\left(180^{\circ}-\angle A\right) \quad\left[\begin{array}{l}
\because \angle A+\angle B+\angle C=180^{\circ} \\
\end{array}\right. \\
& \left.\therefore \angle B+\angle C=180^{\circ}-\angle A\right)
\end{array}
\]

\section*{}
Q. 1. An exterior angle of a triangle is \(110^{\circ}\), and one of the interior opposite angles is \(30^{\circ}\). Find the other two angles of the triangle.
Sol. Let \(A B C\) be a triangle whose side \(B C\) is produced to form an interior and \(\angle A C D\) such that ext. \(\angle A C D=110^{\circ}\)
Let \(\angle B=30^{\circ}\). By exterior angle theorem, we have
ext. \(\angle A C D=\angle B+\angle A\)
\(\Rightarrow \quad 110^{\circ}=30^{\circ}+\angle A\)
\(\Rightarrow \quad \angle A=110^{\circ}-30^{\circ}=80^{\circ}\)
In \(\triangle \mathrm{ABC}\), we have
\(\angle A+\angle B+\angle C=180^{\circ}\)
\(\Rightarrow \quad 80^{\circ}+30^{\circ}+\angle C=180^{\circ} \quad \Rightarrow \quad \angle C=180^{\circ}-\left(80^{\circ}+30^{\circ}\right)=70^{\circ}\)


Hence, the other two angles of the triangle are \(80^{\circ}\) and \(70^{\circ}\).
Q. 2. The sides \(B C, C A\) and \(A B\) of a \(\triangle A B C\), are produced in order, forming exterior angles \(\angle A C D, \angle B A E+\angle C B F\). Show that \(\angle A C D+\angle B A E+\angle C B F=360^{\circ}\)
Sol. In \(\triangle \mathrm{ABC}\), by using exterior angle theorem, we have,
\[
\begin{aligned}
\angle \mathrm{ACD} & =\angle 1+\angle 2 \\
\angle \mathrm{BAE} & =\angle 2+\angle 3 \\
\text { and, } \quad \angle \mathrm{CBF} & =\angle 1+\angle 3
\end{aligned}
\]

By adding these three, we get
\[
\begin{array}{ll} 
& \angle A C D+\angle B A E+\angle C B F=(\angle 1+\angle 2)+(\angle 2+\angle 3)+(\angle 1+\angle 3) \\
= & \angle A C D+\angle B A E+\angle C B F=2(\angle 1+\angle 2+\angle 3) \\
\Rightarrow & \angle A C D+\angle B A E+\angle C B F=2 \times 180^{\circ}=360^{\circ}
\end{array}
\]
Q. 3. In Fig. if \(Q T \perp P R, \angle T Q R=40^{\circ}\) and \(\angle S P R=30^{\circ}\), find \(x\) and \(y\).

Sol. In triangle TQR, we know two angles \(\angle T Q R\) and \(\angle Q T R\). Therefore, we apply the angle sum property in \(\triangle T Q R\). We have,
\[
\begin{array}{ll} 
& \angle T Q R+\angle Q T R+\angle T R Q=180^{\circ} \\
\Rightarrow & 40^{\circ}+90^{\circ}+\angle T R Q=180^{\circ} \\
\Rightarrow & \angle T R Q=180^{\circ}-130^{\circ}=50^{\circ} \\
\Rightarrow & x=50^{\circ}
\end{array}
\]

In \(\triangle\) PSR, using exterior angle property, we have
\[
\begin{array}{ll} 
& \angle P S Q=\angle P R S+\angle R P S \\
\Rightarrow & y=x+30^{\circ} \\
\Rightarrow \quad & y=50^{\circ}+30^{\circ}=80^{\circ}
\end{array}
\]

Q. 4. In Fig. sides \(Q P\) and \(R Q\) of \(\triangle P Q R\) are produced to point \(S\) and \(T\) respectively. If \(\angle S P R=135^{\circ}\) and \(\angle P Q R=110^{\circ}\), Find \(\angle P R Q\).

Sol. Since QPS is a straight line.
\(\therefore \quad \angle \mathrm{QPR}+\angle \mathrm{SPR}=180^{\circ}\)
\(\Rightarrow \quad \angle Q P R+135^{\circ}=180^{\circ}\)
\(\Rightarrow \quad \angle Q P R=45^{\circ}\)
Using exterior angle property is \(\triangle P Q R\), we have
\[
\begin{array}{ll} 
& \angle \mathrm{PQT}=\angle \mathrm{QPR}+\angle \mathrm{PRQ} \\
=> & 110^{\circ}+45^{\circ}+\angle \mathrm{PRQ} \\
\Rightarrow & \angle \mathrm{PRQ}=110^{\circ}-45^{\circ}=65^{\circ}
\end{array}
\]

Q. 5. In Fig. \(\angle x=62^{\circ}, \angle X Y Z=54^{\circ}\). If \(Y O\) and \(Z O\) are bisectors of \(\angle X Y Z\) and \(\angle X Z Y\) respectively of \(\triangle X Y Z\), find \(\angle O Z Y\) and \(\angle Y O Z\).

Sol. In \(\triangle X Y Z\), we have
\[
\begin{array}{ll} 
& 62^{\circ}+54^{\circ}+\angle X Z Y=180^{\circ} \\
= & \angle X Z Y=180^{\circ}-116^{\circ}=64^{\circ} \\
= & 2 \angle O Z Y=64^{\circ} \quad[\because \angle X Z Y=2 \angle O Z Y] \\
= & \angle O Z Y=32^{\circ} \\
\text { In } \triangle O O Y Z, \text { we have } \\
& \angle O Y Z+\angle O Z Y+\angle Y O Z=180^{\circ} \\
= & 27^{\circ}+32^{\circ}+\angle Y O Z=180^{\circ} \\
\Rightarrow & \angle Y O Z=180^{\circ}-\left(27^{\circ}+32^{\circ}\right)=180^{\circ}-59^{\circ}=121^{\circ}
\end{array}
\]

Alter From corollary of theorem 1 on page 2, we have
 \(\angle Y O Z=90^{\circ}+\angle 8=90^{\circ}+31^{\circ}=121^{\circ}\)
Q. 6. In Fig. if \(A B \| D E, \angle B A C=35^{\circ}\) and \(\angle C D E=53^{\circ}\), find \(\angle D C E\).

Sol. Since \(A B \| D E\) and \(A E\) is the transversal.
\[
\begin{array}{ll}
\therefore & \angle A E D=\angle B A E \\
\Rightarrow & \angle A E D=35^{\circ}\left[\angle B A E=\angle B A C=35^{\circ}\right] \\
\Rightarrow & \angle C E D=35^{\circ}
\end{array}
\]

In \(\triangle\) DCE, we have
\(\angle C D E+\angle D C E+\angle C E D=180^{\circ}\)
\(\Rightarrow \quad 53^{\circ}+\angle \mathrm{DCE}+35^{\circ}=180^{\circ}\)

\(\Rightarrow \quad \angle D C E=180^{\circ}-88^{\circ}=92^{\circ}\)
Q. 7. In fig. if lines \(P Q\) and RS intersect at a pint \(T\) such that \(\angle P R T=40^{\circ}, \angle R P T=95^{\circ}\) and \(\angle T S Q=75^{\circ}\), find \(\angle S Q T\).

Sol.


Sol. \(\quad \ln \Delta P R T\), we have
\[
\begin{array}{ll} 
& \angle P+\angle R+\angle T=180^{\circ} \\
=> & 95^{\circ}+40^{\circ}+\angle T=180^{\circ} \\
\Rightarrow & \angle T=180^{\circ}-95^{\circ}-40^{\circ}=45^{\circ}
\end{array}
\]
\[
\Rightarrow \quad \angle \mathrm{PTR}=45^{\circ} \quad\left[\begin{array}{l}
\because \angle \mathrm{QTS} \text { and } \angle \mathrm{PTR} \text { are vertically opposite angles } \\
\therefore \angle \mathrm{QTS}=\angle \mathrm{PTR}
\end{array}\right]
\]

In \(\triangle\) SQT, we have
\[
\begin{aligned}
& \angle \mathrm{QTS}+\angle \mathrm{SQT}+\angle \mathrm{CSQ}=180^{\circ} \\
\Rightarrow \quad & 45^{\circ}+\angle S Q T+75^{\circ}=180^{\circ} \quad \Rightarrow \quad \angle S Q T=180^{\circ}-120^{\circ}=60^{\circ}
\end{aligned}
\]
Q. 8. In Fig. If \(P Q \perp P S, P Q \| S R, \angle S Q R=28^{\circ}\) and \(\angle Q R T=65^{\circ}\), then find the values of \(x\) and \(y\).

Sol. Since \(P Q \| S R\) and \(Q R\) is a transversal.

\(\Rightarrow \quad x+28^{\circ}=65^{\circ}\)
In \(\triangle\) PQS, we have,
\[
\Rightarrow \quad x=37^{\circ}
\]
\[
\begin{array}{ll} 
& \angle \mathrm{QPS}+\angle \mathrm{PQS}+\angle \mathrm{PSQ}=180^{\circ} \\
\Rightarrow \quad & 90^{\circ}+37^{\circ}+\mathrm{y}=180^{\circ}=>y=180^{\circ}-127^{\circ}=53^{\circ}
\end{array}
\]
Q. 9. The side \(B C\) of a \(\triangle A B C\) is produced on both sides. Show that the sum of the exterior angles so formed is greater than \(\angle A\) by two right angles.
Sol. By exterior angle theorem, we have
\[
\angle 4=\angle 1+\angle 3 \text { and } \angle 5=\angle 1+\angle 2
\]

Adding these two, we get
\[
\begin{array}{ll} 
& \angle 4+\angle 5=(\angle 1+\angle 3)+(\angle 1+\angle 2) \\
=> & \angle 4+\angle 5=\angle 1+(\angle 1+\angle 2+\angle 3) \\
=> & \angle 4+\angle 5+\angle 1+180^{\circ} \\
=> & \angle 4+\angle 5=\angle A+2 \times 90^{\circ} \\
=> & \angle 4+\angle 5 \text { exceeds } \angle A \text { by two right angles. }
\end{array}
\]

Q. 10. Sides \(B C, C A\) and \(B A\) of a triangle \(A B C\) are produced to \(D, Q, P\) respectively as shown in Fig. If \(\angle A C D=100^{\circ}\) and \(\angle Q A P=.35^{\circ}\), find all the angles of the triangle.
Sol. Since \(\angle Q A P\) and \(\angle B A C\) are vertically opposite angles.
\[
\therefore \quad \angle B A C=\angle Q A P=>\angle B A C=35^{\circ} \quad\left[\because \angle Q A P=35^{\circ}\right]
\]

By exterior angle theorem, we have
\(\therefore \quad \angle A C D=\angle B A C+\angle C B A\)
\(\Rightarrow \quad 100^{\circ}=35^{\circ}+\angle C B A\)
\(\Rightarrow \quad \angle C B A=100^{\circ}-35^{\circ}=65^{\circ}\)
Since \(\angle A C B\) and \(\angle A C D\) form linear pairs,
\(\therefore \quad \angle A C B+\angle A C D=180^{\circ}\)
\(\Rightarrow \quad \angle A C B+100^{\circ}=180^{\circ}=180^{\circ}-100^{\circ}=80^{\circ}\)


Hence, the angles of the \(\triangle A B C\) are \(\angle A=35^{\circ}, \angle B=65^{\circ}\) and \(\angle C=80^{\circ}\).
Q. 11. In Fig. the side \(B C\) of \(\triangle A B C\) is produced to form ray \(B D\) as shown. Ray \(C E\) is drawn parallel to \(B A\). Show directly, without using the angle sum property of a triangle that \(\angle A C D=\angle A+\angle B\) and deduced that \(\angle A+\angle B+\angle C=18 \mathbf{0}^{\circ}\).
Sol. Since \(A B \| C E\) and transversal \(A C\) cuts them at \(A\) and \(C\) respectively.
\(\therefore \quad \angle 1=\angle 4\)
[Alt int \(\angle \mathrm{s}\) ]
... (i)

Again, \(A B\) || CE and transversal BD cuts them
\(\therefore \quad \angle 2=\angle 5\)
[Corres. \(\angle\) s axiom]
Adding (i) and (ii), we get
\[
\begin{array}{ll} 
& \angle 1+\angle 2=\angle 4+\angle 5  \tag{ii}\\
\Rightarrow & \angle A+\angle B=\angle A C D
\end{array}
\]
\[
[\because \angle 4+\angle 5=\angle A C D]
\]

This proves the first part, Now,
\[
\begin{array}{ll} 
& \angle A+\angle B=\angle A C D \\
=> & \angle A+\angle B+\angle C=\angle A C D+\angle C \\
=> & \angle A+\angle B+\angle C=180^{\circ}
\end{array}
\]
[Adding \(\angle C\) on both sides]

\[
\binom{\because \angle A C D \text { and } \angle C \text { form a linear pai }}{\therefore \angle A C D+\angle C=180^{\circ}}
\]
Q. 12. Prove that the angle between internal bisector of one base angle and the external bisector of the other base angle of a triangle is equal to one half of the vertical angle.
Given \(\quad A \triangle A B C\) with base \(B C\). The internal bisector of \(\angle B\) and the external bisector of ext. \(\angle A C D\) meet at \(E\).
TO PROVE \(\quad \angle E=1 / 2 \angle A\)
PROOF
We have,
ext. \(\angle A C D=\angle A+\angle B\)
\(\Rightarrow \quad 1 / 2\) ext. \(\angle A C D=1 / 2 \angle A+1 / 2 \angle B\)
\(\Rightarrow \quad \angle 2=\angle 1+1 / 2 \angle A\)
In \(\triangle\) BCE, we have
ext. \(\angle \mathrm{ECD}=\angle 1+\angle \mathrm{E}\)
\(\Rightarrow \quad \angle 2=\angle 1+\angle E\)
From (i) and (ii), we get

\(\Rightarrow \quad \angle 1+1 / 2 \angle A=\angle 1+\angle E\)
\(\Rightarrow \quad 1 / 2 \angle A=\angle E=>1 / 2 \angle A\)
Q. 13. The side \(B C\) of a \(\triangle A B C\) is produced, such that \(D\) is on ray \(B C\). The bisector of \(\angle A\) meets \(B C\) in \(L\) as shown in Fig. Prove that \(\angle A B C+A C D=2 \angle A L C\)
Sol. \(\ln \triangle A B C\), we have
\[
\begin{array}{ll} 
& \text { ext. } \angle A C D=\angle B+\angle A \\
=> & \text { ext. } \angle A C D=\angle B+2 \angle 1 \\
=> & \angle A C D=\angle B+2 \angle 1
\end{array}
\]
\[
[\because A L \text { is the bisector of } \angle A \therefore \angle A=2 \angle 1]
\]

In \(\triangle \mathrm{ABL}\), we have
ext. \(\angle A L C=\angle B+\angle B A L\)
\(\Rightarrow \quad\) ext. \(\angle A L C=\angle B+\angle 1\)
\(\Rightarrow \quad 2 \angle A L C=2 \angle B+2 \angle 1\)
[Multiplying both sides by 2]
Subtracting (i) from (ii), we get

\[
\begin{array}{ll} 
& 2 \angle A L C-\angle A C D=\angle B \\
\Rightarrow & \angle A C D+\angle B=2 \angle A L C \quad \Rightarrow \quad \angle A C D+\angle A B C=2 \angle A L C
\end{array}
\]

\section*{EXERCISE 1.2}
1.The exterior angles, obtained on producing the base of a triangle both ways are \(104^{\circ}\) and \(136^{\circ}\). Find all the angles of the triangle.
2.In a \(\triangle A B C\), the internal bisectors of \(\angle B\) and \(\angle C\) meet at \(P\) and the external bisector of \(\angle B\) and \(\angle C\) meet at \(Q\). Prove that \(\angle B P C+\angle B Q C=180^{\circ}\)
3. In Fig. the sides \(B C, C A\) and \(A B\) of a \(\triangle A B C\) have been produced to \(D, E\) and \(F\) respectively. If \(\angle A C D=105^{\circ}\) and \(\angle E A F=45^{\circ}\), find all the angles of the \(\triangle A B C\).

4. Compute the value of \(x\) in each of the following figures:
(i)

(iii)

5. In Fig., \(A B\) divides \(\angle D A C\) in the ratio 1:3 and \(A B=D B\). Determine the value of \(x\).


TRIANGLES CBSE-MATHEMATICS
6. \(\quad A B C\) is a triangle. The bisector of the exterior angle at \(B\) and the bisector of \(\angle C\) intersect each other at \(D\). Prove that \(\angle D=1 / 2 \angle A\).
7. In Fig. \(\mathrm{AC} \perp \mathrm{CE}\) and \(\angle \mathrm{A}: \angle \mathrm{B}: \angle \mathrm{C}=3: 2: 1\), find the value of \(\angle \mathrm{ECD}\).

8. In Fig. \(A M \perp B C\) and \(A N\) is the bisector of \(\angle A\). If \(\angle B=65^{\circ}\) and \(\angle C=33^{\circ}\), find \(\angle M A N\).
9. In a \(\triangle A B C, A D\) bisects \(\angle A\) and \(\angle C>\angle B\). Prove that \(\angle A D B>\angle A D C\).
10. In \(\triangle A B C, B D \perp A C\) and \(C E \perp A B\). If \(B D\) and \(C E\) intersect at \(O\), prove that \(\angle B O C=180^{\circ}-A\).
11. In Fig. \(A E\) bisects \(\angle C A D\) and \(\angle B=\angle C\). Prove that \(A E \| B C\).

12. In Fig. \(A B \| D E\). Fin \(\angle A C D\).
13. Which of the following statements are true \((T)\) and which are false \((F)\) :
(i) Sum of the three angles of a triangle is \(180^{\circ}\).
(ii) A triangle can have two right angles.
(iii) All the angles of a triangle can be less than \(60^{\circ}\).
(iv) All the angles of a triangle can be greater than \(60^{\circ}\)
(v) All the angles of a triangle can be equal to \(60^{\circ}\).
(vi) A triangle can have two obtuse angles.
(vii) A triangle can have at most one obtuse angles.
(viii) If one angle of the triangle is obtuse, then it cannot be a right angled triangle.
(ix) An exterior angle of a triangle is less than either of its interior opposite angles.
(x) An exterior angle of a triangle is equal to the sum of the two interior opposite angles.
(xi) An exterior angle of a triangle is greater than the opposite interior angles.
14. Fill in the blanks to make the following statements true:
(i) Sum of the angles of a triangle is \(\qquad\) ..
(ii) An exterior angle of a triangle is equal to the two \(\qquad\) opposite angles.
(iii) An exterior angle of a triangle is always \(\qquad\) than either of the interior opposite angle.
(iv) A triangle cannot have more than \(\qquad\) right angles.
(v) A triangles cannot have more than \(\qquad\) obtuse angles.

\section*{ANSWERS}
1. \(60^{\circ}, 76^{\circ}, 44^{\circ}\)
3. \(\angle A=45^{\circ} ; \angle C=75^{\circ} ; \angle B=60^{\circ}\)
7. \(60^{\circ}\)
5. \(90^{\circ}\)
13. (i) \(\mathrm{T} \quad\) (ii) \(\mathrm{F} \quad\) (iii) \(\mathrm{F} \quad\) (iv) \(\mathrm{F} \quad\) (v) T
(vi) F
(vii) \({ }^{T}\)
(viii) T
(ix) F
(x) T
(xi) T
14. (i) \(180^{\circ}\)
(ii) interior
(iii) Greater
(iv) one
(v) one

Since 20D1...
CIRTELE ACCENTS EDUCATIONAL PROMOTERS

TRIANGLES CBSE-MATHEMATICS

\section*{CONGRUENT TRIANGLES}

\section*{CONGRUENCE OF LINE SEGMENTS}

We know that two congruent line segments have the same length and conversely two line segments of equal length are congruent. Thus, a simple criterion for the congruence of two-line segments is:
Two-line segments are congruent if and only if their lengths are equal.
OR
Two-line segments \(A B\) and \(C D\) are congruent if and only if \(A B=C D\).

(i)

(ii)

\section*{CONGRUENCE OF ANGLES}
- Two angles are congruent if any only if their measures are equal.
- A sufficient condition for the congruence of two angles is as follows:
- Two angles BAC and EDF are congruent if \(m \angle B A C=m \angle E D F\)

(i)

(ii)

\section*{CONGRUENCE OF TRIANGLES}

Let \(\triangle A B C\) and \(\triangle D E F\) be two congruent triangles. Then, we can superpose \(\triangle A B C\) on \(\triangle D E F\), so as to cover it exactly. In such a superposition the vertices of \(\triangle A B C\) will fall on the vertices of \(\triangle D E F\), in some order, Let us assume that the vertex \(A\) falls on vertex \(D\), vertex \(B\) on vertex \(E\) and vertex \(C\) on vertex \(F\).

Then, side \(A B\) falls on \(D E, B C\) on \(E F\) and \(C A\) on \(F D\). Also \(\angle A\) superposes on the corresponding angle \(\angle D, \angle B\) on \(\angle E\) and \(\angle C\) on \(\angle F\). Thus, the order in which the vertices match, automatically determines a correspondence between the sides and angles of the two triangles. And, if the superposition is exact i.e. the triangles are congruent, the corresponding sides and angles are congruent. Consequently, we get six equalities three of the corresponding sides and three of the corresponding angles.
i.e., if \(\Delta A B C\) superposes on \(\triangle D E F\) exactly such that the vertices of \(\triangle A B C\) fall on the vertices of \(\triangle D E F\) in the following order
\[
\mathrm{AD} \leftrightarrow \mathrm{D}, \mathrm{~B} \leftrightarrow \mathrm{E}, \mathrm{C} \leftrightarrow \mathrm{~F}
\]

Then, we have the following six equalities
\[
\begin{array}{ll}
A B=D E, B C=E F, C A=F D & \text { (i.e., corresponding sides are congruent) } \\
\angle A=\angle D, \angle B=\angle E, \angle C=\angle F & \text { (i.e., corresponding angles are congruent) }
\end{array}
\]

In the above discussion we have considered one correspondence between the vertices of triangles ABC and DEF viz. \(\mathrm{A} \rightarrow \mathrm{D}, \mathrm{B} \rightarrow \mathrm{E}\) and \(\mathrm{C} \rightarrow \mathrm{F}\). But there can be many other matchings between the vertices of two triangles as discussed below.

In two triangles \(A B C\) and DEF, we have the following six matchings or correspondence between their vertices:
\(\mathrm{A} \leftrightarrow \mathrm{D}, \mathrm{B} \leftrightarrow \mathrm{E}\) and \(\mathrm{C} \leftrightarrow \mathrm{F}\) written as \(\mathrm{ABC} \leftrightarrow \mathrm{DEF}\)
\(\mathrm{A} \leftrightarrow \mathrm{E}, \mathrm{B} \leftrightarrow \mathrm{F}\) and \(\mathrm{C} \leftrightarrow \mathrm{D}\) written as \(\mathrm{ABC} \leftrightarrow \mathrm{EFD}\)
\(\mathrm{A} \leftrightarrow \mathrm{F}, \mathrm{B} \leftrightarrow \mathrm{D}\) and \(\mathrm{C} \leftrightarrow \mathrm{E}\) written as \(\mathrm{ABC} \leftrightarrow \mathrm{FDE}\)
\(\mathrm{A} \leftrightarrow \mathrm{D}, \mathrm{B} \leftrightarrow \mathrm{F}\) and \(\mathrm{C} \leftrightarrow \mathrm{E}\) written as \(\mathrm{ABC} \leftrightarrow \mathrm{DFE}\)
\(\mathrm{A} \leftrightarrow \mathrm{E}, \mathrm{B} \leftrightarrow \mathrm{D}\) and \(\mathrm{C} \leftrightarrow \mathrm{F}\) written as \(\mathrm{ABC} \leftrightarrow \mathrm{EDF}\)
\(\mathrm{A} \leftrightarrow \mathrm{F}, \mathrm{B} \leftrightarrow \mathrm{E}\) and \(\mathrm{C} \leftrightarrow \mathrm{D}\) written as \(\mathrm{ABD} \leftrightarrow \mathrm{FED}\)

If \(\triangle A B C\) is congruent to \(\triangle D E F\), then in one of these six matchings \(\triangle A B C\) superpose on \(\triangle D E F\) exactly and in that particular matching corresponding sides and angles will be congruent. Consequently, we will have three equalities of corresponding sides and three equalities of the measures of corresponding angles.

If \(\triangle A B C\) is not congruent to \(\triangle D E F\), then \(\triangle A B C\) will not superpose exactly \(\triangle D E F\) in none of the above the six possible matchings. Infact, in each mapping at least one part (a side or an angle) of \(\triangle A B C\) will not be equal to the corresponding part of \(\triangle D E F\).

\section*{GENERAL CONDITION FOR THE CONGRUENCE OF TWO TRIANGLES:}
- Two triangles are congruent of and only if there exists a correspondence between their vertices such that the corresponding sides and the corresponding angles of the two triangles are equal or congruent.
\(-\triangle A B C\) is congruent to \(\triangle\) DEF and the correspondence \(A B C \leftrightarrow\) DEF makes the six pairs of corresponding parts of the two triangles congruent, then we write
\[
\Delta \mathrm{ABC} \cong \triangle \mathrm{DEF}
\]

Thus, \(\triangle A B C \cong \triangle D E F\) if and only if \(A B=D E, B C=E F, C A=F D, \angle A=\angle D, \angle B=\angle E\) and \(\angle C=\angle F\).

4 The letters in the names of two triangles will indicate the correspondence between the vertices of two triangles.
For example, \(\triangle A B C \cong \triangle\) DEF will indicate the correspondence \(A B C \leftrightarrow D E F\) and \(\Delta A B C \cong \Delta\) DFE will indicate
the correspondence \(A B C \leftrightarrow D F E\). Thus, we can easily infer the six equalities between the corresponding parts of two triangles from the notation \(\Delta \mathrm{ABC} \leftrightarrow \Delta \mathrm{DEF}\). We shall use the abbreviation "c.p.c.t" to indicate corresponding parts of congruent triangles.
@ \(\quad \Delta P Q R \cong \Delta U V W\) will mean that
\[
\angle P=\angle U, \angle Q=\angle V, \angle R=\angle W, P Q=U V, Q R=V W \text { and } P R=U W
\]

\section*{CONGRUENCE RELATION}

From the definition of congruence of two triangles, we obtain the following results:
*(i) Every triangle is congruent to itself i.e., \(\triangle A B C \cong \triangle A B C\)
*(ii) If \(\triangle A B C \cong \triangle D E F\), then \(\triangle D E F \cong \triangle A B C\)
*(iii) If \(\triangle D E F \cong \triangle A B C\), and \(\triangle D E F \cong \triangle P Q R\), then \(\triangle A B C \cong \triangle P Q R\)

\section*{SUFFICIENTI CONDITIONS (CRITERIA) FOR CONGRUENCE OF TRIANGLES}

In this section we shall prove that if three properly chosen conditions out of the six conditions are satisfied, then the other three are automatically satisfied.

\section*{SIDE-ANGLE-SIDE (SAS) CONGRUENCE CRITERION}

■THEOREM 1: Two triangles are congruent if two sides and the included angle of one are equal to the corresponding sides and the included angle of the other triangle.
GIVEN: Two triangles \(A B C\) and \(D E F\) such that \(A B=D E, A C=D F\) and \(\angle A=\angle D\)

(i)

(ii)

TO PROVE: \(\quad \triangle \mathrm{ABC} \cong \triangle \mathrm{DEF}\)
PROOF: Place \(\triangle A B C\) over \(\triangle D E F\) such that the side \(A B\) falls on side \(D F\), vertex \(A\) falls on vertex \(D\) and \(B\) on \(E\). Since \(\angle A=\angle D\). Therefore, \(A C\) will fall on \(D F\). But \(A C=D F\) and \(A\) falls on \(D\). Therefore, \(C\) will fall on \(F\). Thus, \(A C\) coincides with \(D F\). Now, \(B\) falls on \(E\) and \(C\) falls on \(F\). Therefore, \(B C\) coincides with \(E F\).
Thus, \(\triangle A B C\) when superposed on \(\triangle D E F\), covers it exactly, Hence, by definition of congruence, \(\triangle A B C \cong \triangle D E F\).
* It shall be noted that in SAS criterion the equality of included angles is very essential. If two sides and one angle (not included between the two sides) of one triangle are equal to two sides and one angle of the other triangle, then the triangles need not be congruent. So, the equal angle should be the angle included between the sides.
\(\square\) THEOREM 2: Angles opposite to two equal sides of a triangle are equal. GIVEN: \(\triangle A B C\) in which \(A B=A C\)
TO PROVE: \(\angle \mathrm{C}=\angle \mathrm{B}\)
CONSTRUCTION: Draw the bisector \(A D\) of \(\angle A\) which meets \(B C\) in \(D\).
PROOF: In \(\triangle s\) ABD and ACD, we have
\[
\begin{array}{ll}
A B=A C & {[\text { Given }]} \\
\angle B A D=\angle C A D & {[\text { By construction }]} \\
A D=A D & {[\text { Common side }]}
\end{array}
\]


Therefore, by SAS criterion of congruence, we have
\[
\Delta \mathrm{ABD} \cong \triangle \mathrm{ACD}
\]
=>
\(\angle B=\angle C\)
[Corresponding parts of congruent triangles are equal]
* The converse of the above theorem is also true i.e., if two angles of a triangle are equal, then the sides opposite to them are also equal. To prove this, we shall take the help of another criterion of congruence.

\section*{Examples}
Q. 1. In \(\triangle A B C, \angle A=100^{\circ}\) and \(A B=A C\). Find \(\angle B\) and \(\angle C\)

Sol. We have,
\[
\begin{aligned}
A B & =A C \\
\Rightarrow \quad \angle B & =\angle C
\end{aligned} \quad[\because \text { Angles opp. to equal sides are equal }]
\]

In \(\triangle \mathrm{ABC}\), we have
\[
\begin{array}{ll} 
& \angle A+\angle B+\angle C=180^{\circ} \\
= & \angle A+\angle B+\angle B=180^{\circ} \\
= & 100^{\circ}+2 \angle B=180^{\circ} \\
= & 2 \angle B=80^{\circ} \\
\Rightarrow & \angle B=40^{\circ} \\
\Rightarrow & \angle B=\angle C=40^{\circ}
\end{array}
\]

Q. 2. In Fig. \(A B=A C\) and \(\angle A C D=120^{\circ}\). Find \(\angle A\).

Sol. We have,
\[
\begin{array}{lcc} 
& A B=A C \\
=> & \angle B=\angle C & \\
\text { Now, } & \angle A C B+\angle A C D=180^{\circ} & {[\because \text { Angles opposite to equal sides are equal] }} \\
=> & \angle C+120^{\circ}=180^{\circ} \\
=> & \angle C=60^{\circ} \\
\therefore & \angle B=60^{\circ} \quad\left[\begin{array}{l}
\circ \\
\text { Now, }
\end{array} \quad \angle B=\angle C\right] \\
\text { Now of a linear pair] } \\
= & \angle A+\angle B+\angle C=180^{\circ} \\
=> & \angle A+60^{\circ}+60^{\circ}=180^{\circ} \\
\hline & \angle A=60^{\circ}
\end{array}
\]
Q. 3. Prove that measure of each angle of an equilateral triangle is \(60^{\circ}\).

Sol. Let \(\triangle A B C\) be an equilateral triangle. Then, \(A B=B C=C A\)
Since angles opposite to equal sides of a triangle are equal.
\(\therefore \quad A B=B C\) and \(B C=C A\)
\(\Rightarrow \quad \angle C=\angle A\) and \(\angle A=\angle B\)
\(=>\quad \angle A=\angle B=\angle C\)
But, \(\quad \angle A+\angle A\) and \(\angle A=\angle B\)
\(\therefore \quad \angle A+\angle A+\angle A=180^{\circ} \quad \Rightarrow \quad \angle A=180^{\circ} \quad \Rightarrow \quad \angle A=60^{\circ}\)
Hence, \(\angle A=\angle B=\angle C=60^{\circ}\)
Q.4. In Fig. \(O\) is the mid-point of \(A B\) and CD. Prove that
(i) \(\triangle \mathrm{AOC} \cong \triangle \mathrm{BOD}\)
(ii) \(A C=B D\) and
(iii) AC || BD

Sol. In \(\Delta \mathrm{s} A O C\) and BOD, we have

\[
\left.\begin{array}{ll} 
& A O=O B \\
& {[\because O \text { is the mid-point of } A B]} \\
\text { and, } & C O C=O D
\end{array}\right][\text { Vertically opposite angles }] \quad[\because O \text { is the mid-point of } C D]
\]

So, by SAS congruence criterion, we have
\[
\triangle \mathrm{AOC} \cong \triangle \mathrm{BOD}
\]
\(\Rightarrow \quad A C=B D \quad\) and, \(\angle C A O=\angle D B O \quad\) [Corresponding parts of congruent triangles are equal]
Now, \(A C\) and \(B D\) are two lines intersected by a transversal \(A B\) such that \(\angle C A O=\angle D B O\), i.e., alternate angles are equal.
Therefore, \(A C\) || \(B D\)
Q. 5. In Fig. it is given that \(A B=C F, E F=B D\) and \(\angle A F E=\angle C B D\). Prove that \(\triangle A F E \cong \triangle C B D\).

Sol. We have,
\(\Rightarrow \quad A B+B F=C F+B F\)
\(\Rightarrow \quad A F=C B\)

In \(\Delta \mathrm{s}\) AFE and CBD, we have
\(A F=C B\)
[Adding BF on both sides]
[From (i)]

\[
\angle A F E=\angle D B C
\]
and, \(\quad E F=B D\)
So, by SAS criterion of congruence, we have
\(\Delta \mathrm{AFE} \cong \Delta \mathrm{CBD}\)
Q. 6. In Fig., it is given that \(A E=A D\) and \(B D=C E\). Prove that
\[
\triangle \mathrm{AEB} \cong \triangle \mathrm{ADC}
\]

Sol. We have,
\(A E=A D\) and \(C E=B D\)
\(\Rightarrow \quad A E+C E=A D+B D\)
\(\Rightarrow \quad A C=A B\)
Now, in \(\triangle s\) AEB and ADC, we have
\[
A E=A D
\]
[Given]
\[
\angle E A B=\angle D A C \quad[\text { Common }]
\]
and, \(\quad \mathrm{AC}=\mathrm{AB}\)
[From (iii)]
So, by SAS criterion of congruence, we have


\section*{\(\triangle \mathrm{AEB} \cong \triangle \mathrm{ADC}\)}
Q. 7. In \(\triangle A B C\) and \(\triangle P Q R, A B=P Q, B C=Q R\) and \(C B\) and \(R Q\) are extended to \(X\) and \(Y\) respectively and \(\angle A B X=\angle P Q Y\). Prove that \(\triangle \mathrm{ABC} \cong \triangle \mathrm{PQR}\).
Sol. We have,

(i)

(ii)
\[
\begin{array}{ll} 
& \angle A B X=\angle P Q Y \\
\Rightarrow \quad & 180^{\circ}-\angle A B C=180^{\circ}-\angle P Q R
\end{array}
\]
\[
\begin{equation*}
\Rightarrow \quad \angle A B C=\angle P Q R \tag{i}
\end{equation*}
\]
\[
\left[\begin{array}{r}
\because \angle A B X+\angle A B C=180 \text { linear pair } \\
\therefore \angle A B X=180^{\circ}-\angle A B C \\
\text { Similarly, } \angle P O Y=180^{\circ}-\angle P Q R
\end{array}\right]
\]

In \(\triangle A B C\) and \(\triangle P Q R\), we have
\(A B=P Q\)
\[
\angle A B C=\angle P Q R
\]
and, \(\quad B C=Q R\)
So, by SAS criterion of congruence, we have
\[
\Delta \mathrm{ABC} \cong \triangle \mathrm{PQR}
\]
[Given]
[From (i)]
[Given]
Q. 8. In Fig., \(X\) and \(Y\) are two points on equal sides \(A B\) and \(A C\) of a \(\Delta A B C\) such that \(A X=A Y\). Prove that \(X C=Y B\).
Sol. In \(\Delta s\) AXC and AYB, we have
\[
\begin{array}{lr}
A X=A Y & \text { [Given] } \\
\angle A=\angle A & \text { [Common angle] }
\end{array}
\]
and, \(\quad A C=A B\)
So, by SAS criterion of congruence, we have
\[
\Delta \mathrm{AXC} \cong \triangle \mathrm{AYB}
\]
\(\Rightarrow \quad X C=Y B\)
[ \(\because\) Corresponding parts of congruent triangles are equal]

Q. 9. Suppose line segments \(A B\) and \(C D\) intersect at \(O\) in such a way that \(A O=O D\) and \(O B=O C\). Prove that \(A C=B D\) but \(A C\) may not be parallel to BD.
Sol. In \(\triangle s A O C\) and DOB, we have

\[
\begin{aligned}
& \angle A O=O D \\
& \angle A O C=\angle D O B \\
& \text { and, } \quad O C=O B
\end{aligned}
\]
[Given] [Vertically opposite angles]

So, by SAS criterion of congruence, we have
\[
\begin{aligned}
& \triangle A O C \cong \triangle D O B \\
& =>\quad \angle O A C=\angle O D B
\end{aligned}
\]
\[
\text { and, } \quad \angle O C A=\angle O B D \quad[\because \text { c.p.ct }]
\]

Clearly, \(A C\) will be parallel to \(B D\) only when \(\angle O A C=\angle O B D\).
But \(\angle O A C\) may not be equal to \(\angle O B D\), So, \(A C\) may not be parallel to \(B D\).
Q. 10. If \(D\) is the mid-point of the hypotenuse \(A C\) of a right triangle \(A B C\), prove that \(B D=1 / 2 A C\)

GIVEN: \(A \triangle A B C\) in which \(\angle B=90^{\circ}\) and \(D\) is the mid-point of \(A C\).
TO PROVE:
\(B D=1 / 2 A C\)


CONSTRUCTION: Produce BD to E so that BD = DE. Join EC.
PROOF: In \(\triangle \mathrm{s}\) ADB and CDE, we have
\[
\begin{aligned}
& \mathrm{AD}=\mathrm{DC} \\
& \mathrm{BD}=\mathrm{DE}
\end{aligned}
\]
and, \(\quad \angle A D B=\angle C D E\)
[Given]
[By construction]
[Ver. opp. angles]

So, by SAS criterion of congruence, we have,
\[
\begin{array}{ll} 
& \Delta \mathrm{ADB} \cong \triangle C D E \\
\Rightarrow \quad & \mathrm{EC}=\mathrm{AB} \text { and } \angle \mathrm{CED}=\angle \mathrm{ABD}
\end{array}
\]

Thus, transversal \(B E\) cuts \(A B\) and \(C E\) such that the alternate angles \(\angle C E D\) and \(\angle A B D\) are equal. So,
\(C E \| A B\)
\(\Rightarrow \quad \angle A B C+\angle E C B=180^{\circ} \quad[\) Sum of the interior angles on the same side of transversal \(B C\) intersecting parallel lines \(A B\) and \(C E]\)
\(\Rightarrow \quad 90^{\circ}+\angle E C B=180^{\circ} \quad\left[\because \angle A B C=90^{\circ}\right]\)
\(\Rightarrow \quad \angle E C B=90^{\circ}\)
Thus, in \(\triangle s A B C\) and ECB, we have
\(A B=E C\)
\(B C=C B\)
and, \(\quad \angle A B C=\angle E C B\)
So, by SAS criterion of congruence, we have
\[
\Delta \mathrm{ABC} \cong \triangle \mathrm{ECB}
\]
\(\Rightarrow \quad A C=B E \quad\) [c. p. c. t.]
\(\Rightarrow \quad 1 / 2 A C=1 / 2 B E=1 / 2 A C=B D\)
[From (i)]
[Common]
[Each equal to \(90^{\circ}\) ]
\begin{tabular}{lll} 
& \(\Delta \mathrm{ABC} \cong \triangle \mathrm{ECB}\) & \\
\(\Rightarrow\) & \(\mathrm{AC}=\mathrm{BE}\) & \\
\(=\) & \(1 / 2 A C=1 / 2 B E=1 / 2 A C=B D\) & [c. p. c. t.]
\end{tabular}
\(\square\)
Q. 11. \(A B\) is a line segment and line \(I\) is its perpendicular bisector. If a point \(P\) lies on \(I\), shown that \(P\) is equidistant from \(A\) and \(B\).

Sol. Let \(C\) be the mid-point of \(A B\). Clearly, line I passes through \(C\) and its perpendicular to \(A B\).
In \(\triangle\) PCA and \(\triangle\) PCB, we have

\[
\begin{array}{ll}
\mathrm{AC}=\mathrm{BC} & {[\because \mathrm{C} \text { is the mid-point of } \mathrm{AB}]} \\
\angle \mathrm{PCA}=\angle \mathrm{PCB} & {\left[\text { Each equal to } 90^{\circ} \text { as } I \perp \mathrm{AB}\right]}
\end{array}
\]
and, \(\quad P C=P C\)
So, by SAS congruence rule, we have
\(\triangle \mathrm{PCA} \cong \triangle \mathrm{PCB}\)
\(\Rightarrow \quad P A=P B \quad[c\). p. c. t.]
Q. 12. In quadrilateral \(A C B D, A C=A D\) and \(A B\) bisects \(\angle A\). Show that \(\triangle A B C \cong \triangle A B D\). What can you say about \(B C\) and \(B D\) ?

Sol.


In \(\triangle A B C\) and \(\triangle A B D, \quad A C=A D \quad\) [Given] \(\angle C A B=\angle D A B \quad[\because A B\) is the bisector of \(\angle D A C]\) and, \(\quad A B=A B\)
[Common]
So, by SAS congruence rule, we have
\[
\begin{aligned}
& \Delta A B C \cong \triangle A B D \\
& \Rightarrow \quad B C=B D \quad[\text { c.p.ct }]
\end{aligned}
\]
Q. 13. Prove that \(\triangle A B C\) is isosceles if any one of the following holds:
(i) Altitude AD bisects \(B C\)
(ii) Median AD is perpendicular to the base \(B C\).

Sol. (i) Let \(A B C\) be a triangle and let \(A D\) be altitude from \(A\) on \(B C\). Suppose \(D\) bisects \(B C\) i.e., \(B D=C D\). We have to prove that the \(\triangle A B C\) isosceles.
In \(\triangle\) ADB and ADC, we have,
\[
\begin{array}{lc}
\mathrm{AD}=\mathrm{AD} & \text { [Common side] } \\
\angle \mathrm{ADB}=\angle \mathrm{ADC} & {\left[\text { Each equal to } 90^{\circ}\right]} \\
\mathrm{BD}=\mathrm{DC} & {[\text { Given }]}
\end{array}
\]
and, \(\quad B D=D C\)
So, by SAS criterion of congruence, we have
\[
\begin{array}{ll} 
& \Delta \mathrm{ADB} \cong \triangle \mathrm{ADC} \\
\Rightarrow \quad & \mathrm{AB}=\mathrm{AC}
\end{array}
\]

Hence, \(\triangle A B C\) is isosceles.
(ii) Let \(A B C\) be a triangle such that the median \(A D\) is perpendicular to the base \(B C\).

Then, we have to prove that the triangle \(A B C\) is isosceles.


In \(\triangle s\) ADB and ADC, we have
AD = AD [Common side]
\(\angle A D B=\angle A D C \quad\left[\because A D \perp B C \therefore \angle A D B=\angle A D C=90^{\circ}\right]\)
and, \(\quad B D=D C \quad[\therefore A D\) is the median \(\therefore D\) is the mid-point of \(B C]\)
So, by SAS criterion of congruence, we have
\(\Delta \mathrm{ADB} \cong \triangle \mathrm{ADC}\)
\(\Rightarrow \quad A B=A C \quad\) [c. p. c.t.] Hence, \(\triangle A B C\) is isosceles.
Q. 14. In Fig. PQRS is a quadrilateral and \(T\) and \(U\) are respectively points on \(P S\) and \(R S\) such that \(P Q=R Q, \angle R Q U\) and \(\angle T Q S=\angle U Q S\). Prove that \(Q T=Q U\).
Sol. We have, \(\angle P Q T=\angle R Q U\)
and, \(\quad \angle T Q S=\angle U Q S\)
\(\therefore \quad \angle P Q T+\angle T Q S=\angle R Q U+\angle U Q S\)
=> \(\quad \angle P Q S=\angle R Q S\)
Thus, in triangles PQS and RQS, we have
\[
\begin{aligned}
& P Q=R Q \\
& \angle P Q S=\angle R Q S
\end{aligned}
\]
and, \(\quad \mathrm{QS}=\mathrm{QS}\)
[Given]
[From (i)]
[Common side]
Therefore, by SAS congruence criterion, we have
\[
\Delta \mathrm{PQS} \cong \Delta \mathrm{RQS}
\]
=> \(\quad \angle Q P S=\angle Q R S\)
[c. p. c. t.]
=> \(\quad \angle Q P T=\angle Q R U\)


Now, consider triangles QPT and QRS. In these two triangles, we have
\[
\begin{aligned}
& Q P=Q R \\
& \angle P Q T=\angle R Q U
\end{aligned}
\]
[Given]
[given]
\[
\text { and, } \quad \angle Q P T=\angle Q R T
\]
[From (ii)]
Therefore, by ASA congruence criterion, we have
\[
\Delta \mathrm{QPT} \cong \Delta \mathrm{QRU} \quad \Rightarrow \quad \mathrm{QT}=\mathrm{QU} \quad \text { [c.p.c.t] }
\]
Q. 15. In Fig. \(\mathrm{PS}=\mathrm{QR}\) and \(\angle S P Q=\angle R Q P\). Prove that
\[
\Delta P Q S \cong \triangle Q P R, P R=Q S \text { and } \angle Q P R=\angle P Q S .
\]

Sol. In \(\triangle P Q S\) and \(\triangle Q P R\), we have
\begin{tabular}{ll}
\(\mathrm{PS}=\mathrm{QR}\) & [Given] \\
\(\angle \mathrm{SPQ}=\angle \mathrm{RQP}\) & {\([\) Given \(]\)} \\
\(\mathrm{PQ}=\mathrm{PQ}\) & {\([\) Common \(]\)}
\end{tabular}

Therefore, by SAS criterion of congruence, we have
\[
\begin{array}{ll} 
& \Delta P Q S \cong \triangle Q P R \\
\Rightarrow \quad & Q S=P R \text { and } \angle Q P R=\angle P Q S \tag{c.p.c.t}
\end{array}
\]

Q. 16. In right triangle \(A B C\), right angle at \(C, M\) is the mid-point of the hypotenuse \(A B\). \(C\) is joined to \(M\) and produced to a point \(D\) such that \(D M=C M\). Point \(D\) is joined to point \(B\). Show that
(i) \(\Delta \mathrm{AMC} \cong \triangle \mathrm{BMD}\)
(ii) \(\angle D B C=\angle A C B\)
(iii) \(\triangle \mathrm{DBC} \cong \triangle \mathrm{ACB}\)
(iv) \(C M=1 / 2 A B\)

Sol. (i) \(\ln \triangle A M C\) and \(\triangle B M D\), we have
\begin{tabular}{ll}
\(A M=B M\) & {\([\) Given \(]\)} \\
\(\angle A M C=\angle B M D\) & {\([\) Vertically opposite angles] } \\
\(M C=M D\) & {\([\) Given \(]\)}
\end{tabular}

So, by SAS congruence criterion, we have
\(\triangle \mathrm{AMC} \cong \triangle \mathrm{BMD} \quad, \quad\) this proves (i).
(ii) We have, \(\quad \triangle A M C \cong \triangle B M D \quad \Rightarrow \quad \angle A B D=\angle C A B\)

Now, \(A C\) and \(D B\) are two lines and \(A B\) is a transversal such that \(\angle A B D=\angle C A B\) i.e., alternate angles are equal.
\(\therefore \quad A C \| B D\)
Now, \(\quad A C|\mid B D\) and \(B C\) is a transversal
\(\therefore \quad \angle D B C+90^{\circ}=180^{\circ}\)
\(\Rightarrow \quad \angle D B C+90^{\circ}=180^{\circ} \quad\left[\because \angle A C B=90^{\circ}\right.\) (given) \(]\)
\(\Rightarrow \quad \angle D B C=90^{\circ}\)
Hence, \(\angle \mathrm{DBC}=\angle \mathrm{ACB}=90^{\circ}\)
This proves (ii)
(iii) In \(\triangle \mathrm{DBC}\) and \(\triangle \mathrm{ACB}\), we have
\[
D B=A C
\]
\[
[\because \Delta \mathrm{AMC} \cong \Delta \mathrm{BMD} \therefore \mathrm{AC}=\mathrm{BD}]
\]
\[
\angle D B C=\angle A C B=90^{\circ} \quad[\text { As proved in (ii)] }
\]

and, \(\quad B C=C B\)
So, by SAS congruence criterion, we have
\[
\Delta \mathrm{DBC} \cong \triangle \mathrm{ACB}
\]
(iv) We have, \(\quad \triangle \mathrm{DBC} \cong \triangle \mathrm{ACB}\)
\[
\begin{array}{lll}
\Rightarrow & D C=A B & \text { [c. p. c. t.] } \\
\Rightarrow & 2 C M=A D & {[\because M \text { is the mid-point of } D C]} \\
\Rightarrow & C M=1 / 2 A B &
\end{array}
\]
Q. 17. In Fig., \(A C=A E, A B=A D\) and \(\angle B A D=\angle E A C\). Prove that \(B C=D E\).

Sol. Join \(D E\). We have, \(\angle B A D=\angle E A C\)
\[
\begin{array}{ll}
\Rightarrow & \angle \mathrm{BAD}+\angle \mathrm{DAC}=\angle \mathrm{EAC}+\angle \mathrm{DAC} \\
= & \angle \mathrm{BAC}=\angle \mathrm{DAE} \tag{i}
\end{array}
\]

Now, in triangles \(A B C\) and \(A D E\), we have
[Adding \(\angle \mathrm{DAC}\) to both sides]

\begin{tabular}{ll}
\(A B=A D\) & [Given] \\
\(\angle B A C=\angle D A E\) & {\([\) From (i)] } \\
and, \(\quad A C=A E\) & [Given]
\end{tabular}

So, by SAS congruence criterion, we have \(\triangle \mathrm{ABC} \cong \triangle \mathrm{ADE}\)
\(\Rightarrow \quad B C=D E\)
[c. p. c. t.]

TRIANGLES

\section*{Self Eualution test paper}
Q. 1. In Fig., the sides \(B A\) and \(C A\) have been produced such that \(B A=A D\) and \(C A=A E\). Prove that segment \(D E \| B C\).

Q. 2. In a \(\triangle P Q R\), if \(P Q=Q R\) and \(L, M\) and \(N\) are the mid-points of the sides \(P Q, Q R\) and \(R P\) respectively. Prove that \(L N=M N\).
Q. 3. In Fig. PQRS is a square and SRT is an equilateral triangle. Prove that
(i) \(\mathrm{PT}=\mathrm{QT}\)
(ii) \(\angle T Q R=15^{\circ}\)

Q. 4. Prove that the medians of an equilateral triangle are equal.
Q. 5. In a \(\triangle A B C\), if \(\angle A=120^{\circ}\) and \(A B=A C\). Find \(\angle B\) and \(\angle C\).
Q. 6. In a \(\triangle A B C\), if \(A B=A C\) and \(\angle B=70^{\circ}\), find \(\angle A\).
Q. 7. The vertical angle of an isosceles triangle is \(100^{\circ}\). Find the base angles.
Q. 8. In Fig., \(A B=A C\) and \(\angle A C D=105^{\circ}\), find \(\angle B A C\).

Q. 9. Find the measure of each exterior angle of an equilateral triangle.
Q. 10. If the base of an isosceles triangle is produced on both sides, prove that the exterior angles so formed are equal to each other.
Q. 11. In Fig., \(A B=A C\) and \(D B=D C\), find the ratio \(\angle A B D: \angle A C D\).

Q. 12. Determine the measure of each of the equal angles of a right-angled isosceles triangle.

OR
Q. 13. \(A B\) is a line segment. \(P\) and \(Q\) are points on opposite sides of \(A B\) such that each of them is equidistant from he points \(A\) and \(B\) (see fig.). Show that the line \(P Q\) is perpendicular bisector of \(A B\).

5. \(\angle B=\angle C=30^{\circ}\)
6. \(40^{\circ}\)
7. \(40^{\circ}\)
8. \(30^{\circ}\)
9. \(120^{\circ}\)
11. 1 : 1
12. \(45^{\circ}\)

HINTS TO SELECTED PROBLEMS
1. In order to prove that \(D E \| B C\) it is sufficient to prove that either \(\angle C E D=\angle E C B\) or \(\angle B D E=\angle D B C\). For this, let us consider the triangles EAD and CAB. In these two triangles, we have
\[
\begin{array}{ll}
E A=A C & \text { [Given] } \\
A D=A B & {[\text { Given }]} \\
\angle E A D=\angle B A C & \text { [Vertically opposite angles] }
\end{array}
\]

So, by SAS congruence criterion, we have
\[
\Delta \mathrm{EAD} \cong \Delta \mathrm{CAB}
\]
\(\Rightarrow \quad \angle A E D=\angle A C B\) and \(\angle A D E=\angle A B C\)
\(\Rightarrow \quad \angle C E D=\angle E C B\) and \(\angle B D E=\angle A B C\)
Hence, DE || BC
2. In \(\triangle P Q R\), we have
\(P Q=Q R\) and \(\angle R=\angle P\)
\(\Rightarrow \quad 1 / 2 P Q=1 / 2 Q R\) and \(\angle P=\angle R\)
\(\Rightarrow \quad P L=M R\) and \(\angle P=\angle R\)
Thus, in \(\Delta^{\prime}\) 's MRN and LPN, we have
PL = MR
\[
\angle R=\angle R
\]
and, \(\quad P N=N R \quad[\because N\) is the mid-point of \(P R]\)
So, by SAS congruence criterion, we have

\[
\Delta \mathrm{MRN} \cong \Delta \mathrm{LPN} \quad \Rightarrow \quad \mathrm{MN}=\mathrm{LN}
\]
3. (i) Since PQRS is a square and \(\triangle S R T\) is an equilateral triangle.
\[
\begin{array}{ll}
\therefore & \angle \mathrm{PSR}=90^{\circ} \text { and } \angle \mathrm{TSR}=60^{\circ} \\
\Rightarrow & \angle \mathrm{PSR}+\angle \mathrm{TSR}=90^{\circ}+60^{\circ} \\
\Rightarrow & \angle \mathrm{PST}=150^{\circ}
\end{array}
\]

Thus, in triangles PST and QRT, we have
\[
P S=Q R
\]
\[
\angle \mathrm{PST}=\angle \mathrm{QRT}=150^{\circ}
\]
and, \(\quad \mathrm{ST}=\mathrm{RT}\)
So, by SAS congruence criterion, we have
\[
\Delta \mathrm{PST} \cong \Delta \mathrm{QRT} \quad \Rightarrow \quad \mathrm{PT}=\mathrm{QT}
\]
(ii) \(\ln \Delta\) TQR, we have
```

            \(Q R=R T\)
    $\Rightarrow \quad \angle T Q R=\angle Q T R=x$ (say)
Now, $\quad \angle T Q R+\angle Q T R+\angle Q R T=180^{\circ} \quad \Rightarrow \quad 2 x+150^{\circ}=180^{\circ} \Rightarrow x=15^{\circ}$

```
4. Let \(\triangle A B C\) be an equilateral triangle with \(A D, B E\) and \(C F\) as its medians.

Let \(A B=A C=B C=x\) units
In triangles \(B F C\) and CEB, we have
\[
B F=C E \quad[\because A B=A C=>1 / 2 A B=1 / 2 A C \Rightarrow \quad B F=C E]
\]
\[
\angle A B C=\angle A C B \quad\left[\text { Each equal to } 60^{\circ}\right]
\]
and, \(B C=B C \quad\) [Common]
So, by SAS congruence criterion, we have
\[
\Delta B F C \cong \triangle C E B \quad \Rightarrow \quad B E=C F
\]

Similarly, we have \(A B=B E\)
Hence, \(A D=B E=C F\)

5. We have,
\[
\angle A=120^{\circ} \text { and } A B=A C \quad \Rightarrow \quad \angle B=\angle C
\]

But, \(\angle A+\angle B+\angle C=180^{\circ}\)
\(\therefore \quad 120^{\circ}+\angle B+\angle B=180^{\circ}=>2 \angle B=60^{\circ} \Rightarrow \angle B=30^{\circ}\)
6. We have,
\[
A B=A C=>\angle C=\angle B=>\angle B=\angle C=70^{\circ} \quad[\because \angle B=70 \text { (Given) }]
\]

Now, \(\angle A+\angle B+\angle C=180^{\circ}=>\angle A+70^{\circ}+70^{\circ}=180^{\circ} \Rightarrow \angle A=40^{\circ}\)
7. Let \(\triangle A B C\) be an isosceles triangle with vertical angle \(\angle A=100^{\circ}\) and
\(A B=A C\). Then,
\(A B=A C=>B=\angle C\)
But, \(\angle A+\angle B+\angle C=180^{\circ}\)
\(\therefore \quad 100^{\circ}+2 \angle B=180^{\circ}=>\angle B=40^{\circ}\)
8. We have,
\(A B=A C=>C=\angle B=>\angle B=180^{\circ}-105^{\circ}=75^{\circ} \quad\left[\because \angle C=180^{\circ}-105^{\circ}=75^{\circ}\right]\)
Now, \(\angle A+\angle B+\angle C=180^{\circ} \Rightarrow \angle A=180^{\circ}-75^{\circ}-75^{\circ}=30^{\circ}\)
9. Each angle of an equilateral triangle is of \(60^{\circ}\). Therefore, each exterior angle is equal to \(180^{\circ}-60^{\circ}=120^{\circ}\)
10. Let \(A B C\) be an isosceles triangle with base \(B C\) and equal sides \(A B\) and \(A C\).
\[
\begin{aligned}
& \text { Then, } \angle A B C=\angle A C B \text { i.e., } \angle B=\angle C \\
& \text { Now, } \quad \angle A D B+\angle A B C=180^{\circ} \text { and } \angle A C B+\angle A C E=180^{\circ} \\
& \Rightarrow \quad \angle A D B=180^{\circ}-\angle B \text { and } \angle A C E=180^{\circ}-\angle C \\
& \Rightarrow \quad \angle A D B=180^{\circ}-\angle B \text { and } \angle A C E=180^{\circ}-\angle B \\
& \text { => } \quad \angle A D B=\angle A C E
\end{aligned}
\]

11. We have,
\(A B=A C\) and \(D B=D C\)
\(\Rightarrow \quad \angle A B C=\angle A C B\) and \(\angle D B C=\angle D C B\)
\(=>\quad \angle A B C-\angle D B C=\angle A C B-\angle D C B\)
\(\Rightarrow \quad \angle A B D-\angle A C D \quad \Rightarrow \quad \frac{\angle A B D}{\angle A C D}=1\) i.e., \(\angle A B D: \angle A C D=1: 1\)
12. We have,
\(A B=A C\) and \(\angle A=90^{\circ} \Rightarrow \angle B=\angle C\) and \(\angle A=90^{\circ}\)
Now, \(\angle A+\angle B+\angle C=180^{\circ} \quad \Rightarrow \quad 90^{\circ}+2 \angle B=180^{\circ}=>\angle B=45^{\circ}\)
Hence, \(\angle B=\angle C=45^{\circ}\)

\section*{ANGLE-SIDE-ANGLE (ASA) CONGRUENCE CRITERION}

■THEOREM: Two triangles are congruent if two angles and the included side of one triangle are equal to the corresponding two angles and the inclined side of the other triangle.
Given: Two \(\triangle \mathrm{s} A B C\) and \(D E F\) such that \(\angle B=\angle \mathrm{E}, \angle \mathrm{C}=\angle \mathrm{F}\) and \(\mathrm{BC}=\mathrm{EF}\)
To prove: \(\triangle \mathrm{ABC} \cong \triangle \mathrm{DEF}\)
Proof: There are three possibilities.
VCASE I When \(A B=D E\) :

(i)

(ii)

In this case, we have
\[
\begin{aligned}
& A B=D E \\
& \angle B=\angle E
\end{aligned}
\]
[Given] and,
\(B C=E F\)
[Given]
So, by SAS criterion of congruence, we have,
VCASE II When AB < ED
In this case take a point \(G\) on \(E D\) such that \(E G=A B\). Join \(G F\).

(i)


\section*{ACCENTS EDUCATIONAL PROMOTERS}

Now, in \(\triangle s A B C\) and GEF, we have
\(\mathrm{AB}=\mathrm{GE} \quad\) [By supposition]
\(\angle B=\angle E \quad\) [Given]
and, \(\quad B C=E F\)
[Given]
So, by SAS criterion of congruence, we have
\[
\begin{array}{lll} 
& \Delta \mathrm{ABC} \cong \triangle \mathrm{GEF} & \\
\Rightarrow & \angle \mathrm{ACB}=\angle \mathrm{GFE} & \text { [c. p. c. t.] } \\
\text { But, } & \angle \mathrm{ACB}=\angle \mathrm{DFE} & \text { [Given] }
\end{array}
\]

This is possible only when ray FG coincides with ray FD or \(G\) coincides with \(D\). Therefore, \(A B\) must be equal to \(D E\).
Thus, in \(\triangle s A B C\) and \(D E F\), we have
\(A B=D E\)
[As proved above]
\(\angle B=\angle E\)
[Given]
and,
\(B C=E F\)
[Given]
\(\triangle A B C \cong \triangle D E F \quad\) [ by SAS criterion of congruent]

\section*{VCASE III When \(A B>E D\).}

In this case take a point \(G\) on ED produced such that \(E G=A B\). Join \(G F\). Now, proceeding exactly on the same lines as in case II, we can prove that

(i)

(ii)
\(\Delta \mathrm{ABC} \cong \triangle \mathrm{DEF}\)
Hence, in all the three cases, we have \(\triangle \mathrm{ABC} \cong \triangle \mathrm{DEF}\)

\section*{Escamples}
Q. 1. In Fig., diagonal \(A C\) of quadrilateral \(A B C D\) bisects the angles \(A\) and \(C\). Prove that \(A B=A D\) and \(C B=C D\).

Sol. Since diagonal \(A C\) bisects the angle \(A\) and \(C\).
\(\therefore \quad \angle B A C=\angle D A C\) and \(\angle B C A=\angle D C A\)
In triangles \(A B C\) and \(A D C\), we have
\[
\begin{array}{ll}
\angle B A C=\angle D A C & \text { [Given] } \\
\angle B C A=\angle D C A & \text { [Given] }
\end{array}
\]
and, \(\quad \mathrm{AC}=\mathrm{AC}\)
[Common]
So by ASA congruence criterion, we have
\[
\begin{array}{ll} 
& \Delta B A C \cong \triangle D A C \\
\Rightarrow \quad & B A=D A \text { and } C B=C D
\end{array}
\]

Q. 2. \(A B\) is a line segment, \(A X\) and \(B Y\) are two equal line segments drawn on opposite sides of line \(A B\) such that \(A X\) || \(B Y\). If \(A B\) and \(X Y\) intersect each other at \(P\), prove that
(i) \(\triangle A P X \cong \triangle B P Y\)
(ii) \(A B\) and \(X Y\) bisect each other.

Sol. Since \(A X|\mid B Y\) and transversal \(A B\) intersects them at \(A\) and \(B\) respectively. Therefore,
\(\angle B A X=\angle A B Y \quad\) [Alternate angles]
Similarly, we have \(\angle A X Y=\angle B Y X \quad[\because\) Transversal \(X Y\) intersects parallel lines \(A X\) and \(B Y\) at \(X\) and \(Y\) respectively]


Thus, in triangles PAX and PBY, we have
\[
\begin{aligned}
& \angle P A X=\angle P B Y \\
& \angle A X P=\angle B P Y
\end{aligned}
\]
and, \(\quad A X=B Y\)
[Given]
So, by ASA congruence criterion, we have
\[
\begin{array}{ll} 
& \Delta \mathrm{APX} \cong \triangle \mathrm{BPY} \\
=> & \mathrm{AP}=\mathrm{BP} \text { and } \mathrm{PX}=\mathrm{PY}
\end{array}
\]

Hence, \(\triangle \mathrm{APX} \cong \triangle \mathrm{BPY}\) and AB and XY bisect each other.
Q. 3. \(\quad l\) and \(m\) are two parallel lines intersected by another pair of parallel lines \(p\) and \(q\) as shown in Fig. Show that \(\triangle A B C \cong \Delta C D A\).

Sol. Since \(l\) and \(m\) are parallel lines and AC is a transversal. Therefore,
\[
\begin{equation*}
\angle 1=\angle 4 \tag{i}
\end{equation*}
\]

Similarly, transversal AC cuts parallel lines p and q.
\(\therefore \quad \angle 2=\angle 3\)
In triangles \(A B C\) and CDA, we have
\begin{tabular}{ll}
\(\angle 2=\angle 3\) & \\
\(A C=A C\) & [From (ii)] \\
\(\angle 1=\angle 4\) & \\
[Common] & [From (i)]
\end{tabular}

So, by ASA congruence criterion, we have
\(\Delta \mathrm{ABC} \cong \triangle \mathrm{CDA}\)

Q. 4. In Fig., if \(A B \| D C\) and \(P\) is the mid-point of \(B D\), prove that \(P\) is also the mid-point of \(A C\).

Sol. Since \(A B \| D C\) and transversal \(A C\) cuts them at \(A\) and \(C\) respectively.
\(\therefore \quad \mathrm{PAB}=\angle \mathrm{PCD}\)
[Alternate angles]


Similarly, \(A B|\mid ~ D C\) and transversal \(B D\) cuts them at \(B\) and \(D\) respectively.
\(\therefore \quad \angle A B P=\angle C D P \quad\)... (ii)
[Alternate angles]
Since \(A C\) and \(B D\) intersect at \(P\). Therefore,
\[
\begin{equation*}
\angle A P B=\angle C P D \tag{iii}
\end{equation*}
\]

Thus, in triangles APB and CPD, we have
\[
\begin{aligned}
& \angle \mathrm{ABP}=\angle \mathrm{CDP} \\
& \mathrm{BP}=\mathrm{DP}
\end{aligned}
\]
and, \(\quad \angle A P B=\angle C P D\)
So, by ASA congruence criterion, we have
\[
\Delta \mathrm{APB} \cong \Delta \mathrm{CPD}
\]
\(\Rightarrow \quad A P=P C\)
[Vertically opposite angles]
[From (i)]
[ \(\because \mathrm{P}\) is the mid-point of BD (Given)]
[From (iii)]

Hence, \(P\) is the mid-point of \(A C\).
Q. 5. In Fig. \(\angle B C D=\angle A D C\) and \(\angle A C B=\angle B D A\). Prove that \(A D=B C\) and \(\angle A=\angle B\).

Sol. We have,
\[
\begin{array}{ll} 
& \angle 1=\angle 2 \text { and } \angle 3=\angle 4 \\
=> & \angle 1+\angle 3=\angle 2+\angle 4 \\
=> & \angle A C D=\angle B D C \tag{i}
\end{array}
\]

Thus, in triangle ACD and BDC, we have
\[
\angle A D C=\angle B C D
\]
[Given]
\[
\begin{equation*}
C D=C D \tag{i}
\end{equation*}
\]
[Common]
and, \(\quad \angle A C D=\angle B D C\)
So, by ASA criterion of congruence, we have
\[
\Delta \mathrm{ACD} \cong \triangle \mathrm{BDC}
\]
\(\Rightarrow \quad A D=B C\) and \(\angle A=\angle B\) CBSE-MATHEMATICS

\section*{ACCENTS EDUCATIONAL PROMOTERS}
Q. 6. In two right triangles, one side and an acute angle of one triangle are equal to one side and the corresponding acute angle of the other triangle. Prove that the two triangles are congruent.
Sol. Let \(A B C\) and DEF be two right triangles such that \(B C=E F\) and \(\angle A B C=\angle D E F\). Then, we have to prove that \(\triangle A B C \cong \triangle D E F\).


In \(\triangle A B C \cong \triangle D E F\), we have
\(\angle A C B=\angle D E F\)
\(\mathrm{BC}=\mathrm{EF}\)
and, \(\quad \angle A B C=\angle D E F\)
[Given]
[Given]
[Each equal to \(90^{\circ}\) ]
\(\triangle \mathrm{ABC} \cong \triangle \mathrm{DEF}\)
Q. 7. In Fig. \(A C=B C, \angle D C A=\angle E C B\) and \(\angle D B C=\angle E A C\). Prove that triangles \(D B C\) and \(E A C\) are congruent, and hence \(D C=E C\) and \(B D=A E\).
Sol. We have,
\[
\begin{array}{ll} 
& \angle D C A=\angle E C B \\
=> & \angle D C A+\angle E C D=\angle E C B+\angle E C D \\
=> & \angle E C A=\angle D C B \tag{i}
\end{array}
\]

Now, in \(\Delta s\) DBC and EAC, we have
\[
\begin{array}{lll} 
& \angle \mathrm{DCB}=\angle \mathrm{ECA} & {[\text { From (i)] }} \\
\mathrm{BC}=\mathrm{AC} & {[\text { Given }]} \\
\text { and, } & \angle \mathrm{DBC}=\angle \mathrm{EAC} & {[\text { Given }]}
\end{array}
\]


So, by ASA criterion of congruence, we have
\(\Delta \mathrm{DBC} \cong \Delta \mathrm{EAC}\)
\(\Rightarrow \quad D C=E C\) and \(B D=A E\)
[c. p. c. t.]

Self Eualution test paper..........
In Fig. it is given that \(R T=T S, \angle 1=2 \angle 2\) and \(\angle 4=2 \angle 3\). Prove that \(\triangle R B T \cong \triangle\) SAT.

Q. 2. Two lines \(A B\) and \(C D\) intersect at \(O\) such that \(B C\) is equal and parallel to \(A D\). Prove that the lines \(A B\) and \(C D\) bisect at \(O\). 25
Q. 3. \(\quad B D\) and \(C E\) are bisectors of \(\angle B\) and \(\angle C\) of an isosceles \(\triangle A B C\) with \(A B=A C\). Prove that \(B D=C E\).

\section*{HINTS TO SELECTED PROBLEMS}
1.

In \(\Delta\) RTS, we have
\[
\begin{equation*}
R T=S T \quad \Rightarrow>\quad \angle T S R=\angle T R S \tag{i}
\end{equation*}
\]

We have,
\[
\begin{array}{lll} 
& \angle 1=\angle 4 & \text { [Vertically opposite angles] } \\
=> & 2 \angle 2=2 \angle 3 & {[\because 2 \angle 2 \text { and } \angle 4=2 \angle 3 \text { (given)] }} \\
\Rightarrow & \angle 2=\angle 3 & \ldots \text { (ii) } \tag{ii}
\end{array}
\]

Subtracting (ii) from (i), we get
\[
\begin{equation*}
\angle T R S-\angle 2=\angle T S R-\angle 3 \quad \Rightarrow>\quad \angle T R B=\angle T S A \tag{iii}
\end{equation*}
\]

Thus, in triangles RBT and SAT, we have
\begin{tabular}{ll}
\(\angle R T B=\angle S T A\) & [Common] \\
\(R T=S T\) & [Given] \\
\(\angle T R B=\angle T S A\) & [From (iii)]
\end{tabular}
and, \(\quad \angle T R B=\angle T S A\)
[From (iii)]
So, by ASA congruence criterion, we have
Since 20DI.
2. In order to prove that \(A B\) and \(C D\) bisect each other at \(O\), it is sufficient to prove that \(\triangle A O D \cong \triangle B O C\).

In these two triangles, we have
\begin{tabular}{ll} 
& \(A D=B C\) \\
& \(\angle O B C=\angle O A D\) \\
and, \(\quad \angle O C B=\angle O D A\) & {\([\because A D \| B C\)} \\
So, by \(A S A\) congruence criterion, we have \\
& \(\triangle A O D \cong \triangle B O C\) \\
\(\Rightarrow \quad\) & \(O A=O B\) and \(O D=O C\) \\
\(\Rightarrow \quad A B\) and \(C D\) bisect each other at \(O\).
\end{tabular}

3. In order to prove that \(\mathrm{BD}=\mathrm{CE}\), we will prove that
\(\Delta \mathrm{BEC} \cong \triangle \mathrm{CDB}\)
In these two triangles, we have
\(\angle B=\angle C\)
\(A B=A C\)
and, \(\angle 2=\angle 3\)
\[
\left[\begin{array}{l}
\because A B=A C=>\angle B=\angle C \\
=>2 \angle 2=2 \angle 3=>\angle 2=\angle 3
\end{array}\right]
\]

So, by ASA congruence criterion, we have


\section*{\(\triangle B E C \cong \triangle C D B \Rightarrow E C=B D\)}

\section*{ANGLE-ANGLE-SIDE (AAS) CONGRUENCE CRITERION}

If two angles and even a non-included side of one triangle are equal to the corresponding angles and side of another triangle, then also, the triangles are congruent as proved in the following theorem.
-THEOREM 1 If any two angles and a non-included side of one triangle are equal to the corresponding angles and side of another triangle, then the two triangles are congruent.


GIVEN: Two \(\Delta s A B C\) and DEF such that
\[
\angle A=\angle D, \angle B=\angle E, B C=E F
\]

TO PROVE: \(\triangle \mathrm{ABC} \cong \triangle \mathrm{DEF}\)
PROOF: We have, \(\angle \mathrm{A}=\angle \mathrm{D}\) and \(\angle \mathrm{B}=\angle \mathrm{E}\)
\[
\begin{array}{ll}
\Rightarrow & \angle A+\angle B=\angle D+\angle E \\
= & 180^{\circ}-\angle C=180^{\circ}-\angle F \\
= & \angle C=\angle F
\end{array}
\]
\[
\left[\begin{array}{c}
\because \angle A+\angle B+\angle C=180^{\circ} \therefore \angle A+\angle B=180^{\circ}-\angle C \\
\text { Similarly, } \angle D+\angle E=180^{\circ}-\angle F
\end{array}\right]
\]

Thus, in \(\triangle \mathrm{s} A B C\) and \(D E F\), we have \(\quad \angle \mathrm{A}=\angle \mathrm{D}, \angle \mathrm{B}=\angle \mathrm{E}\) and \(\angle \mathrm{C}=\angle \mathrm{F}\)
Now, in \(\triangle A B C\) and \(\triangle D E F\), we have
\[
\begin{array}{ll}
\angle \mathrm{B}=\angle \mathrm{E} & \text { [Given] } \\
\mathrm{BC}=\mathrm{EF} & \text { [Given] }
\end{array}
\]
and, \(\angle C=\angle F \quad[F r o m\) (i)] So, by ASA criterion of congruence, \(\triangle A B C \cong \triangle D E F\).
■THEOREM 2 If two angles of a triangle are equal, then sides opposite to them are also equal.
GIVEN: \(A \triangle A B C\) in which \(\angle B=\angle C\)
TO PROVE: \(\quad A B=A C\)
CONSTRUCTION: Draw the bisector of \(\angle A\) and let it meet \(B D\) and \(D\). PROOF: In \(\triangle s\) ABD and ACD, we have
\[
\begin{array}{ll}
\angle B=\angle C & {[\text { Given }]} \\
\angle B A D=\angle C A D & {[\text { By construction }]} \\
A D=A D & {[\text { Common }]}
\end{array}
\]

So, by AAS criterion of congruence, we have
\(\triangle \mathrm{ABD} \cong \triangle \mathrm{ACD}\)
\(\Rightarrow \quad A B=A C\)
[c. p. c. t.]


■THEOREM 3: If the altitude from one vertex of a triangle bisects the opposite side, then the triangle is isosceles.
GIVEN: \(A \triangle A B C\) such that the altitude \(A D\) from \(A\) on the opposite side \(B C\) bisects \(B C\) i.e., \(B D=D C\).
TO PROVE: \(A B=A C\) i.e., the triangle \(A B C\) is isosceles.
PROOF: In \(\triangle \mathrm{s}\) ADB and ADC, we have
\[
\begin{array}{ll}
B D=D C & {[\text { Given }]} \\
\angle A D B=\angle A D C=90^{\circ} & {[\because A D \perp B C]} \\
A D=A D & {[\text { Common }]}
\end{array}
\]

So, by SAS criterion of congruence, we have
\[
\begin{array}{ll} 
& \Delta \mathrm{ADB} \cong \triangle \mathrm{ADC} \\
\Rightarrow \quad & \mathrm{AB}=\mathrm{AC}
\end{array}
\]


■THEOREM 4: In an isosceles triangle altitude from the vertex bisects the base.
GIVEN: \(A n\) isosceles triangle \(A B C\) such that \(A B=A C\) and an altitude \(A D\) from \(A\) on side \(B C\).
TO PROVE: \(D\) bisects \(B C\) i.e., \(B D=D C\).
PROOF: In \(\triangle \mathrm{s}\) ADB and ADC, we have
\[
\begin{array}{ll}
\angle A D B=\angle A D C & {\left[\text { Each equal to } 90^{\circ}\right]} \\
A D=A D & {[\text { Common }]} \\
\angle B=\angle C & {[\because A B=A C \therefore \angle B=\angle C]}
\end{array}
\]

So, by AAS criterion of congruence, we have
\[
\Delta \mathrm{ADB} \cong \triangle \mathrm{ADC}
\]
\[
\Rightarrow \quad B D=D C
\]
-THEOREM 5: If the bisector of the vertical angle of a triangle bisects the base of the triangle, then the triangle is isosceles.
GIVEN: \(A \triangle A B C\) in which \(A D\) is the bisector of \(\angle A\) meeting \(B C\) in \(D\) such that \(B D=D C\).
TO PROVE: \(\triangle \mathrm{ABC}\) is an isosceles triangle.
CONSTRUCTION: Produce AD to E such that AD = DE. Join EC.
PROOF: In \(\triangle s\) ADB and EDC, we have
\[
\begin{array}{ll}
\mathrm{BD}=\mathrm{DC} & {[\text { Given }]} \\
\mathrm{AD}=\mathrm{DE} & {[\text { By construction }]}
\end{array}
\]
and, \(\quad \angle A D B=\angle E D C\)
So, by SAS criterion of congruence, we have
\(\triangle \mathrm{ADB} \cong \triangle \mathrm{EDC}\)
\[
\begin{array}{ll}
=> & A B=E C \\
\text { and, } & \angle B A D=\angle C E D  \tag{i}\\
\text { But, } & \angle B A D=\angle C A D \\
\therefore & \angle C A D=\angle C E D
\end{array}
\]

\[
\Rightarrow \quad A C=E C \quad[\because \text { Sides opposite to equal angles are equal }]
\]
\[
\Rightarrow \quad A C=A B \quad[\because A B=E C(\text { From (i) }]
\]

Hence, \(\Delta \mathrm{ABC}\) is an isosceles triangle.
Jelustrative Examples.
Q. 1. In Fig. \(A B=A C\) and \(D B=D C\). Prove that \(\angle A B D=\angle A C D\).

(i)


Sol. In \(\triangle A B C\), we have
\(A B=A C\)
\(\Rightarrow \quad \angle A B C=\angle A C B\)
Again, in \(\triangle D B C\), we have \(D B=D C\)
\(\Rightarrow \quad \angle D B C=\angle D C B\)
[Given]
[ \(\because\) Angles opposite to equal sides are equal]
[Given]
[ \(\because\) Angles opposite to equal sides are equal]

Subtracting (ii) from (i), we get
\[
\begin{gathered}
\angle \mathrm{ABC}-\angle \mathrm{DBC}=\angle \mathrm{ACB}-\angle \mathrm{DCB} \\
\angle \mathrm{ABD}=\angle \mathrm{ACB}
\end{gathered}
\]

Adding (i) and (ii), we get
\[
\angle \mathrm{ABC}+\angle \mathrm{DBC}=\angle \mathrm{ACB}+\angle \mathrm{DCB}
\]
\[
\Rightarrow \quad \angle A B D=\angle A C D
\]
[From Fig. (ii)]
*Q. 2. \(\triangle A B C\) is an isosceles triangle with \(A B=A C\). Side \(B A\) is produced to \(D\) such that \(A B=A D\). Prove that \(\angle B C D\) is a right angle.
GIVEN: \(A \triangle A B C\) such that \(A B=A C\). Side \(B A\) is produced to \(D\) such that \(A B=A D\).
CONSTRUCTION: Join CD.
TO PROVE: \(\angle B C D=90^{\circ}\)


PROOF: \(\ln \triangle A B C\), we have
Q. 3. In Fig. \(A B=A C\). \(B E\) and \(C F\) are respectively the bisectors of \(\angle B\) and \(\angle C\). Prove that \(\Delta E B C \cong \Delta F C B\).

Sol. In \(\triangle A B C\), we have
\[
\begin{array}{ll} 
& A B=A C \\
\Rightarrow & \angle A C B=\angle A B C \\
=> & \angle E C B=\angle F B C \\
\text { Again, } & \angle A C B=\angle A B C \\
=> & 1 / 2 \angle A C B=1 / 2 \angle A B C \\
\Rightarrow & \angle F C B=\angle E B C \tag{ii}
\end{array}
\]
[Given]
... (i) \(\quad[\because \angle A C B=\angle F C B\) and \(\angle A B C=\angle F B C]\)
[ \(\because C F\) and \(B E\) are bisectors of \(\angle A C B\) and \(\angle A B C\) respectively]
Now, in \(\Delta s\) EBC and FCB, we have
\[
\angle E C B=\angle F B C
\]
[From (i)]
\[
B C=B C
\]
[Common]

and, \(\quad \angle F C B=\angle E B C\)
\(\Delta \mathrm{EBC} \cong \triangle \mathrm{FCB}\)
Q. 4. If \(\triangle A B C\) is an isosceles triangle with \(A B=A C\). Prove that the perpendiculars from the vertices \(B\) and \(C\) to their opposite sides are equal.
Sol. In \(\triangle \mathrm{ABC}\), we have
\[
\begin{array}{ll} 
& A B=A C \\
\Rightarrow \quad & \angle B=\angle C \tag{i}
\end{array}
\]
[Given]
[ \(\because\) Angles opp. to equal sides are equal]
Now, in \(\triangle s\) BCE and BCD, we have
\[
\begin{aligned}
& \angle B=\angle C \\
& \angle C E B=\angle B D C
\end{aligned}
\]
and, \(\quad B C=B C\)
[From (i)]
[Each equal to \(90^{\circ}\) ]
[Common]


So, by AAS criterion of congruence, we have
\[
\triangle \mathrm{BCE}=\triangle \mathrm{BCD}
\]
=> \(\quad \mathrm{BD}=\mathrm{CE}\)
Hence, BD = CE
\([\because\) Corresponding parts of congruent triangles are equal \(]\)
\[
\begin{aligned}
& \begin{array}{ll} 
& A B=A C \\
\Rightarrow \quad & \angle A C B=\angle A B C
\end{array} \\
& \text { Now, } \quad A B=A D \\
& \therefore \quad A D=A C \\
& \text {... (i) [ } \because \text { Angles opp. to equal sides are equal] } \\
& \text { [Given] } \\
& {[\because A B=A C]} \\
& \text { Thus, in } \triangle A D C \text {, we have } A D=A C \\
& \Rightarrow \quad \angle A C D=\angle A D C \\
& \text {... (ii) [ } \because \text { Angles opp. to equal sides are equal] } \\
& \text { Adding (i) and (ii), we get } \\
& \angle A C B+\angle A C D=\angle A B C+\angle A D C \\
& \Rightarrow \quad \angle B C D=\angle A B C+\angle B D C \quad[\because \angle A D C=\angle B D C] \\
& \Rightarrow \quad \angle B C D=\angle B C D=\angle A B C+\angle B D C+\angle B C D \quad \text { [Adding } \angle B C D \text { on both sides] } \\
& \Rightarrow \quad 2 \angle B C D=180^{\circ} \quad\left[\because \text { Sum of the angles of a } \Delta \text { is } 180^{\circ}\right. \text { ] } \\
& \Rightarrow \quad \angle B C D=90^{\circ} \quad \text { Hence, } \angle B C D \text { is a right angle. }
\end{aligned}
\]
Q. 5. If the altitudes from two vertices of a triangle to the opposite sides are equal, prove that the triangle is isosceles.

GIVEN: \(A \triangle A B C\) is isosceles i.e., \(A B=A C\)
PROOF: In \(\triangle s\) ABE and ACF, we have
\[
\begin{aligned}
& \angle A E B=\angle A F C \\
& \angle B A E=\angle C A F
\end{aligned}
\]
and, \(\quad \mathrm{BE}=\mathrm{CF}\)
[Each equal to \(90^{\circ}\) ]
[Common angle]
[Given]
So, by AAS criterion of congruence, we have
\(\triangle \mathrm{ABE} \cong \triangle \mathrm{ACF}\)
\(\Rightarrow \quad A B=A C\)
Hence, \(\triangle A B C\) is isosceles.

Q. 6. In Fig. It is given that \(\angle A=\angle C\) and \(A B=B C\). Prove that \(\triangle A B D \cong \triangle C B E\).

Sol. In \(\triangle s\) AOE and COD, we have

\[
\begin{array}{ll} 
& \angle A=\angle C \\
\text { and, } & \angle A O E=\angle C O D \\
\therefore & \angle A+\angle A O E=\angle C+\angle C O D \\
=> & 180^{\circ}-\angle A E O=180^{\circ}-\angle C D O \\
=> & \angle A E O=\angle C D O \\
\text { Now, } & \angle A E O+\angle O E B=180^{\circ} \\
\text { and, } & \angle C D O+\angle O D B=180^{\circ} \\
\therefore & \angle A E O+\angle O E B=\angle C D O+\angle O D B \\
=> & \angle O E B=\angle O D B \\
=> & \angle C E B=\angle A D B
\end{array}
\]

Now, in \(\triangle A B D\) and \(\triangle C B E\), we have
\[
\angle A=\angle C
\]
\[
\angle A D B=\angle C E B
\]
and, \(\quad A B=B C\)
[Vertically opp. angles]
\(\left[\because \angle A+\angle A O E+\angle A E O=180^{\circ}\right.\) and \(\left.\angle C+\angle C O D+\angle C D O=180^{\circ}\right]\)
[Angles of a linear pair]
[Angles of a linear pair]
[Using (i)]
[ \(\angle O E B=\angle C E B\) and \(\angle O D B=\angle A D B]\)... (ii)
[Given]
[From (ii)]
[Given]

So, by AAS criterion of congruence, we have , \(\triangle \mathrm{ABD} \cong \triangle \mathrm{CBE}\)
Q. 7. \(A D\) and \(B C\) are equal perpendiculars to a line segment \(A B\). Show that \(C D\) bisects \(A B\).

Sol. In triangles OAD and OBD, we have
\[
\begin{aligned}
& \angle A O D=\angle B O C \\
& \angle O A D=\angle O B C
\end{aligned}
\]
and, \(\quad A D=B C\)
So, by AAS congruence criterion, we have
\(\triangle \mathrm{AOD} \cong \triangle \mathrm{BOC}\)
\(\Rightarrow \quad O A=O B\)
=> \(\quad C D\) bisects \(A B\)

Q. 8. In \(\triangle A B C, A B=A C\), and the bisectors of angles \(B\) and \(C\) intersect at point \(O\). Prove that \(B O=C O\) and the ray \(A O\) is the bisector of angle \(B A C\).

Sol. \(\quad \ln \triangle \mathrm{ABC}\), we have

```

        \(A B=A C\)
    $\Rightarrow \quad \angle B=\angle C \quad[\because$ Angles opp. to equal sides are equal]
$\Rightarrow \quad 1 / 2 \angle B=1 / 2 \angle C$
$\Rightarrow \quad \angle O B C=\angle O C B \quad[\because O B$ and $O C$ are bisector of $\angle B$ and $\angle C$ respectively $]$
$\therefore \angle O B C=1 / 2 \angle B \& \angle O C B=1 / 2 \angle C]$
=> $\quad \mathrm{OB}=\mathrm{OC} \quad[\because$ Sides opposite to equal angles are equal $]$
Now, in $\triangle \mathrm{ABO}$ and $\triangle \mathrm{ACO}$, we have

|  | $\mathrm{AB}=\mathrm{AC}$ | $[$ Given $]$ |
| :--- | :--- | :--- |
|  | $\angle \mathrm{OBC}=\angle \mathrm{OCB}$ | $[$ From (i)] |
| and, | $\mathrm{OB}=\mathrm{OC}$ | $[$ From (ii)] |

So, by SAS criterion of congruence

```
\[
\begin{aligned}
& \triangle \mathrm{ABO} \cong \triangle A C O \\
=>\quad & \angle B A O=\angle C A O \quad \Rightarrow \quad A O \text { is the bisector of } \angle B A C .
\end{aligned}
\]
Q. 9. In Fig. it is shown that \(A B=E F, B C=D E, A B \perp B D\) and \(F E \perp C E\). Prove that \(\triangle A B D \cong \triangle F E C\).

Sol. We have,

\[
\begin{array}{ll} 
& B C=D E \\
\Rightarrow \quad & B C+C D=D E+C D
\end{array}
\]

Thus, in \(\triangle s A B C\) and FEC, we have \(A B=E F\)
\(\angle A B D=F E C\)
and, \(\quad B D=C E\)
So, by ASA criterion of congruence, we have, \(\triangle \mathrm{ABD} \cong \triangle \mathrm{FEC}\)
Q. 10. In Fig. it is given that \(A B=B C\), and \(A D=E C\). Prove that \(\triangle A B E \cong \triangle C B D\)

Sol. In \(\triangle \mathrm{ABC}\), we have
\begin{tabular}{lll} 
& \(B A=B C\) & [Given] \\
\(\Rightarrow\) & \(\angle B C A=\angle B A C\) & {\([\because\) Angles opp. to equal sides are equal] } \\
\(=>\) & \(\angle B A E=\angle B C D\) & \(\ldots\) (i) \\
We have, &
\end{tabular}

We have,
\(\Rightarrow \quad A D+D E=D E+E C\)
=> \(\quad \mathrm{AE}=\mathrm{CD}\)
[Adding DE on both sides]

Thus, in \(\triangle A B E\) and CBD, we have
\[
\begin{array}{ll}
\mathrm{AB}=\mathrm{BC} & {[\text { Given }]} \\
\angle \mathrm{BAE}=\angle \mathrm{BCD} & {[\text { From (i)] }}
\end{array}
\]
and, \(\quad \mathrm{AE}=\mathrm{CD} \quad\) [From (ii)]
So, by SAS criterion of congruence, we have
[Adding CD on both sides]
... (i)
[Given]
\(\left[\begin{array}{l}\because \mathrm{AB} \perp \mathrm{BD} \text { and } \mathrm{FE} \perp \mathrm{CE}(\text { Given }) \\ \therefore \angle \mathrm{ABD}=90^{\circ} \text { and } \angle \mathrm{FEC}=90^{\circ}\end{array}\right]\)
[From (i)]

\section*{TRIANGLES} CBSE-MATHEMATICS

Sol. In triangles APB and AQB, we have
\[
\angle 1=\angle 2 \quad \text { [line } I \text { is the bisector } s \text { of } \angle A \text { ] }
\]

\[
\begin{array}{ll}
\angle A P B=\angle A Q B & {\left[\text { Each equal to } 90^{\circ}\right]} \\
A B=A B & {[\text { Common }]}
\end{array}
\]

So, by AAS congruence criterion, we have, \(\quad \triangle A P B \cong \triangle A Q B \quad \Rightarrow \quad B P=B Q\)
Q. 13. In Fig., \(A D\) is a median and \(B L, C M\) are perpendicular drawn from \(B\) and \(C\) respectively on \(A D\) and \(A D\) produced. Prove that \(B L=C M\).
Sol. In \(\triangle s\) BDL and CDM, we have
\[
\begin{array}{ll}
\angle B L D=\angle C M D & {\left[\text { Each equal to } 90^{\circ}\right]} \\
\angle B D L=\angle C D M & {[\text { Vert. opp. } \angle \mathrm{s}]} \\
B D=D C & {[\because \mathrm{D} \text { is the mid-point of } \mathrm{BC}]}
\end{array}
\]
and, \(\quad B D=D C\)
So, by AAS criterion of congruence, we have
\[
\begin{array}{ll} 
& \Delta \mathrm{BDL} \cong \triangle \mathrm{CDM} \\
=\quad & \mathrm{BL}=\mathrm{CM}
\end{array}
\]

Q. 14. In Fig. \(B M\) and \(D N\) are both perpendicular to the segments \(A C\) and \(B M=D N\). Prove that \(A C\) bisects \(B D\).

Sol. In \(\Delta \mathrm{s} B M R\) and DNR, we have
\begin{tabular}{ll} 
& \(\angle \mathrm{BMR}=\angle \mathrm{DNR}\) \\
& {\(\left[\begin{array}{c}\text { Each equal to } 90^{\circ} \\
\because \mathrm{BM} \perp \mathrm{AC} \text { and } \mathrm{DN} \perp \mathrm{AC}\end{array}\right]\)} \\
and, & \(\angle \mathrm{BRM}=\angle \mathrm{DRN}\) \\
\(\mathrm{BM}=\mathrm{DN}\) & {\([\) Vert. opp. angles] } \\
& {\([\) Given \(]\)}
\end{tabular}

So, by AAS criterion of congruence, we have
\(\Delta \mathrm{BMR} \cong \triangle \mathrm{DNR}\)

\(\Rightarrow \quad B R=D R \quad\left[\begin{array}{c}\text { Corresponding parts of congruent } \\ \text { triangles are equal }\end{array}\right]\)
\(\Rightarrow \quad R\) is the mid-point of BD.
Hence, AC bisects BD.
*Q. 15. In a right angled triangle, one acute angle is double the other. Prove that the hypotenuse is double the smallest side.
GIVEN: \(A \triangle A B C\) in which \(\angle B=90^{\circ}\) and \(\angle A C B=2 \angle C A B\).
TO PROVE: \(A C=2 B C\)
CONSTRUCTION: Produce \(C B\) and \(D\) such that \(B D=C B\). Join \(A D\).
PROOF: In \(\triangle s\) ABD and ABC, we have
\[
\begin{aligned}
& B D=B C \\
& \text { [By construction] } \\
& A B=A B \\
& \text { [Common side] } \\
& \text { and, } \quad \angle A B D=\angle A B C \quad\left[\text { Each equal to } 90^{\circ}\right]
\end{aligned}
\]

So, by SAS criterion of congruence we have
\[
\triangle \mathrm{ABD} \cong \triangle \mathrm{ABC}
\]
\(\Rightarrow \quad A D=A C\) and \(\angle D A B=\angle C A B\)
[c. p. c. t.]
\(\Rightarrow \quad A D=A C\) and \(\angle D A B=x\)
\([\because \angle C A B=x]\)


Now, \(\quad \angle D A C=\angle D A B+\angle C A B\)
\(\Rightarrow \quad \angle D A C=x+x=2 x\)
\(\Rightarrow \quad \angle D A C=\angle A C B \quad[\because \angle A C B=2 x]\)
\(\Rightarrow \quad D C=A D \quad[\because B C=D B \therefore D C=2 B C]\)
\(\Rightarrow \quad 2 B C=A C \quad[\because A D=A C\) (proved above)]
Hence, the hypotenuse \(A C\) is double the smallest side \(B C\).

\section*{Q. 16. A triangle \(A B C\) is an isosceles triangle of any one of the following conditions hold:}
(i) Altitude \(A D\) bisects \(\angle B A C\).
(ii) Bisector of \(\angle B A C\) is perpendicular to the base \(B C\).

Sol. (i) Let \(A B C\) be a triangle such that the altitude \(A D\) bisects \(\angle B A C\). Then, we have to prove that the triangle is isosceles. In triangle ADB and ADC, we have
\[
\begin{array}{ll}
\angle 1=\angle 2 & {[\because A D \text { is bisector of } \angle B A C \therefore} \\
A D=A D & {[C o m m o n \text { side] }}
\end{array}
\]

\(\angle A D B=\angle A D C \quad\left[\right.\) Each equal to \(\left.90^{\circ}\right]\)
So, by ASA criterion of congruence, we have
\(\Delta \mathrm{ADB} \cong \triangle \mathrm{ADC}\)
\(\Rightarrow \quad A B=A C\)
[c. p. c. t.]
Hence, \(\triangle A B C\) is an isosceles triangle.
(ii) Let \(A B C\) be a triangle such that the bisector \(A D\) of \(\angle B A C\) is perpendicular to the base \(B C\). We have to prove that the triangle is isosceles.
\(\ln \triangle s\) ADB and ADC, we have
\[

\]

So, by ASA criterion of congruence, we have
\(\triangle \mathrm{ADB} \cong \triangle \mathrm{ADC}\)
\(\Rightarrow \quad A B=A C\)
[c. p. c. t.]


Hence, \(\triangle A B C\) is an isosceles triangle.
Q. 17. In Fig. \(A P\) and \(B Q\) are perpendicular to the line segment \(A B\) and \(A P=B Q\). Prove that \(O\) is the mid-point of line segment \(A B\) and \(P Q\).


Sol. Since \(A B\) and \(P Q\) intersect at \(O\).
\(\therefore \quad \angle A O P=\angle B O Q\)
In triangles \(A O P\) and \(B O Q\), we have
\[
\angle A O P=\angle B O Q
\]
\[
\angle O A P=\angle O B P
\]
and, \(\quad A P=B Q\)
So, by AAS congruence criterion, we have
\(\Rightarrow \quad O A=O B\) and \(O P=O Q \quad[\because\) Corresponding parts of congruent triangles are equal \(]\)
Hence, \(O\) is the mid-point of the line segments \(A B\) and \(P Q\).
Q. 18. In Fig. \(A B C\) is an isosceles triangle with \(A B=A C\). \(B D\) and \(C E\) are two medians of the triangle. Prove that \(B D=C E\).

Sol. In \(\triangle A B C\), it is given that
\[
\begin{array}{ll} 
& A B=A C \\
=> & \angle B=\angle C \\
\text { Again } & A B=A C \\
=> & 1 / 2 A B=1 / 2 A C \\
\Rightarrow & B E=C D \tag{ii}
\end{array}
\]

Thus, in \(\triangle D C B\) and \(\triangle E B C\), we have
\begin{tabular}{ll}
\(D C=E B\) & {\([\) From (ii)] } \\
\(C B=B C\) & {\([\) Common side \(]\)} \\
\(\angle D C B=\angle E B C\) & {\([\) From \((i)]\)} \\
\hline
\end{tabular}
and.
\(\angle D C B=\angle E B C\)
[Each equal to \(90^{\circ}\) ]
[Given]
\(\triangle \mathrm{AOP} \cong \triangle \mathrm{BOQ}\)
\([\because D\) and \(E\) are the mid-points
of \(A C\) and \(A B\) respectively]

\(\Delta \mathrm{DCB} \cong \triangle \mathrm{EBC}\)
\(\Rightarrow \quad B D=C E \quad[\because\) Corresponding parts of congruent triangles are equal \(]\)
Q. 19. In Fig. \(A D=A E\) and \(D\) and \(E\) are points on \(B C\) such that \(B D=E C\). Prove that \(A B=A C\).

Sol. In \(\triangle\) ADE, we have
\[
\begin{array}{ll} 
& A D=A E \\
= & \angle A D E=\angle A E D \\
= & 180^{\circ}-A D E=\left(180^{\circ}-\angle A E D\right) \\
\Rightarrow & \angle A D B=\angle A E C \tag{i}
\end{array}
\]

Now, in \(\triangle A B D\) and \(\triangle A C E\), we have
\(A D=A E\)
[Given]
\(\angle A D B=\angle A E C\)
[From (i)]
and, \(\quad B D=E C\)
So, by SAS congruence criterion, we have

\(\triangle \mathrm{ABD} \cong \triangle \mathrm{ACE}\)
\(\Rightarrow \quad A B=A C\)
[ \(\because\) Corresponding parts of cong. triangles are equal]
Q. 20. In Fig. if \(A B=A C\) and \(B E=C D\), prove that \(A D=A E\).

Sol. We have,
\[
\begin{array}{ll} 
& B E=C D \\
\Rightarrow & B E+D E=C E+D E \\
\Rightarrow & B D=C E \tag{i}
\end{array}
\]

In \(\triangle \mathrm{ABC}\), it is given that
\(A B=A C\)
\(\Rightarrow \quad \angle B=\angle C\)
Thus, in \(\triangle A B D\) and \(\triangle A C E\), we have
\(A B=A C\)
[Given]
\(\angle A B D=\angle A C D \quad[\) From (ii)]
and, \(\quad \mathrm{BD}=\mathrm{CE} \quad\) [From (i)]
So, by SAS congruence criterion, we have
\[
\begin{aligned}
& \Delta \mathrm{ABD} \cong \triangle \mathrm{ACE} \\
\Rightarrow \quad & \mathrm{AD}=\mathrm{AE}
\end{aligned} \quad[\because \text { Corresponding parts of cong. triangles are equal }]
\]
Q. 21. In Fig. \(P S=P R, \angle T P S=\angle Q P R\). Prove that \(P T=P Q\)

Sol. In \(\triangle P R S\), we have


So, by ASA congruence criterion, we have

\(\Delta \mathrm{PST} \cong \triangle \mathrm{PRQ}\)
=> \(\quad \mathrm{PT}=\mathrm{PQ}\)
Q. 22. In Fig. if \(P Q=P T\) and \(\angle T P S=\angle Q P R\), prove that \(\triangle P R S\) is isosceles.

Sol. In \(\triangle\) PQT, it is given that
\[
\begin{array}{lll} 
& \mathrm{PQ}=\mathrm{PT} & \\
=> & \angle \mathrm{PTQ}=\angle \mathrm{PQT} & \text { (i) } \\
\text { Thus, in } & \triangle \mathrm{PQR} \text { and } \triangle \mathrm{PTS} \text {, we have } \\
& \mathrm{PQ}=\mathrm{PT} & \text { [Given] } \\
& \angle \mathrm{QPR}=\angle \mathrm{TPS} & \text { [Given] } \\
\text { and, } & \angle P Q R=\triangle \mathrm{PTS} & \text { [From (i)] } \tag{Given}
\end{array}
\]
[Angles opposite to equal sides are equal]

So, by ASA congruence criterion, we have
\(\Delta \mathrm{PQR} \cong \triangle \mathrm{PTS}\)
\(\Rightarrow \quad P R=P S\)
[ \(\because\) Corresponding parts of cong. triangles are equal]
Hence, \(\Delta \mathrm{PRS}\) is an isosceles triangle.
Q. 23. In Fig. \(A B C\) and \(D B C\) are two isosceles triangles on the same base \(B C\) such that \(A B=A C\) and \(D B=D C\).

Prove that \(\angle A B D=\angle A C D\).
Sol. In \(\triangle A B C\), we have
\[
\begin{array}{ll} 
& A B=A C \\
=> & \angle A B C=\angle A C B
\end{array}
\]
\[
\begin{equation*}
\text { [ } \because \text { Angles opposite to equal sides are equal] } \tag{i}
\end{equation*}
\]
\(\ln \triangle B C D\), we have
\[
\begin{array}{ll} 
& B D=C D \\
\Rightarrow \quad & \angle D B C=\angle D C B \quad[\because \text { Angles opposite to equal sides are equal }]
\end{array}
\]

From (i) and (ii), we have
\[
\begin{aligned}
& \angle \mathrm{ABC}+\angle \mathrm{DBC}=\angle \mathrm{ACB}+\angle \mathrm{DCB} \\
\Rightarrow \quad & \angle \mathrm{ABD}=\angle \mathrm{ACD}
\end{aligned}
\]

ALTER Join AD.
\(\ln \Delta^{\prime} \mathrm{S} A B D\) and \(A C D\), we have
\begin{tabular}{ll}
\(A B=A C\) & [Given] \\
\(B D=C D\) & {\([\) Given \(]\)} \\
\(A D=A D\) & [Common]
\end{tabular}

So, by SSS criterion of congruence, we have
\(\triangle A B D \cong \triangle A C D \quad=\)
\(\angle A B D=\angle A C D\)
[c. p.c.t.]
Q. 24. In Fig. \(\triangle A B C\) and \(\triangle D B C\) are two triangles on the same base \(B C\) such that \(A B=A C\) and \(D B=D C\). Prove that \(\angle A B D=\angle A C D\).

Sol. In \(\triangle A B C\), it is given that
\[
\begin{array}{ll} 
& A B=A C \\
\Rightarrow \quad & \angle A B C=\angle A C B \tag{i}
\end{array}
\]
\([\because\) Angles opposite to equal sides are equal]
\(\ln \triangle \mathrm{DBC}\), it is given that
\[
\begin{array}{ll} 
& D B=D C \\
\Rightarrow \quad & \angle D B C=\angle D C B \tag{ii}
\end{array}
\]

Subtracting (ii) from (i), we get
\(\angle A B C-\angle D B C=\angle A C B-\angle D C B\)
\(\Rightarrow \quad \angle A B D=\angle A C D\)

Q. 25. In Fig. \(B D\) and \(C E\) are two altitudes of a \(\triangle A B C\) such that \(B D=C E\). Prove that \(\triangle A B C\) is isosceles.

Sol. In \(\triangle A B D\) and \(\triangle A C E\), we have
\(\left.\begin{array}{ll} & \angle A D B=\angle A E C=90^{\circ} \\ & \angle B A D=\angle C A E \\ \text { and, } & B D=C E\end{array}\right][\) [Common] \(]\)

So, by AAS congruence criterion, we have
\(\triangle \mathrm{ABD} \cong \triangle \mathrm{ACE}\)
\(\Rightarrow \quad A B=A C \quad[\because\) Corresponding parts of congruent triangles are equal]
Hence, \(\triangle A B C\) is isosceles.

Q. 26. In Fig. line segment \(A B\) is parallel to another line segment \(C D\). \(O\) is the mid-point of \(A D\). Show that:
(i) \(\triangle \mathrm{AOD} \cong \triangle \mathrm{DOC}\)
(ii) O is also the mid-point of BC

Sol. (i) Since \(A B \| C D\) and \(B C\) is the transversal.
\(\therefore \quad \angle A B O=\angle D C O\)
In triangles \(A O B\) and DOC, we have
\[
\begin{align*}
& \angle A B O=\angle D C O  \tag{i}\\
& \angle A B O=\angle D O C \\
& O A=O D
\end{align*}
\]
[From (i)]
[Vertically opposite angles]
[Given]
So, by AAS congruence criterion, we have
\[
\triangle \mathrm{AOB} \cong \triangle \mathrm{DOC}
\]
(ii) We have,
\[
\begin{array}{ll} 
& \Delta \mathrm{AOB} \cong \triangle \mathrm{DOC} \\
=> & \mathrm{OB}=\mathrm{OC} \\
=> & \mathrm{O} \text { is the mid-point of } \mathrm{BC} .
\end{array}
\]


Exercise 1.3
Q. 1. In two right triangles one side an acute angle of one are equal to the corresponding side and angle of the other. Prove that the triangles are concurrent.
Q. 2. If the bisector of the exterior vertical angle of a triangle be parallel to the base. Show that the triangle is isosceles.
Q. 3. In an isosceles triangle, if the vertex angle is twice the sum of the base angles, calculate the angles of the triangle.
Q. 4. \(\quad P Q R\) is a triangle in which \(P Q=P R\) and \(S\) is any point on the side \(P Q\). Through \(S\), a line is drawn parallel to \(Q R\) and intersecting \(P R\) at \(T\). Prove that \(P S=P T\).
Q. 5. In a \(\triangle A B C\), it is given that \(A B=A C\) and the bisectors of \(\angle B\) and \(\angle C\) intersect at \(O\). If \(M\) is a point of \(B O\) produced, prove that \(\angle M O C=\angle A B C\).
Q. 6. \(\quad P\) is a point on the bisector of an angle \(\angle A B C\). If the line through \(P\) parallel to \(A B\) meets \(B C\) at \(Q\), prove that triangle \(B P Q\) is isosceles.
Q. 7. Prove that each angle of an equilateral triangle is \(60^{\circ}\).
Q. 8. Angles \(A, B, C\) of a triangle \(A B C\) are equal to each other. Prove that \(\triangle A B C\) is equilateral.
Q. 9. \(A B C\) is a triangle in which \(\angle B=2 \angle C\). \(D\) is a point on \(B C\) such that \(A D\) bisects \(\angle B A C\) and \(A B=C D\). Prove that \(\angle B A C=72^{\circ}\).

\section*{}

HINTS TO SELECTED PROBLEMS
1.

Let \(A B C\) and \(D E F\) be two right triangles such that \(\angle A=\angle D, B C=E F\) and \(\angle B=\angle E=90^{\circ}\).

Thus, in \(\Delta^{\prime}\) 's ABC and DEF, we have
\(\angle A=\angle D, \angle B=\angle E=90^{\circ}\) and \(B C=E F\)
So, by AAS congruence criterion, we have
\(\Delta \mathrm{ABC} \cong \triangle \mathrm{DEF}\)

2. Let \(A B C\) be a triangle such that the bisector \(A D\) of \(\angle C A E\) is parallel to the base \(B C\) as shown in Fig. We have,
\(\angle 1=\angle 3 \quad\) [Corresponding angles]
and, \(\angle 2=\angle 4 \quad\) [Alternate angles]
\(\Rightarrow \quad \angle 3=\angle 4 \quad[\because \angle 1=\angle 2]\)
\(\Rightarrow \quad A B=A C\)
Hence, \(\triangle A B C\) is isosceles.
3. Let \(A B C\) be an isosceles triangle such that \(A B=A C\). Then,

\(A B=A C=>\angle C=\angle B=x\) (say) we have,
\[
\begin{array}{lll} 
& \angle A=2(\angle B+\angle C) & \text { [Given] } \\
\Rightarrow & \angle A=2(\angle B+\angle B) & {[\because \angle B=\angle C]} \\
= & \angle A=4 x &
\end{array}
\]
4. \(\quad \ln \triangle P Q R\), we have

\(P Q=P R \quad \Rightarrow \quad \angle R=\angle Q\)
Now, ST || QR
\(\Rightarrow \quad \angle P S T=\angle P Q R\) and \(\angle P T S=\angle P R Q \quad[\because\) Corresponding angles are equal \(]\)
\(=>\quad \angle P S T=\angle Q\) and \(\angle P T S=\angle R\)
\(\Rightarrow \quad \angle \mathrm{PST}=\angle \mathrm{PTS}\)
\(\Rightarrow \quad \mathrm{PT}=\mathrm{PS}\)
5. \(\ln \triangle \mathrm{ABC}\), we have
\[
\begin{array}{ll} 
& A B=A C \\
\Rightarrow & \angle C=\angle B \\
\Rightarrow & 1 / 2 \angle C=1 / 2 \angle B \\
\Rightarrow & \angle O C B=\angle O B C \tag{i}
\end{array}
\]

In \(\triangle\) OBC, we have
\(\angle M O C=\angle O B C+\angle O C B\)

```

=> }\angleMOC=\angleOBC + \angleOBC
=> }\angleMOC=2\angleOBC=\angleAB

```
6. We have,
\begin{tabular}{lll} 
& \(\angle 1=\angle 2\) \\
& & \(\angle 1=\angle 3\) \\
\(\therefore\) & \(\angle 2=\angle 3\) \\
\(\Rightarrow\) & \(P Q=B Q\) \\
& & \(\triangle P B Q\) is isosceles.
\end{tabular}
\([\because B P\) is the bisector of \(\angle A B C\) ] \([\because P Q \| B A]\)
[Using (i)]

Let \(A B C\) be an equilateral triangle. Then,
\(A B=A C \quad \Rightarrow \quad \angle C=\angle B\) and,\(B C=A C \quad \Rightarrow \quad \angle A=\angle \therefore\)
\(\angle A=\angle B=\angle C\) But, \(\angle A+\angle B+\angle C=180^{\circ}\)
Hence, \(\angle A=\angle B=\angle C=60^{\circ}\)
8. We have, \(\angle A=\angle B \Rightarrow B C=A C\) and, \(\angle B=\angle C \quad \Rightarrow \quad C A=A B\) \(\therefore \quad A B=B C=C A \quad \Rightarrow \quad \triangle A B C\) is equilateral.
9. \(\ln \triangle A B C\), we have \(\angle B=2 \angle C\) or, \(\angle B=2 y\), where \(\angle C=y\)
\(A D\) is the bisector of \(\angle B A C\). So, let \(\angle B A D=\angle C A D=x\) Let \(B P\) be the bisector of \(\angle A B C\). Join PD.
In \(\triangle \mathrm{BPC}\), we have
\[
\angle C B P=\angle B C P=y \Rightarrow B P=P C
\]

In \(\Delta^{\prime} \mathrm{S} A B P\) and \(D C P\), we have
\[
\angle A B P=\angle D C P=y
\]
\[
A B=D C
\]
[Given]
and, \(\quad B P=P C\) [As proved above]


So, by SAS congruence criterion, we have
\[
\begin{array}{ll} 
& \Delta A B P \cong \triangle D C P \\
\Rightarrow & \angle B A P=\angle C D P \text { and } A P=D P \\
\Rightarrow & \angle C D P=2 x \text { and } \angle A D P=D A P=x \quad[\because \angle A=2 x)
\end{array}
\]
\(\ln \triangle \mathrm{ABD}\), we have
\(\angle A D C=\angle A B D+\angle B A D \quad \Rightarrow \quad x+2 x=2 y+x=>x=y\)
In \(\triangle \mathrm{ABC}\), we have
\[
\angle A+\angle B+\angle C=180^{\circ} \quad \Rightarrow \quad 2 x+2 y+y=180^{\circ}
\]
\[
\Rightarrow \quad 5 x=180^{\circ}
\]
\[
[\because \mathrm{x}=\mathrm{y}]
\]

Hence, \(\angle B A C=2 x=72^{\circ}\)
\[
\Rightarrow \quad x=36^{\circ}
\]

\section*{SIDE-SIDE-SIDE (SSS) CONGRUENCE CRITERION}

■THEOREM 9 Two triangles are congruent if the three sides of one triangle are equal to the corresponding three sides of the other triangle.

(i)

(ii)

GIVEN: Two \(\triangle s A B C\) and \(D E F\) such that \(A B=D E, B C=E F\) and \(A C=D F\).
TO PROVE: \(\triangle \mathrm{ABC} \cong \triangle \mathrm{DEF}\)
CONSTRUCTION: Suppose \(B C\) is the longest side. Draw EG such that \(\angle F E G=\angle A B C\) and \(E G=A B\). Join \(G F\) and \(G D\).
PROOF: In \(\triangle s A B C\) and GEF, we have
\begin{tabular}{|c|c|c|c|c|}
\hline \multicolumn{5}{|l|}{In \(\triangle \mathrm{s} A B C\) and GEF, we have} \\
\hline \(B C=E F\) & [Given] & & & \\
\hline \(A B=G E\) & [By construction] & & & \\
\hline and, \(\angle A B C=\angle F E G\) & [By construction] & & & \\
\hline \multicolumn{5}{|l|}{So, by SAS criterion of congruence, we have} \\
\hline \(\Delta \mathrm{ABC} \cong \triangle \mathrm{GEF}\) & & \(\therefore\) & \(\angle A=\angle D\) & ... (v) \\
\hline \(\Rightarrow \quad \angle A=\angle \mathrm{G}\) and \(\mathrm{AC}=\mathrm{GF}\) & [c.p.c.t.] & Thus, & in \(\triangle \mathrm{s} A B C\) & F, we have \\
\hline Now, \(\quad \mathrm{AB}=\mathrm{DE}\) and \(\mathrm{AB}=\mathrm{GE}\) & & But, & \(\angle \mathrm{G}=\angle \mathrm{A}\) & [Proved above] \\
\hline \(D E=G E\) & ... (i) & & \(A B=D E\) & [Given] \\
\hline \multicolumn{2}{|l|}{Similarly, AC = DF and AC = GF} & & \(\angle A=\angle D\) & [From (v)] \\
\hline => \(\quad \mathrm{DF}=\mathrm{GF}\) & ... (ii) & and, & \(A C=D F\) & [Given] \\
\hline
\end{tabular}
[From (i)]
=> \(\quad \angle E D G=\angle E G D\)
[From (ii)]
In \(\triangle\) FGD, we have
DF = GF
=> \(\quad \angle F D G=\angle F G D\)
From (iii) and (iv), we have
\[
\begin{array}{lcl} 
& \angle E D G+\angle F D G=\angle E G D+\angle F G D \\
& & \\
& \angle D=\angle G
\end{array}
\]

\section*{Sllustrative Examples.}
Q. 1. In Fig. it is given that \(A B=C D\) and \(A D=B C\). Prove that \(\triangle A D C \cong \triangle C B A\)

Sol. In \(\triangle s\) ADC and CBA, we have
\begin{tabular}{rlrl} 
& \(A B\) & \(=C D\) & \\
\(A D\) & \(=B C\) & & {\([\) Given \(]\)} \\
and, & \(A C\) & \(=A C\) & \\
[Given \(]\)
\end{tabular}

So, by SSS criterion of congruence, we have
\(\Delta \mathrm{ADC} \cong \triangle \mathrm{CBA}\)
Q. 2. \(A B C D\) is a parallelogram, if the two diagonals are equal, find the measure of \(\angle A B C\).

Sol. Since ABCD is a parallelogram. Therefore,
\(A B=C D\) and \(A D=B C \quad[\because\) Opposite sides of a parallelogram are equal]
Thus, in \(\triangle s\) ABD and ACB, we have
\begin{tabular}{rll}
\(A D\) & \(=B C\) & [As proved above] \\
\(B D\) & \(=A C\) & [Given] \\
and, & \(A B=A B\) & [Common]
\end{tabular}

So, by SSS criterion of congruence, we have
\begin{tabular}{lll} 
& \(A D=B C\) & {\([\) As proved above] } \\
\(B D=A C\) & {\([\) Given \(]\)} \\
and, & \(A B=A B\) & {\([\) Common }
\end{tabular}

So, by SSS criterion of congruence, we have
\[
\begin{equation*}
\Delta \mathrm{ABD} \cong \triangle \mathrm{ACB} \tag{i}
\end{equation*}
\]
\(\Rightarrow \quad \angle B A D=\angle A B C\)
[c. p. c.t.]
Now, \(A D \| B C\) and transversal \(A B\) intersects them at \(A\) and \(B\) respectively.
```

\therefore }\quad\angleBAD+\angleABC=18\mp@subsup{0}{}{\circ
=> }\angleABC+\angleABC=18\mp@subsup{0}{}{\circ
=> 2\angleABC = 180
=> }\quad\angleABC=9\mp@subsup{0}{}{\circ},\quadHence, the measure of \angleABC is 90'.

```
Q. 3. If two isosceles triangles have a common base, prove that the line joining their vertices bisects them at right angles.

GIVEN: Two isosceles triangles \(A B C\) and \(D B C\) having the common base \(B C\) such that \(A B=A C\) and \(D B=D C\).
TO PROVE: AD (or AD produced) bisects \(B C\) at right angle.
PROOF: In \(\triangle s\) ABD and ACD, we have
\begin{tabular}{rlrl}
AB & \(=A D\) & & {\([\) Given \(]\)} \\
& \(B D\) & \(=C D\) & \\
and, & \(A D\) & \(=A D\) & \\
\hline
\end{tabular}

So, by SSS criterion of congruence, we have
\[
\begin{array}{lll} 
& \Delta \mathrm{ABD} \cong \triangle \mathrm{ACD} & \\
\Rightarrow \quad & \angle 1=\angle 2 & \text { [c. p. c. t.] }
\end{array}
\]

Thus, in \(\triangle A B E\) and \(\triangle A C E\), we have
\begin{tabular}{rlrl} 
& \(A B\) & \(=A C\) & \\
& \(\angle 1=\angle 2\) & {\([\) Given \(]\)} \\
and, & \(A E=A E\) & {\([\) From (i)] }
\end{tabular}


So, by SAS criterion of congruence, we have
\(\triangle \mathrm{ABE} \cong \triangle \mathrm{ACE}\)
\(\Rightarrow \quad \mathrm{BE}=\mathrm{CE} \quad[\because\) Corresponding parts of congruent triangles are equal]
and, \(\quad \angle 3=\angle 4\)
But, \(\quad \angle 3+\angle 4=180^{\circ} \quad\left[\because\right.\) Sum of the angles of a linear pair is \(180^{\circ}\) ]
\(\Rightarrow \quad 2 \angle 3=180^{\circ} \quad[\because \angle 3=\angle 4]\)
\(\Rightarrow \quad \angle 3=90^{\circ}\)
\(\therefore \quad \angle 3=\angle 4=90^{\circ} \quad\) Hence, \(A D\) bisects \(B C\) at right angles.
Q. 4. \(\triangle A B C\) and \(\triangle D B C\) are two isosceles triangles on the same base \(B C\) and vertices \(A\) and \(D\) are on the same side of \(B C\). If \(A D\) is extended to intersect \(B C\) at \(P\), show that
(i) \(\triangle A B D \cong \triangle A C D\)
(iii) \(A P\) bisects \(\angle A\) as well as \(\angle D\).
(ii) \(\triangle \mathrm{ABP} \cong \triangle \mathrm{ACP}\)
(iv) \(A P\) is the perpendicular bisector of \(B C\).

Sol. (i) In triangles \(A B D\) and \(A C D\), we have
\begin{tabular}{ll}
\(A B=A C\) & [Given] \\
\(B D=C D\) & [Given]
\end{tabular}
and, \(\quad A D=D A\)
[Common]
So, by SSS criterion of congruence, we have
\(\triangle \mathrm{ABD} \cong \triangle \mathrm{ACD}\)
(ii) In triangles \(A B P\) and \(A C P\), we have
\[
\begin{aligned}
& \mathrm{AB}=\mathrm{AC} \\
& \angle \mathrm{BAP}=\angle \mathrm{CAP} \\
& \mathrm{AP}=\mathrm{AP}
\end{aligned} \quad\left[\begin{array}{l}
\because \triangle \mathrm{ABD} \cong \triangle \mathrm{ACD} \therefore \angle \mathrm{BAD}=\angle \mathrm{CAD} \\
=>\angle \mathrm{BAP}=\angle C A P
\end{array}\right]
\]

So, by SAS congruence criterion, we have
\(\triangle \mathrm{ABP} \cong \triangle \mathrm{ACP}\)
(iii) We have proved in (i) that
\(\triangle \mathrm{ABD} \cong \triangle \mathrm{ACD}\)
\(\Rightarrow \quad \angle B A D=\angle C A D\)
\(\Rightarrow \quad \angle B A P=\angle C A P\)
\(=>\quad A P\) is the bisector of \(\angle A\)


In triangles BDP and CDP, we have
\begin{tabular}{ll}
\(B D=C D\) & {\([\) Given \(]\)} \\
\(B P=C P\) & {\([\because \Delta A B P \cong \Delta A C P \therefore R D=r D 1\)}
\end{tabular}
and,
DP = DP
[Common]
So, by SSS congruence criterion, we have
\[
\Delta \mathrm{BDP} \cong \triangle \mathrm{CDP}
\]
\(=\quad \angle B D P=\angle C D P\)
=> \(\quad D P\) is the bisector of \(\angle D\)
Hence, \(A P\) is the bisector of \(\angle A\) as well as \(\angle D\).
(iv) In (iii) We have proved that
\[
\begin{array}{rlll}
\Delta \mathrm{BDP} \cong \triangle C D P & \Rightarrow & B P=C P \text { and } \angle B P D=\angle C P D & \\
& \Rightarrow & B P=C P \text { and } \angle B P D=\angle C P D=90^{\circ} & {[\because \angle B P D \text { and } \angle C P D \text { form a linear pair }]} \\
& \Rightarrow & D P \text { is the perpendicular bisector of } B C, & \text { Hence, } A P \text { is the perpendicular bisector of } B C .
\end{array}
\]
Q. 5. A point \(O\) is taken inside an equilateral four sides figure \(A B C D\) such that its distance from the angular points \(D\) and \(B\) are equal. Show that \(A O\) and \(O C\) are in one and the same straight line.
GIVEN: A point \(O\) inside an equilateral quadrilateral four sided figure \(A B C D\) such that \(B O=O D\).
TO PROVE: AO and OC are in one and the same straight line.
PROOF: In \(\triangle s\) AOD and AOB, we have
\[
\begin{aligned}
& A D=A B \\
& A O=A O \\
\text { and, } \quad & O D=O B
\end{aligned}
\]
[Given]
[Common side]

So, by SSS criterion of congruence, we have
\[
\begin{equation*}
\triangle \mathrm{AOD} \cong \triangle \mathrm{AOB} \tag{i}
\end{equation*}
\]
=> \(\quad \angle 1=\angle 2\)
[c. p. c. t.]
[Given]


Similarly, \(\triangle \mathrm{DOC} \cong \triangle B O C\)
But, \(\quad \angle 1+\angle 2+\angle 3+\angle 4=4\) right angles
[Sum of the angles at a point is 4 right angles]
\(=>\quad 2 \angle 2+2 \angle 3=4\) right angles
[Using (i) and (ii)]
\(=>\quad \angle 2+\angle 3=2\) right angles
\(\Rightarrow \quad \angle 2+\angle 3=180^{\circ} \quad \Rightarrow \quad \angle 2\) and \(\angle 3\) form a linear pair.
\(\Rightarrow \quad A O\) and \(O C\) are in the same straight line \(\quad>\quad A C\) is a straight line.
Q. 6. In Fig. two sides \(A B\) and \(B C\) and the median \(A D\) of \(\triangle A B C\) are equal respectively to the two sides \(P Q\) and \(Q R\) and the median \(P M\) of the other triangle PQR. Prove that \(\quad\) (i) \(\triangle A B D \cong \triangle P Q M\)
(ii) \(\Delta \mathrm{ABC} \cong \Delta \mathrm{PQR}\)

GIVEN: Two \(\triangle s A B C\) and \(P Q R\) in which \(A B=P Q, B C=Q R\) and \(A D=P M\).
TO PROVE: \(\triangle \mathrm{ABC} \cong \triangle \mathrm{PQR}\)
PROOF: Since \(A D\) and \(P M\) are medians of triangles \(A B C\) and PQR respectively. Therefore \(D\) and \(M\) are Mid-points of \(B C\) and \(Q R\) respectively.
Now,
\[
\begin{array}{ll} 
& B C=Q R \\
\Rightarrow & 1 / 2 B C=1 / 2 Q R \\
\Rightarrow & B D=Q M \tag{i}
\end{array}
\]
[Given]

Now, in \(\triangle s\) ABD and PQM, we have
\[
\begin{array}{lll} 
& \mathrm{AB}=\mathrm{PQ} & {[\text { Given }]} \\
& \mathrm{BD}=\mathrm{QM} & {[\text { From (i)] }} \\
\text { and, } & \mathrm{AD}=\mathrm{PM} & {[\text { Given }]}
\end{array}
\]


So, by SSS criterion of congruence, we have \(\triangle A B D \cong \triangle P Q M\)
\(=>\quad \angle B=\angle Q\)
[c. p. c. t.]
Now, In \(\triangle A B C\) and \(\triangle P Q R\), we have
\[
\begin{array}{ll}
\mathrm{AB}=\mathrm{PQ} & {[\text { Given }]} \\
\angle \mathrm{B}=\angle \mathrm{Q} & {[\text { From (ii)] }}
\end{array}
\]
and, \(\quad B C=Q R\)
[Given] So, by SAS criterion of congruence, we have \(\triangle A B C \cong \triangle P Q R\)
Q. 7. In Fig. \(A D=B C\) and \(B D=C A\). Prove that \(\angle A D B=\angle B C A\) and \(\angle D A B=\angle C B A\).

Sol. In triangles \(A B D\) and \(A B C\), we have
\[
\begin{aligned}
& A D=B C \\
& B D=C A
\end{aligned}
\]
and, \(\quad A B=A B\)
[Given]
[Given]
So, by SSS congruence criterion, we have
\[
\Delta \mathrm{ABD} \cong \triangle \mathrm{CBA}
\]
\(\Rightarrow \quad \angle D A B=\angle A B C\)
[c. p. c. t.]
\(=>\quad \angle D A B=\angle C B A\)
Q. 8. In Fig. \(A B=A C, D\) is the point in the interior of \(\triangle A B C\) such that \(\angle D B C=\angle D C B\). Prove that \(A D\) bisects \(\angle B A C\) of \(\triangle A B C\).

Sol. \(\quad \ln \triangle B D C\), we have
\[
\begin{array}{ll} 
& \angle D B C=\angle D C B \\
\Rightarrow \quad & D C=D B \tag{i}
\end{array}
\]
[Given]
[ \(\because\) Sides opposite to equal angles of \(\triangle\) DBC are equal]
Now, in \(\triangle \mathrm{ABD}\) and \(\triangle \mathrm{ACD}\), we have
\[
A B=A C
\]
[Given]
\(B D=C D\)
[From (i)]
and, \(\quad A D=A D\)
[Common side]
So, by SSS congruence criterion, we have
\[
\begin{array}{ll} 
& \Delta \mathrm{ABD} \cong \triangle \mathrm{ACD} \\
=\quad & \angle \mathrm{BAD}=\angle \mathrm{CAD}
\end{array}
\]
[c. p. c. t.]


Hence, \(A D\) is bisector of \(\angle B A C\).

\section*{Excercise 1.4}
Q. 1. In Fig., it is given that \(A B=C D\) and \(A D=B C\). Prove that \(\triangle A D C \cong \triangle C B A\).

Q. 2. In \(A \triangle P Q R\), if \(P Q=Q R\) and \(L, M\) and \(N\) are the mid-points of the sides \(P Q, Q R\) and \(R P\) respectively. Prove that \(L N=M N\).

\section*{HINTS TO SELECTED PROBLEMS}
1. In \(\Delta^{\prime} s\) ADC and CBA, we have
\begin{tabular}{|c|c|c|}
\hline & \(A B=C D\) & [Given] \\
\hline & \(A D=B C\) & [Given] \\
\hline and, & \(A C=A C\) & [Common] \\
\hline
\end{tabular}

So, by SSS congruence criterion, we have
\(\triangle \mathrm{ADC} \cong \Delta \triangle \mathrm{ACBA}\)
2. Using mid-point theorem, we have \(M N \| P Q\) and \(M N\)

Similarly, we have
LM = PN

In triangles NML and LPN, we have
\[
\mathrm{MN}=\mathrm{PL}
\]

LM \(=\mathrm{ON}\)
and, \(\quad \mathrm{LN}=\mathrm{NL}\)
So, by SSS congruence criterion, we have
\(\Delta \mathrm{NML} \cong \Delta \mathrm{LPN}\)
\(\Rightarrow \quad \angle \mathrm{MNL}=\angle \mathrm{PLN}\) and \(\angle \mathrm{MLN}=\angle \mathrm{LNP}\)
\(\Rightarrow \quad \angle \mathrm{MNL}=\angle \mathrm{LNP}=\angle \mathrm{PLM}=\angle \mathrm{MLN}\)
\(=>\quad \angle P N M=\angle P L M\)


\section*{RIGHT ANGLE-HYPOTENUSE-SIDE (RHS) CONGRUENCE CRITERION}
*THEOREM Two right triangles are congruence if the hypotenuse and one side of one triangle are respectively equal to the hypotenuse and one side of the other triangle.

(i)


GIVEN: Two right triangles \(A B C\) and \(D E F\) in which \(\angle B=\angle E=90^{\circ}, A C=D F, B C=E F\)

CONSTRUCTION: produce DE to \(G\) so that \(E G=A B\). Join GF.
PROOF: In \(\triangle s\) ABC and FEF, we have
\[
\mathrm{AB}=\mathrm{GE} \quad[\mathrm{By} \text { construction }]
\]
\[
\angle B=\angle F E G=90^{\circ}
\]
and, \(\quad \mathrm{BC}=\mathrm{EF}\)
[Given]
So, by SAS criterion of congruence, we have \(\Delta \mathrm{ABC} \cong \Delta\) GEF
\begin{tabular}{lll}
\(\Rightarrow\) & \(\angle A=\angle G\) & \\
& \(A C=G F\) & [c. (i) \\
Now, c. t.] \\
and, & \(A C=D F\) & \(A C=D F\) \\
\(\therefore\) & \(D F=G F\) & [From (ii)] \\
ariven]
\end{tabular}
\(\therefore \quad \mathrm{DF}=\mathrm{GF}\)
\(\Rightarrow \quad \angle D=\angle G \quad\) [Angles opposite to equal sides in \(\triangle D G F\) are equal]
From (i) and (iii), we get \(\angle A=\angle D\)
Thus, in \(\triangle s A B C\) and DEF, we have
\begin{tabular}{lll} 
& \(\angle A=\angle D\) & {\([\) From (iv)] } \\
& \(\angle B=\angle E\) & \\
\(=\) & \(\angle A+\angle B=\angle D+\angle E\) & \\
\(\Rightarrow\) & \(180^{\circ}-\angle C=180^{\circ}-F\) & {\(\left[\because \angle A+\angle B+\angle C=180^{\circ}\right.\) and \(\left.\angle D+\angle E+\angle F=180^{\circ}\right]\)} \\
\(\Rightarrow\) & \(\angle C=\angle F\) & \(\ldots\) (v)
\end{tabular}

Now, in \(\triangle \mathrm{s} A B C\) and \(D E F\), we have
\(B C=E F\)
[Given]
\(\angle C=\angle F \quad[\) From (v)]
and, \(\quad A C=D F\)
So, by SAS criterion of congruence, we have
\(\triangle \mathrm{ABC} \cong \triangle \mathrm{DEF}\)

\section*{Illustrative Examples}
Q. 1. \(A D, B E\) and \(C F\), the altitudes of \(\triangle A B C\) are equal. Prove that \(\triangle A B C\) is an equilateral triangle.

Sol. In right triangles BCE and BFC, we have,


Hyp, \(B C=\) Hyp. \(B C\)
\(\mathrm{BE}=\mathrm{CF}\)
So, by RHS criterion of congruence, we have
\[
\Delta \mathrm{BCE} \cong \triangle \mathrm{BFC}
\]
\(\Rightarrow \quad \angle B=\angle C \quad[\because\) Corresponding parts of congruent triangles are equal \(]\)
\(\Rightarrow \quad A C=A B \quad[\because\) Sides opposite to equal angles are equal \(]\)
Similarly, \(\triangle \mathrm{ABD} \cong \triangle \mathrm{ABE}\)
\[
\begin{array}{lll}
\Rightarrow & \angle B=\angle A & \text { [Corresponding parts of congruent triangles are equal] } \\
= & A C=B C & {[\because \text { Sides opposite to equal angles are equal] }}
\end{array}
\]

From (i) and (ii), we get
\(A B=B C=A C \quad\) Hence, \(\triangle A B C\) is an equilateral triangle.
Q. 2. In Fig. it is given that \(\mathrm{LM}=\mathrm{MN}, \mathrm{QM}=\mathrm{MR}, \mathrm{ML} \perp \mathrm{PQ}\) and \(\mathrm{MN} \perp \mathrm{PR}\). Prove that \(\mathrm{PQ}=\mathrm{PR}\).

Sol. In right triangles QLM and MNR, we have
\begin{tabular}{ll} 
Hyp. \(Q M=\) Hyp. \(M R\) & [Given] \\
\(L M=M N\) & [Given]
\end{tabular}

So, by RHS criterion of congruence, we have
\[
\Delta \mathrm{QLM} \cong \Delta \mathrm{RNM}
\]
\(\Rightarrow \quad \angle Q=\angle R\)
[c. p. c.t]
\(\Rightarrow \quad P R=P Q\)
[ \(\because\) Sides opposite to equal angles are equal]

Q. 3. If \(\triangle A B C\) is an isosceles triangle such that \(A B=A C\) and \(A D\) is an altitude from \(A\) on \(B C\). Prove that (i) \(\angle B=\angle C\) (ii) \(A D\) bisects \(B C\) (iii) AD bisects \(\angle A\).

Sol. In right triangles ADB and ADC, we have

Hyp. \(A B=\) Hyp. \(A C\)
\(A D=A D\)
[Given]
[Common side]

So, by RHS criterion of congruence, we have
\[
\triangle \mathrm{ABD} \cong \triangle \mathrm{ACD}
\]
\[
\begin{array}{lll}
\Rightarrow & \angle B=\angle C, B D=D C \text { and } \angle B A D=\angle C A D & \text { [c. p. c. t.] } \\
\Rightarrow & \angle B=\angle C, A D \text { bisects } B C \text { and } \angle A
\end{array}
\]

Q. 4. \(\quad P\) is a point equidistant from two lines \(I\) and \(m\) intersecting at a point \(A\) (see fig.). Show that \(A P\) bisects the angle between them.
Sol. Let \(P B\) and \(P C\) be perpendiculars form \(P\) on lines \(I\) and \(m\) respectively. Since \(P\) is equidistant from lines \(I\) and \(m\). Therefore,

\[
\begin{aligned}
& \mathrm{PB}=\mathrm{PC} \\
& \angle \mathrm{PBA}=\angle \mathrm{PCA}
\end{aligned}
\]
[Given]
[Each equal to \(90^{\circ}\) ]
and, \(\quad \mathrm{PA}=\mathrm{PA}\)
[Common]
So, by RHS congruence criterion, we have
\(\triangle \mathrm{PAB} \cong \triangle \mathrm{PAC}\)
\(\Rightarrow \quad \angle P A B=\angle P A C\)

\section*{Excercise 1.4}
Q. 1. \(\quad A B C\) is a triangle and \(D\) is the mid-point of \(B C\). The perpendiculars from \(D\) to \(A B\) and \(A C\) are equal. Prove that the triangle is isosceles.
Q. 2. \(A B C\) is a triangle in which \(B E\) and \(C F\) are, respectively, the perpendiculars to the sides \(A C\) and \(A B\). If \(B E=C F\), prove that \(\triangle A B C\) is isosceles.
Q. 3. If the perpendiculars from any point within an angle on its arms are congruent, prove that it lies on the bisector of that angle.
Q. 4. In Fig., \(A D \perp C D\) and \(C B \perp C D\). If \(A Q s=B P\) and \(D P=C Q\), prove that \(\angle D A Q=\angle C B P\).

Q. 5. \(A B C D\) is a square, \(X\) and \(Y\) are points on sides \(A D\) and \(B C\) respectively such that \(A Y=B X\). Prove that \(B Y=A X\) and \(\angle B A Y=\angle A B X\).
Q. 6. Which of the following statements are true \((T)\) and which are false \((F)\) :
(i) Sides opposite to equal angles of a triangle may be unequal.
(ii) Angles opposite to equal sides of a triangle are equal.
(iii) The measure of each angle of an equilateral triangle is \(60^{\circ}\).
(iv) If the altitude from one vertex of a triangle bisects the opposite side, then the triangle may be isosceles.
(v) The bisectors of two equal angles of a triangle are equal.
(vi) If the bisector of the vertical angle of a triangle bisects the base, then the triangle may be isosceles.
(vii) The two altitudes corresponding to two equal sides of a triangle need not be equal.
(viii) If any two sides of a right triangle are respectively equal to two sides of other right triangle, then the two triangles are congruent.
(ix) Two right triangles are congruent if hypotenuse and a side of one triangle are respectively equal to the hypotenuse and a side of the other triangle.
Q. 7. Fill in the blanks in the following so that each of the following statements is true.
(i) Sides opposite to equal angles of a triangle are
(ii) Angle opposite to equal sides of a triangle are
\(\qquad\)
\(\qquad\)
(iii) In an equilateral triangle all angles are \(\qquad\)
(iv) In a \(\triangle A B C\) if \(\angle A=\angle C\), then \(A B=\) \(\qquad\)
(v) If altitudes \(C E\) and \(B F\) of a triangle \(A B C\) are equal, then \(A B=\) \(\qquad\)
(vi) In an isosceles triangle \(A B C\) with \(A B=A C\). If \(B D\) and \(C E\) are its altitudes, then \(B D\) is \(\qquad\) CE.
(vii) In right triangles \(A B C\) and \(D E F\), if hypotenuse \(A B=E F\) and side \(A C=D E\), then \(\triangle A B C \cong \Delta\). \(\qquad\)

\section*{Creswers.}
6.
(i) F
(ii) T
(iii) T
(iv) F
(v) T
(vi) F
(vii) F
(viii) F
(ix) T
7.
(i) equal
(ii) equal
(vi) equal to
(vii) EFD
(iii) equal (iv) \(B C\)
(v) \(A C\)

\section*{HINTS TO SELECTED PROBLEMS}
1.

Let \(D E\) and \(D F\) be perpendiculars from \(D\) on \(A B\) and \(A C\) respectively. In order to prove that \(A B=A C\), we will prove that \(\triangle B D E \cong \triangle C D F\). In these two triangles, we have
\[
\begin{array}{ll}
\angle B E F=\angle C F D=90^{\circ} \\
B D=C D & {[\because D \text { is the mid-point of } B C]} \\
D E=D F & {[\text { Given }]}
\end{array}
\]

So, by RHS congruence criterion, we have
\[
\Delta \mathrm{BDE} \cong \Delta \mathrm{CDF}
\]
\(\Rightarrow \quad \angle B=\angle C\)
\(\Rightarrow \quad A C=A B\)
=> \(\quad \triangle \mathrm{ABC}\) is isosceles.
2. In order to prove that the triangle \(A B C\) is isosceles, we will prove that \(\angle B=\angle C\). To prove this, we will prove that \(\triangle B F C \cong \triangle C E B\). In these two triangles, we have
\[
\begin{array}{ll}
\mathrm{BE}=\mathrm{CF} & \text { [Given] } \\
\mathrm{BC}=\mathrm{BC} & \text { [Common] }
\end{array}
\]

So, by RHS congruence criterion, we have
\[
\begin{array}{ll} 
& \Delta \mathrm{BFC} \cong \triangle \mathrm{CEB} \\
\Rightarrow & \angle \mathrm{FBC}=\angle \mathrm{ECB} \\
\Rightarrow & \angle \mathrm{ABC}=\angle \mathrm{ACB}
\end{array}
\]
\[
\Rightarrow \quad A B=A C \quad[\because \text { Sides opposite to equal angles are equal }]
\]

3. Let \(P\) be a point within \(\angle A B C\) such that \(P M=P N\). We have to prove that \(P\) lies on the bisector of \(\angle A B C\) i.e., \(\angle 1=\angle 2\)

In \(\Delta^{\prime} s P M B\) and \(P N B\), we have
\[
\begin{array}{ll}
\mathrm{PM}=\mathrm{PN} & \text { [Given] } \\
\mathrm{BP}=\mathrm{BP} & \text { [Common] }
\end{array}
\]

So, by RHS congruence criterion, we have
\[
\begin{array}{ll} 
& \Delta \mathrm{PMB} \cong \triangle \mathrm{PBN} \\
=> & \angle 1=\angle 2 \quad[\because \angle B=\angle C] \\
=> & \mathrm{P} \text { lies on the bisector of } \angle \mathrm{ABC}
\end{array}
\]
4. In \(\Delta^{\prime} s\) ADQ and \(B C P\), we have

\[
\begin{array}{lc}
\mathrm{DQ}=\mathrm{PC} & {[\because \mathrm{DP}=\mathrm{QC}(\text { Given }) \therefore \mathrm{DP}+\mathrm{PQ}=\mathrm{PQ}+\mathrm{QC}=>\mathrm{DQ}=\mathrm{PC}]} \\
\mathrm{AQ}=\mathrm{BP} & {[\text { Given }]}
\end{array}
\]
and, \(\quad A Q=B P\)
So, by RHS congruence criterion, we have
\(\triangle \mathrm{ADQ} \cong \triangle \mathrm{BCP}\)
\(\Rightarrow \quad \angle A=\angle B\) i.e., \(\angle D A Q=\angle C B P\)
5. In right triangles \(B A Y\) and \(A B X\), we have
\[
\begin{array}{lll} 
& A Y=B X & {[\text { Given }]} \\
\text { and, } & B A=A B & {[\text { Common }]}
\end{array}
\]

So, by RHS congruence criterion we have
\(\triangle B A Y \cong \triangle A B X\)
\(\Rightarrow \quad B Y=A X\) and \(\angle B A Y=\angle A B X\)


\section*{SOME INEQUALITY RELATIONS IN A TRIANGLE}
-THEOREM 1 If two sides of a triangle are unequal, the longer side has greater angle opposite to it.
GIVEN: \(\quad A \triangle A B C\) in which \(A C>A B\).
TO PROVE: \(\quad \angle A B C>\angle A C B\)
CONSTRUCTION: Mark a point \(D\) on \(A C\) such that \(A B=A D\). Join \(B D\).
PROOF: In \(\triangle A B D\), we have
\(A B=A D \quad[B y\) construction]
\(\Rightarrow \quad \angle 1=\angle 2 \quad[\because\) Angle opp. to equal sides are equal]
Now, consider \(\triangle B C D\). We find \(\angle 2\), is the exterior angle of \(\Delta s B C D\) and an exterior angle is always greater than interior opposite angle. Therefore,
\[
\begin{array}{rlrl} 
& \angle 2 & >\angle D C B & \\
\Rightarrow \quad \angle 2>\angle A C B & & \angle \angle A C B=\angle D C B] \tag{ii}
\end{array}
\]

From (i) and (ii), we have
\[
\begin{array}{ll} 
& \angle 1=\angle 2 \text { and } \angle 2>A C B \\
=> & \angle 1>\angle A C B \\
\text { But, } & \angle 1 \text { is a part of } \angle A B C . \\
\therefore & \angle A B C>\angle 1 \tag{iv}
\end{array}
\]


From (iii) and (iv), we get
\(\angle A B C>\angle A C B\)
-THEOREM 2 (Converse of Theorem 1) In a triangle the greater angle has the longer side opposite to it.
GIVEN: \(\quad A \triangle A B C\) in which \(\angle A B C>\angle A C B\).
TO PROVE: \(\quad A C>A B\).
PROOF: In \(\triangle A B C\), we have the following three possibilities.
(i) \(A C=A B\)
(ii) \(A C<A B\)
(iii) \(A C>A B\).

Out of these three possibilities exactly one must be true.
\(\square\) CASE I \(\quad W h e n ~ A C=A B\)
\[
A C=A B
\]
=> \(\quad \angle A B C=\angle A C B\)
[Angles opp. to equal sides are equal]


This is contradiction, Since, \(\angle A B C>\angle A C B\) \(\therefore \quad \mathrm{AC} \neq \mathrm{AB}\)
CASE II When \(A C<A B\)
\(\mathrm{AC}<\mathrm{AB}\)
\(\Rightarrow \quad \angle A C B>A B C\)
[ \(\because\) Longer side has the greater angle opposite to it]
This also contradicts the given hypothesis.
Thus, we are left with the only possibility, \(A C>A B\), which must be true
Hence,
\(A C>A B\)
-THEOREM 3 The sum of any two sides of a triangle is greater than the third side.
GIVEN: A \(\triangle \mathrm{ABC}\)
TO PROVE: \(\quad A B+A C>B C, A B+B C>A C\) and \(B C+A C>A B\)
CONSTRUCTION: Produce side BA to \(D\) such that \(A D=A C\). Join CD.
PROOF: \(\quad \ln \triangle A C D\), we have
\(A C=A D\)
\(\Rightarrow \quad \angle A D C=\angle A C D\)
\(\Rightarrow \quad \angle A C D=\angle A D C\)
\(\Rightarrow \quad \angle B C A+\angle A C D>\angle A D C\)
\([\because \angle B C A+\angle A C D>\angle A C D]\)
\(\Rightarrow \quad \angle B C D>\angle A D C\)
\(\Rightarrow \quad \angle B C D>\angle B D C\)
\([\because \angle A D C=\angle B D C]\)
\(\Rightarrow \quad B D>B C\)
\(\Rightarrow \quad B A+A D>B C\)
[ \(\because\) Side opp. to greater angle is larger]
\([\because A C=A D(B y\) Construction) \(]\)
\(\Rightarrow \quad B A+A C>B C\)
\(\Rightarrow \quad A B+A C>B C\)
\(\Rightarrow \quad\) Thus, \(A B+A C>B C\)
Similarly, \(A B+B C>A C\) and \(B C+A C>A B\)
*THEOREM 4 Of all the line segments that can be drawn to a given line, from a point, not lying on it, the perpendicular line segment is the shortest.
GIVEN: A straight line \(l\) and a point P not lying on \(l\). \(\mathrm{PM} \perp l\) and N is any point on 1 other than M .
 CIRCLEE

TO PROVE: PM < PN
PROOF: In \(\triangle\) PMN, we have
\[
\left.\begin{array}{lc}
\Rightarrow & \angle M=90^{\circ} \\
\Rightarrow & \angle N<90^{\circ} \\
\Rightarrow & \angle N<\angle M \\
=> & P M<O N \\
\text { Thus, } P M<P N & \angle P+\angle N=90^{\circ}=>\angle N<90^{\circ}
\end{array}\right)
\]


DISTANCE BETWEEN A LINE AND A POINT: The distance between a line and a point, not on it, is the length of the perpendicular line segment from the point to the line.

\section*{Illustrative Examples}
Q. 1. In a \(\triangle A B C\), if \(\angle A=45^{\circ}\) and \(\angle B=70^{\circ}\). Determine the shortest and largest sides of the triangle.

Sol. We have, \(\angle A=45^{\circ}\) and \(\angle B=70^{\circ}\)
\[
\begin{array}{ll}
\therefore & \angle A+\angle B+\angle C=180^{\circ} \\
= & 45^{\circ}+70^{\circ}+\angle C=180^{\circ} \quad \Rightarrow \quad \angle C=180^{\circ}-115^{\circ} \quad \Rightarrow \quad \angle C=65^{\circ}
\end{array}
\]

Since the side opposite to the greatest angle is largest. Therefore, side AC is largest. The side opposite to the least angle is the smallest. So, side opposite to \(\angle A\) i.e., side \(B C\) is the smallest.
Q. 2. In a \(\triangle A B C\), if \(\angle A=50^{\circ}\) and \(\angle B=60^{\circ}\), determine the shortest and largest sides of the triangle.

Sol. We have,
\[
\begin{array}{ll} 
& \angle A=50^{\circ} \text { and } \angle B=60^{\circ} \\
\therefore & \angle A+\angle B+\angle C=180^{\circ} \\
\Rightarrow \quad & 50^{\circ}+60^{\circ}+\angle C=180^{\circ} \quad \Rightarrow \quad \angle C=70^{\circ}
\end{array}
\]

Since \(\angle A\) and \(\angle C\) are the smallest and largest angles respectively. Therefore, sides \(B C\) and \(A B\) are the smallest and largest sides respectively of the triangle.
Q. 3. In Fig. \(P Q>P R\). \(Q S\) and \(R S\) are the bisector of \(\angle Q\) and \(\angle R\) respectively. Prove that \(S Q>S R\).

Sol. In \(\triangle P Q R\), we have
\begin{tabular}{lll} 
& \(\mathrm{PQ}>\mathrm{PR}\) & [Given] \\
\(=>\) & \(\angle P R Q>P Q R\) & [Angle opp. to larger side of a triangle is greater] \\
\(=>\) & \(1 / 2 \angle P R Q>1 / 2 \angle P Q R\) & \\
\(=>\) & \(\angle S R Q>\angle S Q R\) & [RS and QS are bisectors of \(\angle P R Q\) and \(\angle P Q R\) respectively] \\
\(=>\) & \(S Q>S R\) & [ \(\because\) Side opp. to greater angle is larger]
\end{tabular}

Q. 4. In Fig. sides \(L M\) and \(L N\) of \(\Delta L M N\) are extended to \(P\) and \(Q\) respectively. If \(x>y\), show that \(L M>L N\).

Sol. We have,
\begin{tabular}{llll} 
& \(\angle \mathrm{LMN}+\mathrm{x}=180^{\circ}\) & [Angles of a linear pair] & \(\ldots\) (i) \\
\(=>\) & \(\angle \mathrm{LMN}+\mathrm{y}=180^{\circ}\) & [Angles of a linear pair] & \(\ldots\) (ii) \\
\(\therefore\) & \(\angle \mathrm{LMN}+\mathrm{x}=\angle \mathrm{LNM}+\mathrm{y}\) & \\
But, & \(\mathrm{x}>\mathrm{y}\) & \\
\(\therefore\) & \(\angle \mathrm{LMN}<\angle \mathrm{LNM}\) & \\
\(\Rightarrow\) & \(\angle \mathrm{LNM}>\angle \mathrm{LMN}\) & \\
\(=>\) & \(\mathrm{LM}>\mathrm{LN}\) & {\([\because\) Side opp. to greater angle is larger] }
\end{tabular}

Q. 5. In Fig. \(P Q=P R\). Show that \(P S>P Q\)

Sol. In \(\triangle P Q R\), we have
\(P Q=P R\)
[Given]
\(=>\quad \angle P R Q=\angle P Q R\)
[Angles opp. to equal sides are equal]

In \(\triangle\) PSQ, SQ is produced to \(R\) and exterior angle of triangle is greater than each of interior opposite angle.
\(\therefore \quad\) Ext. \(\angle P Q R>\angle P S Q\)
From (i) and (ii), we have
\[
\begin{array}{lll} 
& \angle \mathrm{PSQ}>\angle \mathrm{PSQ} \\
=> & \angle \mathrm{PRS}>\angle \mathrm{PSR} & {[\because \angle \mathrm{PRQ}=\angle \mathrm{PRS} \text { and } \angle \mathrm{PSQ}=\angle \mathrm{PSR}]}
\end{array}
\]

\[
\text { Thus, in } \Delta \text { PSR, we have }
\]
\[
\angle \mathrm{PRS}>\angle \mathrm{PSR}
\]
[ \(\because\) Side opposite to greater angle is larger] [Given]
\[
\begin{array}{ll}
=> & P S>P R \\
\text { But, } & P R=P Q \\
\therefore & P S>P Q
\end{array}
\]
Q. 6. In Fig. \(A B>A C\). Show that \(A B>A D\)

Sol. \(\quad \ln \triangle A B C\), we have
\(A B>A C\)
[Given]
\(=>\quad \angle A C B>\angle A B C\)

Now, in \(\triangle A C D, C D\) is produced to \(B\), forming and ext.
\(\angle A D B\) and exterior angle of a triangle is greater than each of interior opposite angle
\[
\begin{array}{ll}
\therefore & \angle A D B>\angle A C D \\
\Rightarrow & \\
\angle A D B>\angle A C B
\end{array}
\]
\[
[\because \angle A C D=\angle A C B] \ldots(\mathrm{ii})
\]

From (i) and (ii), we get \(\angle A D B>\angle A B C\)
\(\Rightarrow \quad \angle A D B>\angle A B D\)
\([\because \angle A B C=\angle A B D]\)

\(\Rightarrow \quad A B>A D \quad[\because\) Side opp. to greater angle is larger \(]\)
Q. 7. If \(D\) is any point on the base \(B C\) produced, of an isosceles triangle \(A B C\), prove that \(A D>A B\).

Sol. In \(\triangle A B C\), we have
\[
\begin{array}{ll} 
& A B=A C \\
\Rightarrow \quad & \angle A B C=\angle A C B \tag{i}
\end{array}
\]
\([\because\) Angles opp. to equal sides are equal]


From (i) and (ii), we get
\(\angle A C B>\angle A D B\)
\(=>\quad \angle A C D>\angle A D C\)
\([\because \angle A C B=\angle A C D, \angle A D B=\angle A D C]\)
In \(\triangle A B D\), we have
Ext. \(\angle A B C>\angle A D B\)
\(\binom{\because\) Exterior angle of a \(\Delta\) is greater than }{ each of interior opp. angle }
=> \(\quad \angle A B C>\angle A D B\)
\(\Rightarrow \quad A D>A C \quad[\because\) Side opp. to greater angle is larger \(]\)
\(\Rightarrow \quad A D>A B \quad[\because A B=A C]\)
Q. 8. In Fig. if \(A D\) is the bisector of \(\angle A\), show that:
(i) \(A B>B D\)
(ii) \(A C>C D\)

Sol. \(\quad \ln \triangle A B C, A D\) is the bisector of \(\angle A\)
\[
\begin{equation*}
\therefore \quad \angle 1=\angle 2 \tag{i}
\end{equation*}
\]

Since exterior angle of a triangle is greater than each of interior opposite angle.
Therefore, in \(\triangle\) ADC, we have
Ext. \(\angle \mathrm{ADC}>\angle 2\)
\(=>\quad \angle 3>\angle 2\)
\(=>\quad \angle 3>\angle 1 \quad\) [Using (i)]
Thus, in \(\triangle \mathrm{ABD}\), we have \(\angle 3>\angle 1 \quad \Rightarrow \quad A B>B D\) [Side opp. to greater angle is larger]
Hence, \(A B>B D\), Similarly, we can prove that \(A C>C D\).
Q. 9. Show that in a right triangle the hypotenuse is the longest side.

GIVEN: A right triangle \(A B C\) in which \(\angle A B C=90^{\circ}\)
TO PROVE: Hypotenuse \(A C\) is the longest side, i.e.,
(i) \(A C>A B\)
(ii) AC > BC

PROOF: \(\ln \triangle A B C\), we have
\[
\begin{array}{ll} 
& \angle A B C=90^{\circ} \\
\text { But, } & \angle A B C+\angle B C A+\angle C A B=180^{\circ} \\
\therefore & 90^{\circ}+\angle B C A+\angle C A B=180^{\circ} \\
=> & \angle B C A+\angle C A B=90^{\circ} \\
\Rightarrow & \angle B C A \text { and } \angle C A B \text { are acute angles } \\
\Rightarrow & \angle B C A \angle 90^{\circ} \text { and } \angle C A B<90^{\circ} \quad \Rightarrow
\end{array} A C>A B \text { and } A C>B C=
\]

[ \(\because\) Side opp. to greater angle is larger]
Q. 10. In Fig. \(A C>A B\) and \(A D\) is the bisector of \(\angle A\). Show that \(\angle A D C>\angle A D B\).

Sol. In \(\triangle A B C\), we have
```

=> }\angleABC>\angleAC
=> }\angle\textrm{ABC}+\angle1>\angleACB+\angle
=> }\angleABC+\angle1>\angleACB+\angle
[Angle opp. to larger side is greater]
[Adding }\angle1\mathrm{ on both sides]
... (i) [\becauseAD is the bisector of }\angleA\therefore\angle1=\angle2
Now, in triangles $A B D$ and $A D C$, we have

$$
\angle A B C+\angle 1+\angle A D B=180^{\circ} \text { and } \angle A C B+\angle 2+\angle A D C=180^{\circ}
$$

$$
\Rightarrow \quad \angle A B C+\angle 1=180^{\circ}-\angle A D B \text { and } \angle A C B+\angle 2=180^{\circ}-\angle A D C
$$

$$
\therefore \quad 180^{\circ}-\angle A D B>180^{\circ}-\angle A D C \quad[\text { From (i)] }
$$

$$
\Rightarrow \quad 180^{\circ}-\angle A D B-180^{\circ}-\angle A D C>0
$$

$$
\Rightarrow \quad \angle A D C-\angle A D B>0=>\quad \angle A D C>\angle A D B
$$

```

*Q. 11. Show that the sum of the three altitudes of a triangle is less than the sum of three sides of the triangle.
GIVEN: \(A \triangle A B C\) in which \(A D \perp B C, B E \perp A C\) and \(C F \perp A B\).
TO PROVE: \(A D+B E+C F<A B+B C+A C\)
PROOF: We know that of all the segments that can be drawn to a given line, from a point not lying on it, the perpendicular line segment is the shortest. Therefore, \(\quad A D \perp B C\)
\[
\begin{array}{ll}
\Rightarrow & A B>A D \text { and } A C>A D \\
\Rightarrow & A B+A C>A D+A D \\
= & A B+A C>2 A D \\
& B E \perp A C \\
\Rightarrow & B C>B E \text { and } B A>B E \\
\Rightarrow & B C+B A>B E+B E \\
\Rightarrow & B A+B C>2 B E \\
\text { and, } & C F \perp A B \\
\Rightarrow & A C>C F \text { and } B C>C F \\
&  \tag{iii}\\
= & A C+B C>2 C F
\end{array}
\]


Adding (i), (ii) and (iii), we get
\[
(A B+A C)+(A B+B C)+(A C+B C)>2 A D+2 B E+2 C F
\]
\[
\Rightarrow \quad 2(A B+B C+A C)>2(A D+B E+C F) \quad \Rightarrow \quad A D+B E+C F<A B+B C+A C
\]
*Q. 12. Prove that any two sides of a triangle are together greater than twice the median drawn to the third side.
GIVEN: \(\triangle A B C\) in which \(A D\) is a median
TO PROVE: \(A B+A C>2 A D\)
CONSTRUCTION: Produce AD to E such that AD = DE. Join EC.
PROOF: In \(\triangle s\) ADB and EDC, we have

So, by SAS criterion of congruence, we have
\(\Delta \mathrm{ADB} \cong \triangle \mathrm{EDC}\)
\(\Rightarrow \quad \mathrm{AB}=\mathrm{EC} \quad\) [Corresponding parts of congruent triangle are equal right]
Thus, in \(\triangle A E C\), we have
\(A C+E C>A E \quad[\because\) Sum of any two sides of a \(\Delta\) is greater than the third]
\(\Rightarrow \quad A C+A B>2 A D \quad[\because A D=D E \therefore A E=A D+D E=2 A D\) and \(E C=A B]\)
* \(Q\). 13. Prove that the perimeter of a triangle is greater than the sum of its three medians.

GIVEN: \(A \triangle A B C\) in which \(A D, B E\) and \(C F\) are its medians.
TO PROVE: \(A B+B C+A C>A D+B E+C F\)
PROOF: We know that the sum of any two sides of a triangle is greater than twice the median bisecting the third side. Therefore,
\(A D\) is the median bisecting \(B C\)
\(\Rightarrow \quad A B+A C>2 A D\)
\(B E\) is the median bisecting \(A C\)
=> \(\quad A B+B C>2 B E\)
And, \(C F\) is the median bisecting \(A B\)
\(\Rightarrow \quad B C+A C>2 C F\)
Adding (i), (ii) and (iii), we get
\[
\begin{array}{ll} 
& (A B+A C)+(A B+B C)+(B C+A C)>2 . A D+2 . B E+2 \cdot C F  \tag{iii}\\
\Rightarrow \quad & 2(A B+B C+A C)>2(A D+B E+C F) \Rightarrow \quad A B+B C+A C>A D+B E+C F
\end{array}
\]
* \(Q\). 14. Show that the difference of any two sides of a triangle is less than the third side.

\(A D=D E\)
\(B D=D C\)
[By construction]
[ \(\because \mathrm{D}\) is the mid point of BC ]
and, \(\quad \angle A D B=\angle E D C\)
[Ver. opp. \(\angle \mathrm{s}\) right]

TRIANGLES CBSE-MATHEMATICS

TO PROVE: (i) \(A C-A B<B C \quad\) (ii) \(B C-A C<A B \quad\) (iii) \(B C-A B<A C\)
CONSTRUCTION: Take a point \(D\) on \(A C\) such that \(A D=A B\). Join \(B D\).
PROOF: \(\ln \triangle A B D\), side \(A D\) has been produced to \(C\).
\(\therefore \quad \angle 3>\angle 1\)
In \(\triangle \mathrm{ACD}\), side CD has been produced to A .
[ \(\because\) Exterior angle of a \(\Delta\) is greater than each of interior opp. angle]
\(\therefore \quad \angle 2>\angle 4\)
[ \(\because\) Exterior angle of a \(\Delta\) is greater than each of interior opp. angle]
In \(\triangle \mathrm{ABD}\), we have
\[
\begin{array}{ll} 
& A B=A D \\
\Rightarrow \quad & \angle 2=\angle 1 \tag{iii}
\end{array}
\]

From (i) and (iii), we get \(\angle 3>\angle 2\)
From (ii) and (iv), we get \(\angle 3>\angle 2\) and \(\angle 2>\angle 4\)
\(\Rightarrow \quad \angle 3>\angle 4\)
\(\Rightarrow \quad B C>C D\)
[Side opp. to greater angle is larger]
\(\Rightarrow \quad C D<B C\)
\(\Rightarrow \quad A C-A D<B C\)
\(\Rightarrow \quad A C-A B<B C\)
\[
[\because A D=A B]
\]

Similarly, \(B C-A C<A B\) and \(B C-A B<A C\)
* \(Q\). 15. In Fig. \(P Q R\) is a triangle and \(S\) is any point in its interior, show that \(S Q+S R<P Q+P R\).

GIVEN: \(S\) is any point in the interior of \(\triangle P Q R\).
TO PROVE: \(S Q+S R<P Q+P R\)
CONSTRUCTION: Produce QS to meet PR in \(T\).
PROOF: In \(\triangle\) PQT, we have,
\begin{tabular}{ll} 
& \(\mathrm{PQ}+\mathrm{PT}>\mathrm{QT}\) \\
\(\Rightarrow \quad\) & \(\mathrm{PQ}+\mathrm{PT}>\mathrm{QS}+\mathrm{ST}\)
\end{tabular}
[ \(\because\) Sum of the two sides of a \(\Delta\) is a greater than the third side]
\(\Rightarrow \quad \mathrm{PQ}+\mathrm{PT}>\mathrm{QS}+\mathrm{ST}\)
\([\because Q T=Q S=S T]\)
In \(\Delta\) RST, we have
\(S T+T R>S R\)


Adding (i) and (ii), we get
\[
\begin{array}{lll} 
& \mathrm{PQ}+\mathrm{PT}+\mathrm{ST}+\mathrm{TR}>\mathrm{SQ}+\mathrm{ST}+\mathrm{SR} \\
= & \mathrm{PQ}+(\mathrm{PT}+\mathrm{TR})>\mathrm{SQ}+\mathrm{SR} \\
= & \mathrm{PQ}+\mathrm{PR}>\mathrm{SQ}+\mathrm{SR} \quad \Rightarrow \quad \mathrm{SQ}+\mathrm{SR}<\mathrm{PQ}+\mathrm{PR}
\end{array}
\]
Q. 16. In \(\Delta P Q R, S\) is any point on the side \(Q R\). Show that \(P Q+Q R+R P>2 P S\)

Sol. In \(\triangle P Q S\), we have
\[
\begin{equation*}
P Q+Q S>P S \tag{i}
\end{equation*}
\]
[ \(\because\) Sum of the two sides of a \(\Delta\) is greater than the third side]


Similarly, in \(\triangle\) PRS, we have
\(R P+R S>P S\)
Adding (i) and (ii), we get
\((P Q+Q S)+(R P+R S)>P S+P S\)
\(\Rightarrow \quad P Q+(Q S+R S)+R P>2 P S\)
\(\Rightarrow \quad P Q+Q R+R P>2 P S\)
\([\because Q S+R S=Q R]\)
*Q. 17. In Fig., \(A P \perp l\) and \(P R>P Q\). Show that \(A R>A Q\).
GIVEN: \(\mathrm{AP} \perp l\) and \(\mathrm{PR}>\mathrm{PQ}\)
TO PROVE: AR > AQ
CONSTRUCTION: Mark a point \(S\) on PR such that \(P S=P Q\). Join AS.
PROOF: In \(\triangle s\) APQ and APS, we have
\[
\left.\begin{array}{ll} 
& \mathrm{AP}=\mathrm{AP} \\
\angle \mathrm{APQ}=\angle \mathrm{APS} & {[\text { Common side }]} \\
\text { and, } & \mathrm{PQ}=\mathrm{PS}
\end{array}\right]\left[\text { Each equal to } 90^{\circ}\right]
\]

So, by SAS criterion of congruence
\(\triangle \mathrm{APQ} \cong \triangle \mathrm{APS}\)
=> \(\quad A Q=A S\)
[ \(\because\) Corresponding parts of similar triangles are equal]


Thus, in \(\Delta\) AQS, we have
\[
\begin{array}{ll} 
& A Q=A S \\
\Rightarrow & \angle 1=\angle 3 \tag{i}
\end{array}
\]
[ \(\because\) Angles opposite to equal sides are equal]
In \(\triangle\) ARS, we have
\(\angle 3>\angle 2\)
[ \(\because\) Exterior angle of a \(\Delta\) is greater than each of interior opp. angle]
From (i) and (ii), we get
\[
\angle 1<\angle 2
\]
\[
\Rightarrow \quad A R>A Q \quad[\because \text { Side opp. to greater angle is larger }]
\]

Hence, \(A R>A Q\)
* Q . 18. In Fig. PQRS is a quadrilateral. PQ is its longest side and \(R S\) is its shortest side. Prove that \(\angle R>\angle P\) and \(\angle S>\angle Q\). GIVEN: PQRS is a quadrilateral. PQ is its longest side and RS is its shortest side.
TO PROVE: (i) \(\angle R>\angle P\)
(ii) \(\angle S>\angle Q\)

CONSTRUCTION: Join PR and QS.
PROOF: (i) Since PQ is the longest side of quadrilateral PQRS.
Therefore, in \(\triangle P Q R\), we have
\[
\begin{array}{ll} 
& P Q>Q R \\
\Rightarrow \quad & \angle 5>\angle 2
\end{array}
\]
... (i) [ \(\because\) Angle opp. to longer side is greater
Since RS is the smallest side of quadrilateral PQRS.
Therefore, in \(\triangle\) OSR, we have
\[
\begin{array}{ll} 
& \text { PS }=\text { RS } \\
=> & \angle 6>\angle 1  \tag{ii}\\
\text { Adding } & \text { (i) and (ii), we get } \\
& \angle 5+\angle 6>\angle 2+\angle 1 \\
=> & \angle R>\angle P
\end{array}
\]
[ \(\because\) Angle opp. to longer side is greater]

[ Angle opp. to longer side is greater

\section*{(ii) In \(\triangle\) PQS, we have}
\[
\begin{equation*}
P Q>P S \tag{iii}
\end{equation*}
\]
\([\because P Q\) is the longest side]
\(=>\quad \angle 8>\angle 3\)
In \(\triangle\) SRQ, we have
\[
R Q>R S \quad[\because R S \text { is the shortest side }]
\]

Adding (iii) and (iv), we get
\[
\begin{array}{ll} 
& \angle 8+\angle 7>\angle 3+\angle 4 \\
=> & \angle S>\angle Q \quad \text { Hence, } \angle R>\angle P \text { and } \angle S>\angle Q .
\end{array}
\]
Q. 19. In Fig. PQRS is a quadrilateral in which diagonals \(P R\) and \(Q S\) intersect in \(\mathbf{O}\). Show that
(i) \(P Q+Q R+R S+S P>P R+Q S\)
(ii) \(P Q+Q R+R S+S P<2(P R+Q S)\)

Sol. (i) Since the sum of any two sides of a triangle is greater than the third side. Therefore,

In \(\triangle P Q R\), we have , \(P Q+Q R>P R\)
In \(\triangle\) RSP, we have,\(R S+S P>P R\)
In \(\triangle\) PQS, we have
\[
\begin{equation*}
P Q+S P>Q S \tag{ii}
\end{equation*}
\]

In \(\Delta\) QRS, we have
\[
Q R+R S>Q S
\]

Adding (i), (ii), (iii) and (iv), we get
\[
\begin{array}{ll} 
& 2(P Q+Q R+R S+S P)>2(P R+Q S)  \tag{iv}\\
=> & P Q+Q R+R S+S P>P R+Q S
\end{array}
\]
(ii) In \(\triangle \mathrm{OPQ}\), we have
\[
O P+O Q>P Q
\]


In \(\triangle\) OQR, we have , \(\mathrm{OQ}+\mathrm{OR}>\mathrm{QR}\)
In \(\Delta\) ORS, we have , \(O R+O S>R S\)
In \(\Delta\) OSP, we have , \(\quad \mathrm{OS}+\mathrm{OP}>\mathrm{SP}\)

Adding (v), (vi), (vii) and (viii), we get
\[
\begin{array}{ll} 
& 2(O P+O Q+O R+O S)>P Q+Q R+R S+S P \\
\Rightarrow & 2[(O P+O R)+(O Q+O S)]>P Q+Q R+R S+S P \\
\Rightarrow & 2(P R+Q S)>P Q+Q R+R S+S P \quad[\because O P+O R=P R \text { and } O Q+O S=Q S] \\
\Rightarrow & P Q+Q R+R S+S P<2(P R+Q S)
\end{array}
\]
Q. 20. Of all the line segments drawn from a point \(P\) to a line \(m\) not containing \(P\), let \(P D\) be the shortest. If \(B\) and \(C\) are points on \(m\) such that \(D\) is the mid-point of \(B C\), prove that \(P B=P C\).

E

Sol. It is given that PD is the shortest line segment among all the line segments drawn from \(P\) to a line \(m\) not containing \(P\). Therefore, \(\mathrm{PD} \perp \mathrm{m}\).
\(\Rightarrow \quad \angle P D B=\angle P D C=90^{\circ}\)
It is also given that \(D\) is the mid-point of \(B C\).
\(\therefore \quad B D=D C\)
Now, in \(\triangle\) PBD and \(\triangle P C D\), we have \(B D=D C\)
[From (ii)]
\(\angle \mathrm{PDB}=\angle \mathrm{PDC}=90^{\circ} \quad[\) From (i)]
and, \(\quad P D=P D\)
[Common]


So, by SAS congruence criterion, we have
\[
\Delta \mathrm{PBD} \cong \triangle \mathrm{PCD} \quad \text { Hence, } \quad \mathrm{PB}=\mathrm{PC}
\]
Q. 21. In Fig. \(\angle E>\angle A\) and \(\angle C>\angle D\). Prove that \(A D>E C\).

Sol. \(\quad \ln \triangle A B E\), it is given that
\[
\begin{array}{ll} 
& \\
& \angle E>\angle A  \tag{i}\\
=> & A B>B E
\end{array}
\]

In \(\triangle \mathrm{BCD}\), it is given that
\[
\begin{array}{ll} 
& \angle C>\angle D \\
\Rightarrow & B D>B C \tag{ii}
\end{array}
\]

Adding (i) and (ii), we get
\[
A B+B D>B E+B C
\]
\[
\Rightarrow \quad A D>E C
\]

Q. 22. In Fig. \(T\) is a point on side \(Q R\) of \(\triangle P Q R\) and \(S\) is a point such that \(R T=S T\). Prove that \(P Q+P R>Q S\).

Sol. In \(\triangle P Q R\), we have
\[
\begin{array}{ll} 
& P Q+P R>Q R \\
\Rightarrow & P Q+P R>Q T+R T \\
\Rightarrow & P Q+P R>Q T+S T \tag{i}
\end{array}
\]
\[
[\because Q R=Q T+R T]
\]
\[
[\because \mathrm{RT}=\mathrm{ST}(\text { Given })]
\]

In \(\Delta\) QST, we have
\[
\begin{equation*}
\mathrm{QT}+\mathrm{ST}>\mathrm{QS} \tag{ii}
\end{equation*}
\]

From (i) and (ii), we have \(P Q+P R>Q S\)

Q. 23. In Fig. \(A C>A B\) and \(D\) is the point on \(A C\) such that \(A B=A D\). Prove that \(B C>C D\).

Sol. In \(\triangle A B D\), we have
\[
\begin{equation*}
A B=A D \tag{i}
\end{equation*}
\]

In \(\triangle A B C\), we have
\(A B+B C>A C\)
\(\Rightarrow \quad A B+B C>A D+C D\)
\(\Rightarrow \quad A B+B C>A B+C D \quad[\because A D=A B\{\) from (i) \(\}]\)
\(\Rightarrow \quad B C>C D\)

Q. 24. In Fig. \(A B\) and \(C D\) are respectively the smallest and longest sides of a quadrilateral \(A B C D\). Show that \(\angle A>\angle C\) and \(\angle B>\angle D\).

Sol. In \(\triangle A B C\), we have
\[
\begin{array}{ll} 
& B C>A B \\
\Rightarrow \quad & \angle B A C>\angle B C A \tag{i}
\end{array}
\]
\([\because A B\) is the smallest side \(]\)

In \(\triangle A C D\) we gave
CD > AD
\(=\quad \quad \angle C A D>\angle A C D\)
[ \(\because C D\) is the largest side]
Adding (i) and (ii), we get
\(\angle B A C+\angle C A D>\angle B C A+\angle A C D\)
\(=>\quad \angle B A D>\angle B C D\)
\(=>\quad \angle A>\angle C\)
In \(\triangle A B D\), we have
\(A D>A B\)
\([\because A B\) is the smallest side]
\(=>\quad \angle A B D>\angle A D B\)
In \(\triangle \mathrm{BCD}\), we have
CD > BC
[ \(\because C D\) is the largest side]
\(=\quad \angle D B C>\angle B D C\)


IIT-JEE | NEET | CBSE
STUDY CIRCLE

Adding (iii) and (iv), we get
\[
\begin{array}{ll} 
& \angle A B D+\angle D B C>\angle A D B+\angle B D C \\
=> & \angle A B C>\angle A D C \\
=> & \angle B>\angle D \\
\text { Hence, } \angle A>\angle C \text { and } \angle B>\angle D .
\end{array}
\]

\section*{Exercise 1.4}
Q. 1. In \(\triangle A B C\), if \(\angle A=40^{\circ}\) and \(\angle B=60^{\circ}\). Determine the longest and shortest sides of the triangle.
Q. 2. In a \(\triangle A B C\), if \(\angle B=\angle C=45^{\circ}\), which is the longest side?
Q. 3. In \(\triangle A B C\), side \(A B\) is produced to \(D\) so that \(B D=B C\). If \(\angle B=60^{\circ}\) and \(\angle=70^{\circ}\), prove that: (i) \(A D>C D\) (ii) \(A D>A C\)
Q. 4. Is it possible to draw a triangle with sides of length \(2 \mathrm{~cm}, 3 \mathrm{~cm}\) and 7 cm ?
Q. 5. In \(\triangle A B C, \angle B=35^{\circ}, \angle C=65^{\circ}\) and the bisector of \(\angle B A C\) meets \(B C\) in \(P\). Arrange \(A P, B P\) and \(C P\) in descending order.
Q. 6. \(O\) is any point in the interior of \(\triangle A B C\), Prove that
(i) \(A B+A C>O B+O C\)
(ii) \(\mathrm{AB}+\mathrm{BC}+\mathrm{CA}>\mathrm{OA}+\mathrm{OB}+\mathrm{OC}\)
(iii) \(O A+O B+O C>1 / 2(A B+B C+C A)\)
Q. 7. Prove that the perimeter of a triangle is greater than the sum of its altitudes.
Q. 8. Prove that in a quadrilateral the sum of all the sides is greater than the sum of its diagonals.
Q. 9. In Fig., prove that:
(i) \(C D+D A+A B+B C>2 A C\)
(ii) \(C D+D A+A B>B C\)

Q. 10. Which of the following statements are true \((T)\) and which are false (F)?
(i) Sum of the three sides of a triangle is less than the sum of its three altitudes.
(ii) Sum of any two sides of a triangle is greater than twice the median drawn to the third side.
(iii) Sum of any two sides of a triangle is greater than the third side.
(iv) Difference of any two sides of a triangle is equal to the third side.
(v) If two angles of a triangle are unequal, then the greater angle has the larger side opposite to it.
(vi) Of all the line segments that can be drawn from a point to a line not containing it, the perpendicular line segment is the shortest one.
Q. 11. Fill in the blanks to make the following statements true.
(i) In a right triangle the hypotenuse is the \(\qquad\) side.
(ii) The sum of three altitudes of a triangle is \(\qquad\) than its perimeter.
(iii) The sum of any two sides of a triangle is \(\qquad\) than the third side.
(iv) If two angles of a triangle are unequal, then the smaller angle has the \(\qquad\) side opposite to it.
(v) Difference of any two sides of a triangle is \(\qquad\) than the third side.
(vi) If two sides of a triangle are unequal, then the larger side has \(\qquad\) angle opposite to it.

\section*{Answers}
1. Longest \(=A B\), shortest \(=B C\)
2. \(B C\)
5. \(B P, A P, C P\)
10. (i) F
(ii) T
(iii) T
(iii)greater
(iv) F
(v) T
(vi) \(T\)
11. (i) largest
(ii) less
(ii)
(iv) smaller
(v) less
(vi) greater

\section*{HINTS TO SELECTED PROBLEMS}
3. We have, \(\angle A=70^{\circ}\) and \(\angle B=60^{\circ}\)

So, \(\angle \mathrm{C}=50^{\circ} ; \angle \mathrm{CBD}=120^{\circ}\) and \(\angle \mathrm{BDC}=\angle \mathrm{DCB}=30^{\circ}\)
Now, \(\angle A C D=50^{\circ}+30^{\circ}=80^{\circ}, \angle C A D=70^{\circ}\) and \(\angle A D C=30^{\circ}\)
\(\therefore \quad \angle A C D>\angle C A D\) and \(\angle A C D>\angle C D A\)
\(\Rightarrow \quad A D>C D\) and \(A D>A C\)
4. A triangle can be drawn only when the sum of any two sides is greater than the third side.

Here, \(2+3 \ngtr 7\). so, the triangle does not exist.
5. \(\quad \ln \triangle \mathrm{ACP}\), we have
\(\angle A C P>\angle C A P\)
=> \(\quad A P>C P\)
In \(\triangle A B P\), we have
\[
\angle B A P>\angle A B P=>B P>A P
\]
from (i) and (ii), we have
\[
\mathrm{BP}>\mathrm{AP}>\mathrm{CP}
\]
6. Produce \(B O\) to meet \(A C\) at \(D\).

In \(\triangle \mathrm{ABD}\), we have
\[
\begin{array}{ll} 
& A B+A D>B D \\
\Rightarrow \quad & A B+A D>O B+O D \tag{i}
\end{array}
\]

In \(\triangle\) ODC, we have
\[
\begin{equation*}
O D+D C>O C \tag{ii}
\end{equation*}
\]

Adding (i) and (ii), we get
\[
A B+A D+O D+D C>O B+O D+O C
\]
\(\Rightarrow \quad A B+A C>O B+O C\)
This proves (i)
Similarly, we have
\(B C+B A>O A+O C\)
and, \(\quad C A+C B>O A+O B\)
Adding these three in equalities, we get
\[
2(A B+B C+C A)>2(O A+O B+O C)
\]
\(\Rightarrow \quad A B+B C+C A>O A+O B+O C\)
This proves (ii)
In \(\Delta^{\prime} s \mathrm{OAB}, \mathrm{OBC}\) and OCA, we have
\(O A+O B>A B, O B+O C>B C\) and \(O C+O A>A C\)
\(\Rightarrow \quad 2(O A+O B+O C)>A B+B C+C A\)
\(\Rightarrow \quad O A+O B+O C>1 / 2(A B+B C+C A)\)
(i) in \(\triangle A B C\), we have
\(A B+B C>A C\)
In \(\triangle A C D\), we have
\(A D+C D>A C\)
Adding (i) and (ii), we get
\[
A B+B C+A D+C D>2 A C
\]
(ii) In \(\triangle\) ACD, we have
\[
\begin{array}{ll} 
& C D+D A>C A \\
=> & C D+D A+A B>C A+A B \\
=> & C D+D A+A B>B C
\end{array}
\]```

