

OF LEGACY X CBSE CHEMISTRY CHEMICAL REACTION N EQUATIONS

YEARS

IIT-JEE

NEET

CBSE

YOUR GATEWAY TO EXCELLENCE IN IIT-JEE, NEET AND CBSE EXAMS

CHEMICAL REACTION AND EQUATIONS

00

Q

50

www.aepstudycircle.com

CHEMICAL

CBSE

REACTIONS

EQUATIONS

Everything around us changes with time. Some changes can be noticed immediately, some others go unnoticed after some time, while some others go unnoticed.

- Some common changes which occurs in things around us are:
- [i] Formation of curd from milk.
- [ii] cooking of chapatti from wheat flour.
- [iii] Cooking of rice.
- [iv] burning of cracker, wood, coal, petroleum etc.
- [v] Growing of plants [vi] Ripening of fruits.

Observation helps us to determine whether a chemical reaction has taken place:							
[i] Change in Physical state	[ii] Change in colour	[iii] Change in temperature					
[iv] Evolution of gas	[v] Position, shape and size	[vi] Structure					

- In some changes only the physical properties of the substance get changed, and no new substance is formed. such a change is called a **Physical change**.
- ▶ In some changes, the composition and chemical properties of the substance gets changed and one or more new substance is formed. Such a change is called **chemical change**.
 - The properties of the new substance formed are different from those of the original Substance.
 Example: When coal is burnt, carbon dioxide is produced. The properties of CO₂ are entirely different from those of carbon.
 - Chemical change occurs only under certain condition.
 - The chemical is the result of chemical reaction that takes place.

CONCLUSION: <u>Tests of Chemical reaction</u> ---

- [i] There must be either evolution or absorption of heat i.e., A chemical reaction must be accompanied with change in temperature.
- **I** [ii] The reaction must occur between fixed quantities of the reactants.
- [iii] There must be either gain or loss of matter i.e., a chemical reaction should follow the law of conservation of mass.
- **I** [iv] The product obtained as a result of chemical reaction must have properties different from those of the reactants.

CHEMICAL REACTION AND THEIR CHARECTERISTICS:

- "The change of one or more substance into other substance having different composition and different properties is called chemical reaction".
- The symbol / formulae of reacting substance (called reactants) are written on the left-hand side and symbol/ formulae of the substance formed (called product) are written on the right-hand side.

In other words, the substance which take part in a chemical reaction are called Reactants. The substances formed in a chemical reaction are called products.

- ► In a chemical reaction, the number of reactants decreases whereas that of products increases with time, until the reaction is over.
- ► Factors on which rate of chemical reaction depends: [i] physical state [ii] temperature [iii] pressure [iv] Concentration of the reactants [v] Catalyst.

00 <u>CHARECTERISTICS</u>:

 [A] EVOLUTION OF GAS: Reaction in which a gas is evolved are: [i] Reaction between Iron sulphide and dilute Sulphuric acid produces hydrog 	en sulph	nide gas.	
Fe S (s) + H ₂ SO ₄ (dil) → FeSO ₄ (aq)	•	H₂S (g) ♠	
Iron sulphide dilute Sulphuric acid			n sulphide gas
[B] CHANGE OF COLOUR: Reaction in which there is a colour change:			
[ii] When red lead oxide is heated, yellow lead monoxide is formed.			
2 Pb₃ O₄(s) → 6PbO (s)		+	O ₂ (g)
red lead oxide yellow lead monoxide			
[C] FORMATION OF PRECIPITATE: When solution of two reagents are mixed, one of the p	oroducts	formed gets	
precipitated immediately. Colours of precipitate depen	nds upon	the reagent	s
www.acpstudycircle.com Q used.		AEPS	TUDY CIRCLE

www.aepstudycircle.com Q

[i] AgNO₃ Silver nitrate	+ NaCL(aq) — Sodium chlorid	- · ·		O₃ (aq) m nitrate		
		(White pp	t)			
Energy change						
During a chemical chang light, electricity, sound e		er evolved or absor	bed. The energy o	evolved or abso	orbed may be	in the form of heat,
		urnt, heat and light				
<mark>C(s)</mark> Carbon/coal	+ O ₂ (g) Oxygen (From t		CO ₂ (g) Carbon dioxide	+ He	at + L	.ight
In this reaction	, heat and light a	,				
(II) Du	ring the burning our uring the burning	of a candle.				
		of El G.				
When a smal	l quantity of wate	er is added to quick	lime, a large amo	ount of heat is e	evolved.	
CaO(s)	+ H ₂ O (I) →	Ca (OH) ₂ (s)	+ Hea	it	
Quicklime This reaction	Water takes place whe	n lime is added to v	slaked lime vater for prepariı	ng the lime sus	pension for w	hitewashing.
N						
		btain lime (or quick				
CaCO ₃ (s) Limestone	+ Heat	\rightarrow	CaO(s) Quicklime	+ CO; Carb	2 (g) on dioxide	
Linestone			(Or, lime)			
		n endothermic read	ction}.			
<u>Change of physica</u>						
In certain reactions, the during a chemical reaction ► When a mixture of hy	on.					_
	diogen and oxyg	Electric spark		t loom tempera	ature, nquiu v	water is formed.
2H ₂ (g)	+ O ₂ (g)	\rightarrow	2H ₂ O	(1)		
Hydrogen gas	oxygen	Room temp gas	water (l	iquid)		
► When ammonia (NH ₃ obtained.) gas is allowed to	o come in contact w	vith hydrogen chl	oride (HCl) gas,	solid ammor	nium chloride is
NU12/-)		Room temp		(_)		
NH3(g) Ammonia	+ HCI(g hydrog	en chloride \rightarrow		<mark>g)</mark> ium chloride powder)		
			Т			
<u>CHEMICA</u>						
All chemical reaction "A chemical reaction"				ead of word to	represent a	chemical reaction".
-	or					
-	uation is a short olved in the react	hand representatio tion".	n of a chemical ı	reaction using t	the symbols a	and formulae of
During a chemical reaction in terms of the names a				new substance	s. A reaction	is described
in terms of the numes a		e reactanto, and p				
For example, the chemic excess of air (or oxygen)			bon (or coal) ma	y be describe b	y the stateme	ent, " <i>carbon is burnt is</i>
Carbor	n +	Oxygen (excess)	→ Carbo	n dioxide		
Such worded equations shortened by using symb					se long-word	led equations can be
For example, the reactic Zinc (n		vith dilute sulphuric dil. Sulphuric aci		zinc sulphate a Zinc sulphate		may be written as, Hydrogen

This worded equation may be written in terms of symbols and formulae as,

Zn dil. H₂SO₄ ZnSO₄ + H₂ Thus, Zn + dil. $H_2SO_4 \rightarrow ZnSO_4 + H_2$ is the chemical equation for the reaction between zinc and sulphuric acid. Thus,

A shorthand representation of a chemical reaction in terms of symbols and formulae of the substances involved is called a chemical equation.

Chemical equation for a chemical reaction is written as follows:

Step 1: Identify the reactants and the products of the chemical reaction.

Step 2: Write down the formulae or symbols of the reactants on the left – hand side with a sign of plus (+) between them. The formulae or symbols of the products formed in the reaction are written on the right – hand side with a sign of plus (+) between them. The reactants and products are separated by \rightarrow or =.

Such a chemical equation is called a skeleton equation.

Step 3: Count the number of atoms of each element on both the sides. If the numbers of atoms of each element on both the sides are equal, then the equation is called a balanced chemical equation.

If the numbers of atoms of any one or more of the elements on both the sides are not equal, then these are made equal by adjusting the coefficients before the symbols and formulae of the reactants and products.

"The process by which the numbers of atoms of each element on both sides are made equal is called balancing of chemical equation".

Step 4: In the end, the chemical equation is made molecular, if required.

► ● A chemical equation be made more informative

A chemical equation can be made more informative by adding additional information to the chemical equation. ----

Reaction conditions: The information regarding temperature, pressure and catalyst etc., is provided above the arrow $(\rightarrow \text{ or } =)$ separating the reactants and products. A reaction taking place at t°C and p atm pressure, and in the presence of a catalyst can be described as follows.

t°C and p atm Reactants Products Catalyst

For example, nitrogen and hydrogen react to form ammonia under the conditions; temperature = 450° C, pressure = 200 – 900 atm, and in the presence of a catalyst (a mixture of iron and molybdenum). The chemical equation for this reaction is written as follows. 450° C, 200 – 900 atm

Physical states of reactants and products: Information regarding the physical states of the reactants and products, can be provided by using the letters (s), (l), (g) and (aq) for solid, liquid, gas and a solution in water, respectively, at the end of the formula of the substance involved. For example, solid sodium metal reacts with water at room temperature to produce hydrogen gas, and a solution of sodium hydroxide in water. Then, the complete chemical equation is, 2Na (s) + $2H_2O(I)$ \rightarrow 2NaOH (aq) + $H_2(g)$

 $2NH_3$

Heat absorbed or evolved. Chemical reactions proceed with the evolution or absorption of heat. The reactions in which heat is absorbed are called *endothermic reactions*. The reactions in which heat is given out are called *exothermic* reactions. This information is provided by adding a heat term on the product – side (right-hand side) of the chemical equation. For example,

When carbon is burnt in air (or oxygen) heat is evolved. Then, the chemical equation is ,

 \rightarrow

Fe + Mo

 \rightarrow $CO_2(g)$ Heat (393 kJ) C(s) $O_2(g)$

The reaction between carbon (C) and sulphur (S) to produce carbon disulphide (CS2) proceeds with the absorption of heat, i.e., it is an endothermic reaction.

> C(s) + 2S(g) $CS_2(g)$ Heat (92 kJ)

The reactions with + Heat term on the products side are called exothermic reactions, while those with – Heat term on www.aepstudycircle.com Q the product side are called endothermic reactions.

Concentration of the Reactants and Products: This information is added to the chemical equation by adding the word dil. (for dilute) or conc. (for concentrated) before the formulae of the reactants and products. For example, in the reaction between zinc and dilute sulphuric acid, the term dil. is added before the formula of sulphuric acid.

Zn(s) + dil. $H_2SO_4(aq)$ \rightarrow $ZnSO_4(aq)$ + $H_2(g)$

Rate of reaction: This information is not commonly added to the chemical equation. Sometimes, however, the term fast or slow may be added over the arrow, if the reaction is fast or slow. For example, the reaction between HCl and NaOH in solution is a fast reaction. So, Fast

HCl (aq) + NaOH (aq) \rightarrow NaCl(aq) + H₂O(I)

Information conveyed by a balanced chemical equation

A chemical equation gives the following two types of information.

Qualitative information: A chemical equation provides the following qualitative information about the reaction. It tells us the, (I) Names of the reactants which take part in the reaction.

(II) Name of the products formed in the reaction.

2. Quantitative information: A chemical equation gives the following quantitative information. It tells us about,

(I) The number of molecules or molecules or atoms of reactants and products taking part in the reaction.

(II) The number of moles of each substance involved in the reaction.

(III) The mass of each substance involved in the reaction.

(IV) Mass – mass, mass – volume, volume – volume relationship between the reactants and products.

BALANCING OF CHEMICAL EQUATIONS

The method by which the number of atoms of each element on both the sides of the arrow (\rightarrow) in a chemical reaction are made equal, is called **balancing of chemical equation**.

Necessity to balance a chemical equation:

<u>Explanation</u>: In a balanced chemical equation, the number of atoms of each element on both the sides should be equal. This is because; no matter is lost or gained during a chemical reaction, (law of conservation of matter). Therefore, **balancing of a chemical equation is necessary because no matter (hence, no atom) is lost or gained during a chemical reaction.**

Method of balancing a chemical equations:

Chemical equations are balanced by adjusting the coefficients placed before the symbols of formulae of the reactants and products. There are two commonly used methods for the balancing of chemical equations:

(I) Hit – and – trial method (II) Partial equation method

<u>Hit – and – trial method</u>:

This method is also called trial – error method, or inspection method. In this method, coefficients before the formulae or symbols of the reactants and products are adjusted in such a way that the total number of atoms of each element on both the sides becomes equal. This is called **material balance** or **mass balance**.

The following order is found helpful in the balancing of chemical equations by hit and trial method.

- (I) Start balancing from the element (other than oxygen and hydrogen) which appears least in the chemical equation.
- (II) Balance oxygen
- (III) Balance hydrogen
- (IV) Check to be sure that the chemical equation is balanced.

Illustration: Balancing of a chemical equation by the hit – and – trial method involves a number of steps. The steps involved in the reaction involving the burning of methane gas in the excess of air (or oxygen) to form carbon dioxide gas and water are illustrated below: -

Methane

www.aepstudycircle.com

oxygen (from air)

Carbon dioxide + water

CH ₄ (s) +	O ₂ (g)		CO ₂ (g)	+	H ₂ O (I)	
Step 2: Write the number o	f atoms of each ele	ment on l	both the sid	es of the a	rrow (→) in t	the above equation
follows:	No	o. of atoms	s on the		Elen	nont
	Left (reactant	side) F	Right (produ	ce side)	Lieii	
	1	·	1	·	ŀ	-
	4		2		C	
	2		3			
As the numbers of atoms of H	and O on both the sid	les are not	equal, the ske	eleton equa	tion is not a ba	alanced chemical equ
Step 3: Inspection of the skelet				hydrogen (H	H) occur twice,	and oxygen (O) appe
thrice. So, a start is made by ba Carbon is already balanced. Th		-		d 2 hydroge	n atoms on th	e right side. So, hydro
(H) can be balanced by placing						
CH4(s) +	O ₂ (g)	→ (CO ₂ (g)	+	2H₂O (I)	
Chain As Navy these 1	an and fairs had		atala an at t	f ab =	the second	
Step 4: Now, there is one carb Thus, carbon and hydrogen are						vgen atoms on the rig
hand side, while there are two						
The resulting equation is,						
CH4(s) +	2O ₂ (g)		CO ₂ (g)	+	H ₂ O (I)	
Now, the numbers of atoms of	each element on bot	h the sides	of this equat	ion are,		
			oms on the			
Element	Left (reacta			duce side)		
Carbon	1 Left (Feacta	int side)	•	1		
Hydrogen	4			2		
Oxygen	2			3		
	L			5		
The number of atoms of eac	h					
element on both sides of the	equation are equal.					
CH4(s)	+	2O2 (g)	\rightarrow	CO2 (g)	+	2H ₂ O (I)
∴ the above chemical equation	is a balanced chemic	cal equation	า.			
► EXAMPLE 1.1: Balance th	o following unbala		tion			
Fe(s) +	$H_2O(g) \rightarrow$	Fe ₂ O ₃ (s)	+	H ₂ (g)		
Solution: The given unbalan		1 C2O3(3)		112(8/		
Fe(s) +	•	Fe ₂ O ₃ (s)	+	H ₂ (g)		
Step 1: Examine the numbe	- (0)		on both the		he chemical e	equation.
Element		No. of at	toms			
Fe	On reactant		On produc	ce side		
Н	1		2			
0	2		2			
-	1		3			
Step 2: To balance Fe atoms, th		ultiplied by	2			
Step 3: Hydrogen atoms are ba						
Step 4: To balance oxygen ator		ent 3 before	e H ₂ O (on the	left).		
The partially balanced	-					
2Fe(s) +	3H₂O(g) →	Fe ₂ O ₃ (s)	+	H ₂ (g)		
Step 5: Now, there are six (6) H					product side. So	o, balance H atoms by
placing the coefficient 3 before	H ₂ (on the product s 3H ₂ O (g)	-	we can write ⁻ e ₂ O ₃ (s) +	, H₂(g)		
2Fe (s) +						

EXAMPLE 1.2: Translate the following statements into chemical equations and then balance them:

(a) Hydrogen gas combines with nitrogen to form ammonia.

(b) Hydrogen sulphide gas burns in air to give water and sulphur dioxide.

(c) Barium chloride reacts with aluminium sulphate to give aluminium chloride and precipitate of barium sulphate.

(d) Potassium metal reacts with water to give potassium hydroxide and hydroxide and hydrogen gas.

Solution: The balanced equations for the given reaction are,

3010110		alanceu equal	ions for ti	-		i are,					
	(a)	3H ₂ (g) Hydrogen	+	2N ₂ (g) nitrogen		\rightarrow	2NH ₃ (ammonia				
	(b)	$2H_2S(g)$	+	$O_2(g)$		\rightarrow	2SO ₂ (+	2H₂O(a)
	(6)	Hydrogen sulphide					sulphur c	•	•	water	6/
	(c)	3BaCl ₂ (aq)	+	Al2(SO	4)3(aq)	\rightarrow	3BaSO			+	2AlCl₃(aq)
	(-)	Barium chloride		-	m sulphate		barium s				aluminium chloride
	(d)	2K(s)	+	2H₂O(I)	\rightarrow	2KOH	(aq)		+	H ₂ (g)
		Potassium		water		potassi	um hydroxid	2			
EXA	MPLE 1.3:	Balance the fol	llowing ch	emical ec	uations:						
	(a)	HNO₃	+	Ca (OH	l)2		→	Ca (NO	3)2	+	H ₂ O
	(b)	NaOH	+	H ₂ SO ₄			→	Na ₂ SO ₄		+	H ₂ O
	(c)	NaCl	+	AgNO ₃			→	AgCl		+	NaNO ₃
	(d)	BaCl ₂	+	H ₂ SO ₄			→	BaSO ₄		+	HCI
Solutio		lanced equation	-		tions are,	,					
	(a) 2HN		Ca (OH)2		\rightarrow	Ca (NC	-	+	2H ₂ O	
	(b) 2Na		H_2SO_4			\rightarrow	Na ₂ SO ₄		+	2H ₂ O	
	(c) NaCl		AgNO₃			\rightarrow	AgCl		+	NaNO₃	
	(d) BaCl	2 +	H_2SO_4			\rightarrow	BaSO ₄		+	2HCl	
						f					
EXAIVI		Write the bala		-			bonate + \	-	ons:		
		ium hydroxide + + Silver nitrate	- Carbon d	loxide			+ Silver	vater			
		+ Silver Intrate	ido				+ Silver le + Coppe				
		um chloride + So		hata			hate + So		vrida		
Solutio		uni chionae + 3	ouluili sui	mate	2 Dalit	in sup	mate + 500		nue		
Joiutit				CO ₂		\rightarrow	Ca CO:				
	(a)	Ca (OH) ₂ Calcium hydroxide	+	CO ₂ carbon di	iovido	~		arbonate	+	H ₂ O water	
	(b)	Zn	+	AgNO ₃		\rightarrow	Zn (NC		+	Ag	
	(6)	Zinc	•	Silver nit		-	zinc nitra			~ъ silver	
	(c)	Pb	+	CuCl ₂		\rightarrow	PbCl ₂		+	Cu	
	(0)	Lead		Copper c	hloride		Lead chlo	ride		copper	
	(.1)			NI-260			D . CO				
	(d)	BaCl2 Barium chloride	+	Na2SO sodium s		\rightarrow	BaSO4 barium s		+	2NaCl sodium c	blorido
		Banum chionae		soululli s	uipilate		banum s	apriace		souluin c	nionae
EXAM	PLE 1.5: \	Write the bala	nced equ	ations fo	or the fo	llowin	g chemica	l reactio	ons:		
		rogen + Chlor	-		→		ogen chlo				
		gnesium oxide			→		nesium +		nonox	ide	
		dium + Water			→		um hydro				
Solutio	• •	alanced equat	ions for tl	ne given			un nyare		, a 05.		
Jonath	(i) H₂(g	•	Cl ₂ (g)	→	2HCl(g)						
	(I) II2(B Hydro	-	chlorine	,	hydrogen						
	(ii) Mg	•	C(s)	\rightarrow	Mg(s)		CO(g)				
	• • •	nesium oxide	carbon	-	magnesiu		carbon m	onoxide			
	(iii) Na		H ₂ O(I)	\rightarrow	NaOH		H ₂ (g)				
	Sodiu		water		sodium h			1			
EXAM	PLE 1.6: ⁻	Take a balance	d chemic	al equat	tion with	ı state	symbols	f <mark>or the</mark> f	ollowi	ng equati	ons:
	(i) Iron	filings react w	vith steam	to proc	luce soli	d Iron	(III) oxide	and hy	drogen	n gas.	
	(ii) Sod	ium hydroxide	e solution	(in wat	er) react	s with	hydrochl	oric acid	soluti	on (in wa	ter) to produce
	sodium	n chloride and	water.								
Solutio	on: (i) 4F	e(s) +	6H₂O (g)	\rightarrow	2Fe ₂ C) ₃ +	6H₂(g)			
		n filings	steam	.,		iron(III)		hydrogen	1		
	(ii) Na	aOH (aq) +	HCl(aq)	\rightarrow	NaCl	(aq) +	H ₂ O (I)			
	So	dium hydroxide	hydrochl	oric acid		sodium		water			
.aepsti	udycircle	.com Q							۸	E D C	
									-		

EXAMP	PLE 1.7:	Write t	he balan	ce chen	nical eq	uations for	the fo	ollowin	ig reactions and identify	the type of reaction:
	(a) Pot	tassium	bromide	e (aq) + l	Barium	iodide (aq) → Po	tassiu	m iodide (aq) + Barium	bromide (aq)
	(b) Zin	c carbo	nate (s)	→	Zinc c	oxide (s) 🔗	+	Carb	on dioxide (g)	
	(c) Hyd	drogen	(g)	+	Chlor	ine (g)	→	Hydr	ogen chloride (g)	
	(d) Ma	ignesiu	m (s)	+ Hyd	r ochlori	ic acid (aq)	→	Magi	nesium chloride (aq)	+ Hydrogen (g)
Solutio	n:									
(a) 2KB	r (aq)	+	Bal ₂ (ac	ן)	\rightarrow	2KI (aq)		+	BaBr ₂ (aq)	
This	reactio	n is a d a	ouble – d	isplacer	nent re	action.				
(b) ZnC	:O₃(s)				\rightarrow	ZnO(s)		+	CO ₂ (g)	
This	s reactio	on is a d	ecompos	ition re	action.					
(c) H ₂ (g)	+	Cl ₂ (g)		\rightarrow	2HCI (g)				
This	s reactio	on is a c e	ombinati	on (or s	ynthesi	is) reaction				
(d) Mg	(s)	+	2HCl (aq)	\rightarrow	MgCl₂ (a	q)	+	H ₂ (g)	
Thi	s reacti	on is a c	displacen	nent rea	iction.					
EXAMF	PLE 1.8:	Write a	i chemica	al equat	ion for	each of the	e follov	wing re	eactions:	
(i) Zir	nc meta	I reacts	with aqu	ueous h	ydrochl	loric acid to	o prod	uce a s	olution of zinc chloride	and hydrogen gas.
(ii) W	hen sol	id merc	ury(II)ox	ide is he	eated, li	iquid merc	ury an	d oxyg	en gas are produced.	
Sol:					Heat					
(i)	Zn(s)	+	2HCl (a) (p£	\rightarrow	ZnCl ₂ (a	q)	+	H ₂ (g)	
(ii)			2HgO(s)	\rightarrow	2Hg (l)		+	O ₂ (g)	
		OUT			CIONO.					

<u>TYPES OF CHEMICAL REACTIONS</u>:

Chemical reaction

A chemical process (or change) in which certain substance react together to form some new substance with different properties is called a chemical reaction. For example

2H ₂ (g) +	O₂(g) →	2H ₂ O(I)
Hydrogen	oxygen	water

The properties of water are altogether different from those of hydrogen and oxygen.

Chemical reactions can be grouped into various types on the basis to their nature. Some common types of chemical reactions are

- **Combination reactions**
- Decomposition reactions
- Displacement reactions
- Double displacement reactions
- Oxidation reduction reactions
- Precipitation reactions

Sulphur dioxide

CaO(s) +

www.aepstudycircle.com

Calcium oxide

Exothermic and endothermic reactions.

[A] COMBINATION REACTION

"A reaction in which two or more substances combine together to form a new substance, is called a combination reaction". For Ex:

(a) Sulphur dioxide and oxygen combine to form sulphur trioxide.

 $SO_2(g) + O_2(g) \rightarrow SO_3(g)$

oxygen Sulphur trioxide

(b) Calcium oxide and carbon dioxide combine to form calcium carbonate.

CO ₂ (g)	\rightarrow	CaCO ₃ (I)
002(6)		

Carbon dioxide Calcium carbonate

Many combustion (or burning) reactions are also combination reactions. For example,

Burn C(s) $CO_2(g)$ O₂(g) \rightarrow Carbon dioxide Carbon oxygen 2H₂(g) + O₂ (g) \rightarrow $2H_2O$ Hydrogen oxygen water Burn 2Mg(g) +O₂ (g) \rightarrow 2MgO(s)

Q

A E P STUDY CIRCLE

CBSE

CHEMISTRY

The combination reactions in which a compound is formed from its constituent elements are called synthesis reactions. For Example:

Synthesis of hydrogen chloride (HCl)			- Si	unlight	
	H ₂ (g)	+	Cl ₂ (g)	\rightarrow	2HCl(g)
Synthesis of water (H ₂ O)	2H ₂ (g)	+	O ₂ (g)	\rightarrow	2H ₂ O(g)
	Hydrogen		oxygen		water
Synthesis of magnesium oxide (MgO)	2Mg(s) Magnesium	+	O2 (g) from air	\rightarrow	2MgO(s) magnesium oxide
Synthesis of ammonia (NH₃)	N ₂ (g)	+	3H ₂ (g)	\rightarrow	2NH₃(g)
	Nitrogen		h	ydrogen	ammonia

An important industrial application of combination (or synthesis) reaction is the manufacture of hydrogen chloride gas from hydrogen and chlorine.

Hydrogen chloride gas when dissolved in water gives hydrochloric acid.

				+H2O(I)	
H ₂ (g)	+	Cl₂(g) →	2HCl(g)	\rightarrow	HCl (aq)
Hydrogen		chlorine	hydrogen	Calculated	hydrochloric
			Chloride	amount	acid

[B] Decomposition Reaction

www.aepstudycircle.com

A reaction in which a substance is broken down into two or more simpler substance is known as decomposition reaction.

Decomposition reactions take place only when some energy in the form of heat, light or electricity is supplied to the substance.

Various kinds of decomposition reactions: -----

Thermal decomposition. Decomposition reaction caused by heating is called thermal decomposition.

Photodecomposition. Decomposition reaction caused by light is called photodecomposition or photolysis.

Electrolytic dissociation. Decomposition reaction caused by electricity is called electrolytic decomposition or electrolysis.

Some typical decomposition reactions are,

Limestone (CaCO₃) when heated strongly gives quicklime (CaO) and carbon dioxide (CO₂)

		Heat	-				
	CaCO₃	\rightarrow	CaO (s)	+	CO ₂ (g)		
	Limestone		quicklime		carbon dioxide		
🛠 Potassium chlora	<mark>te</mark> when heated de	compos	ses to give pota	ssium ch	loride (KCl) and o	xygen ((O ₂)
	2KClO₃(s)	\rightarrow	2KCl(s)	+	3O ₂ (g)		
	Potassium chlorate		Potassium chlorid	le	oxygen		
🛠 Ferrous sulphate	crystals are light gi	reen in o	colour. When h	eated ge	ntly, it decompos	es to lo	ose water and 📗
its colour changes to	o dirty white.	Heat					
	FeSO ₄ .7H ₂ O	\rightarrow	FeSO ₄ (s)	+	7H₂O (g)		
	Ferrous sulphate cry	/stals	anhydrous		water		
	(Light green)				ferrous sulphate (Dirty white)		
When anhydrous ferro	ous sulphate is heate	d strong	ly, it decompose	s to give f	errous oxide (Fe ₂ O	₃) and o	xides of sulphur.
		at strongly					
	2FeSO ₄	\rightarrow	Fe ₂ O ₃ (s)	+	$SO_2 + SO_3$		
	Ferrous sulphate		ferric oxide		oxides of sulphur		
	(Dirty white)				(Small of hurning cu		
• • • •	(Dirty white)		(Dark brown)		(Smell of burning su	ipnur)	
Water is decomp	osed when electric			cidified v		ipnur)	
Water is decomp	osed when electric	lectricity	ssed through a	cidified v	vater.	ipnur)	
Water is decomp	osed when electric e 2H ₂ O (I)		ssed through a 2H ₂ (s)	cidified v +	vater. O ₂ (g)	ipnur)	
	osed when electric e 2H ₂ O (I) _{Water}	electricity →	ssed through a 2H ₂ (s) _{hydrogen}	+	vater. O ₂ (g) _{oxygen}		
Zinc ore, calamin	osed when electric e 2H ₂ O (I) _{Water}	electricity →	ssed through a 2H ₂ (s) _{hydrogen}	+	vater. O ₂ (g) _{oxygen}		rtant step in
	osed when electric e 2H ₂ O (I) _{Water}	Ses on	ssed through a 2H ₂ (s) _{hydrogen}	+	vater. O ₂ (g) _{oxygen}		rtant step in
Zinc ore, calamin	e (ZnCO ₃) decompo	electricity → DSES ON Heat	ssed through a 2H2(s) ^{hydrogen} heating to give	+ zinc oxid	vater. O2 (g) ^{oxygen} le (ZnO). This is ar		tant step in
Zinc ore, calamin	2H ₂ O (I) Water e (ZnCO ₃) decompo ZnCO ₃ (s)	Ses on	ssed through a 2H ₂ (s) _{hydrogen} heating to give ZnO(s)	+	vater. O2 (g) ^{oxygen} le (ZnO). This is ar CO2 (g)		rtant step in
Zinc ore, calamin	2H ₂ O (I) Water e (ZnCO ₃) decompo ZnCO ₃ (s) Zinc carbonate	electricity → DSES ON Heat	ssed through a 2H2(s) ^{hydrogen} heating to give	+ zinc oxid	vater. O2 (g) ^{oxygen} le (ZnO). This is ar		rtant step in
Zinc ore, calamin the extraction of zinc.	2H ₂ O (I) Water e (ZnCO ₃) decompo ZnCO ₃ (s) Zinc carbonate (Calamine)	electricity → oses on Heat →	ssed through a 2H ₂ (s) _{hydrogen} heating to give ZnO(s) _{zinc oxide}	+ zinc oxid +	vater. O ₂ (g) _{oxygen} le (ZnO). This is ar CO ₂ (g) _{carbon dioxide}	n impor	
 Zinc ore, calamin the extraction of zinc. Lead nitrate (Pb (2H ₂ O (I) Water e (ZnCO ₃) decompo ZnCO ₃ (s) Zinc carbonate (Calamine)	electricity → oses on l Heat → decomp	ssed through a 2H ₂ (s) _{hydrogen} heating to give ZnO(s) _{zinc oxide}	+ zinc oxid +	vater. O ₂ (g) _{oxygen} le (ZnO). This is ar CO ₂ (g) _{carbon dioxide}	n impor	
Zinc ore, calamin the extraction of zinc.	2H ₂ O (I) Water e (ZnCO ₃) decompo ZnCO ₃ (s) Zinc carbonate (Calamine) (NO ₃) ₂) on heating o	decomp	ssed through a 2H ₂ (s) hydrogen heating to give ZnO(s) zinc oxide oses to give lea	+ zinc oxid + ad oxide (vater. O ₂ (g) _{oxygen} le (ZnO). This is an CO ₂ (g) _{carbon dioxide} (litharge) and bro	n impor wn fum	nes of nitrogen
 Zinc ore, calamin the extraction of zinc. Lead nitrate (Pb (2H ₂ O (I) Water e (ZnCO ₃) decompo ZnCO ₃ (s) Zinc carbonate (Calamine) (NO ₃) ₂) on heating o 2Pb (NO ₃) ₂ (s)	electricity → oses on l Heat → decomp	ssed through a 2H ₂ (s) _{hydrogen} heating to give ZnO(s) _{zinc oxide} oses to give lea 2PbO(s)	+ zinc oxid +	vater. O ₂ (g) _{oxygen} le (ZnO). This is ar CO ₂ (g) _{carbon dioxide} (litharge) and bro 4NO ₂ (g)	n impor	nes of nitrogen O2 (g)
 Zinc ore, calamin the extraction of zinc. Lead nitrate (Pb (2H ₂ O (I) Water e (ZnCO ₃) decompo ZnCO ₃ (s) Zinc carbonate (Calamine) (NO ₃) ₂) on heating o	decomp	ssed through a 2H ₂ (s) hydrogen heating to give ZnO(s) zinc oxide oses to give lea	+ zinc oxid + ad oxide (vater. O ₂ (g) _{oxygen} le (ZnO). This is an CO ₂ (g) _{carbon dioxide} (litharge) and bro	n impor wn fum	nes of nitrogen

B

[C] <u>Displacement Reaction</u>

"A reaction in which one part (an atom or a group of atoms) of a molecule is replaced by another is called displacement reaction".

Displacement reactions are also called substitution reactions. For example, the following reaction

 $A + BC \rightarrow AC +$

In which A displaces B from BC, is a displacement (or substitution) reaction.

Displacement of copper (Cu) from copper sulphate solution (CuSO₄) by active metals like iron, zinc, lead and magnesium, is a typical displacement reaction.

This displacement reaction can be demonstrated by performing the following simple experiment.

Take about 5 mL of copper sulphate solution in a test tube. Place an iron nail in the solution. Observe the change. After some time, we will see

(a) Blue colour of the copper sulphate solution fades away

(b) Reddish deposit on the nail.

The reddish deposit on the nail is a displaced copper.

This experiment shows that iron displaces copper from copper sulphate solution.

CuSO4 (aq) Copper sulphate (Blue)	+	Fe(s) → iron	Cu(s) + copper metal	FeSO4 (aq) ferrous sulphate (Light green)
CuSO4 (aq) Copper sulphate (Blue)	+	Zn(s) → ^{Zinc}	Cu(s) + copper metal	ZnSO4 (aq) Zinc sulphate (Colourless)
CuSO4 (aq) Copper sulphate (Blue)	+	Mg(s) → magnesium	Cu(s) +	MgSO4 (aq) Magnesium sulphate (Colourless)

□ Metals such as iron, zinc and magnesium are more reactive (more electropositive) than copper.

Displacement of less active halogen form the solution of corresponding halide by a more active halogen is also a displacement reaction. For example, chlorine displaces bromine and iodine from bromides and iodides,

2KBr (aq)	+	Cl ₂ (aq)	\rightarrow	2KCl (aq)	+	Br ₂ (aq)
Potassium bromide		Chlorine		potassium		bromine
(colourless)				chloride	•	(deep yellow)
2KI (aq)	+	Cl ₂ (aq)	\rightarrow	2KCl (aq)	+	l ₂ (aq)
Potassium iodide		Chlorine				Iodine
(Colourless)						(Deep brown)

Displacement of hydrogen from acids by active metals is also a displacement reaction. For example, zinc metal displaces hydrogen from dilute hydrochloric and dilute sulphuric acids

Zn(s)	+	2HCl (dil.)	\rightarrow	ZnCl₂ (aq)	+	H ₂ (g)
Zinc		hydrochloric acid		zinc chloride		hydrogen
Zn(s)	+	H ₂ SO ₄ (dil.)	\rightarrow	ZnSO₄(aq)	+	H ₂ (g)
Zinc		sulphuric acid		zinc sulphate		hydrogen

[C]Double displacement Reaction

A reaction in which the two reacting ionic compounds exchange their corresponding ions is called a double displacement reaction. For example:

(a) Reaction be	etween silver n	itrate a	ind sodium chlori	de in se	olution.		
	AgNO₃ (aq)	+	NaCl (aq)	\rightarrow	NaNO₃(aq)	+	AgCl (s)
	Silver nitrate		Sodium chloride		Sodium nitrate		Silver chloride (White precipitate)
(b) Reaction	between Ba	Cl ₂ and	d H ₂ SO ₄ in solu	tion.			
	BaCl ₂ (aq)	+	H ₂ SO ₄ (aq)	\rightarrow	2HCl (aq)	+	BaSO ₄ (s)
	Barium chloride		Sulphuric acid		Hydrochloric Acid		Barium sulphate (white precipitate)

[D] Precipitation Reaction:

The reaction in which one of the products formed is an insoluble substance and is thrown out of the solution as solid (called precipitate) is called precipitation reaction.

\square The substance that separates out as precipitate is indicated by a downward arrow (ψ).

www.aepstudycircle.com Q

www.aepstudycircle.com Q

Reaction between	n silver niti			chlorid				
AgNO ₃ (aq) Silver nitrate	+	NaCl sodium		→	AgCI sodium		+	NaNO ₃ (aq) silver chloride (White precipitate)
Reaction between	า barium c	hloride a	and sulpl	huric ac	id			
BaCl ₂ (aq) Barium chloride	+	H ₂ SO ₄ Sulphuri		\rightarrow		₁ (S) ↓ sulphate precipitate)	+	2HCl (aq) Hydrochloric acid
Reaction between	n lead nitra	ate and l	hydroger	n sulphi		siecipitate)		
Pb (NO₃)₂(ac		H ₂ S(ac		→ ˈ	PbS (s	s) V	+	2HNO₃ (g)
Lead nitrate		Hydroge	en sulphide		lead sulj (Black p	phide recipitate)		nitric acid
E] Exothermic Reactior	າ:							
he term exothermic means						-		
"The reactions in which h				-				
	n. Carbon	(C) burn	s in oxyg	en (or i	n air) to	form car	bon diox	kide (CO ₂) gas, and liberating
rge amount of heat.	O(a)	<u>ــ</u>				Heat		
C(S) + Carbon	O ₂ (g) oxygen	\rightarrow	CO2(g) carbon d		+	Heat		
Burning of metha Burning of metha Burning of metha						dioxide, v	vater an	d liberating a large amount o
CH ₄ (g) +	2O ₂ (g)		CO ₂ (g)		+	$2H_2O$	+	Heat
Methane	oxygen		carbon d	ioxide		water		
Exothermic reactions are,	entrated cu	Inhuric a	cid in wat	or				
 Dissolution of caust 					water.			
 Combustion of LPG, 		-		,				
			on, cic.					
	aO) with wa	iter (H ₂ O)). Inction:				, .	
F ENDOTHI reaction which proceeds wit eat).	aO) with wa	ter (H ₂ O)). Iction: heat is ca				ut 3000'	means in, and thermic means °C to form nitric oxide (NO).
FENDOTH reaction which proceeds wit eat). Reaction between nitrog N ₂ (g)	aO) with wa	ter (H ₂ O) C Rea ption of ygen. Ni O ₂ (g)). Inction: heat is ca trogen re					°C to form nitric oxide (NO). 2NO(g)
FENDOTH reaction which proceeds wit eat). Reaction between nitrog N ₂ (g) Nitrogen	aO) with wa E R M I h the absor en and oxy +	ter (H ₂ O) C Rea ption of ygen . Ni O ₂ (g) _{oxygen}). Inction: heat is ca trogen re	eacts wi +	ith oxyge Heat	en at abo	ut 3000 ₃‱c →	°C to form nitric oxide (NO). 2NO(g) nitric oxide
F F ENDOTHI reaction which proceeds wit eat). Reaction between nitrog N2(g) Nitrogen ► This is one of the major re	aO) with wa E R M I h the absor en and oxy + eactions wi	ter (H ₂ O) C Rea ption of ygen. Ni O ₂ (g) _{oxygen} hich take). heat is ca trogen re es place i	eacts wi + in the a	ith oxyge Heat tmosphe	en at abo ere when	ut 3000 ^{3000°C} → lightnin	°C to form nitric oxide (NO). 2NO(g) ^{nitric oxide} g strikes.
F ENDOTHI reaction which proceeds wit eat). Reaction between nitrog N ₂ (g) Nitrogen This is one of the major re Preparation of water ga	aO) with wa E R M I h the absor en and oxy + eactions wl s. When st	ter (H ₂ O) C Rea ption of ygen. Ni O ₂ (g) _{oxygen} hich take ceam (H2). heat is ca trogen re es place i	eacts wi + in the a	ith oxyge Heat tmosphe	en at abo ere when	ut 3000 ^{3000°C} → lightnin	°C to form nitric oxide (NO). 2NO(g) nitric oxide
F] ENDOTH reaction which proceeds wit eat). Reaction between nitrog N ₂ (g) Nitrogen This is one of the major re Preparation of water ga eaction is also and endothe C(s) +	aO) with wa E R M I h the absor en and oxy + eactions wl s. When st	ter (H ₂ O) C Rea ption of ygen . Ni O ₂ (g) _{oxygen} hich take ceam (H2 ion.). heat is ca trogen re es place i	eacts wi + in the a	ith oxyge Heat tmosphe	en at abo ere when	ut 3000' ^{3000°C} → lightnin e, water	°C to form nitric oxide (NO). 2NO(g) ^{nitric oxide} g strikes.
F] ENDOTH reaction which proceeds wit eat). Reaction between nitrog N ₂ (g) Nitrogen This is one of the major re Preparation of water ga eaction is also and endothe C(s) + Red hot coke	en and oxy + eactions wi s. When st rmic react H ₂ O(v) steam	ter (H ₂ O) C Real ption of ygen . Ni $O_2(g)$ oxygen hich take team (H2 ion.) →). heat is ca trogen re es place i 2O(v)) is	eacts wi + in the a	ith oxyge Heat tmosphe over red	en at abo ere when I hot coke	ut 3000° $_{3000°C}$ \rightarrow lightnin e, water + H ₂ (g)	°C to form nitric oxide (NO). 2NO(g) ^{nitric oxide} g strikes.
F] ENDOTH reaction which proceeds wit eat). Reaction between nitrog N ₂ (g) Nitrogen This is one of the major re Preparation of water ga eaction is also and endothe C(s) + Red hot coke Some other endothermic	en and oxy en and oxy + eactions wl s. When st processes	ter (H ₂ O) C Real Partion of ygen . Ni O ₂ (g) oxygen hich take ceam (H2 ion.) → are,). heat is ca trogen re es place i 2O(v)) is Heat	eacts wi + in the a passed	ith oxyge Heat tmosphe over rec +	en at abo ere when I hot coke CO(g) - water ga	ut 3000 $3000^{\circ}C$ \rightarrow lightnin e_{i} , water + H ₂ (g)	°C to form nitric oxide (NO). 2NO(g) ^{nitric oxide} g strikes. gas (CO + H ₂) is formed. This
F] ENDOTH reaction which proceeds wit eat). Reaction between nitrog N ₂ (g) Nitrogen This is one of the major re Preparation of water ga eaction is also and endothe C(s) + Red hot coke	en and oxy en and oxy + eactions wl s. When st processes	ter (H ₂ O) C Real Partion of ygen . Ni O ₂ (g) oxygen hich take ceam (H2 ion.) → are,). heat is ca trogen re es place i 2O(v)) is Heat	eacts wi + in the a passed	ith oxyge Heat tmosphe over rec +	en at abo ere when I hot coke CO(g) - water ga	ut 3000 $3000^{\circ}C$ \rightarrow lightnin e_{i} , water + H ₂ (g)	°C to form nitric oxide (NO). 2NO(g) ^{nitric oxide} g strikes.
F F F F F F F F F F F F F F F F F F F	en and oxy + en and oxy + eactions wl s. When st rmic react H ₂ O(v) steam processes monium c	ter (H ₂ O) C Real ption of ygen . Ni $O_2(g)$ oxygen hich take team (H2 ion.) → are, hloride (). heat is ca trogen re es place i 2O(v)) is Heat (NH₄Cl) in	eacts wi + in the a passed n water	ith oxyge Heat tmosphe over red + & Co	en at abo ere when I hot coke CO(g) water ga onversion	ut 3000 $_{3000^{\circ}C}$ \rightarrow lightnin e, water + H ₂ (g) $_{5}$ n of wat	°C to form nitric oxide (NO). 2NO(g) nitric oxide g strikes. gas (CO + H ₂) is formed. This er to steam
F F F F F F F F F F F F F F F F F F F	en and oxy en and oxy + eactions wh s. When st processes monium c	ter (H ₂ O) C Real rption of ygen . Ni O ₂ (g) oxygen hich take ceam (H2 ion.) → are, hloride (). heat is ca trogen re es place i 2O(v)) is Heat (NH₄Cl) in UCI	eacts wi + in the a passed n water	ith oxyge Heat tmosphe over red + & Co	en at abo ere when I hot coke CO(g) water ga onversion	ut 3000 $_{3000^{\circ}C}$ \rightarrow lightnin e, water + H ₂ (g) $_{5}$ n of wat	°C to form nitric oxide (NO). 2NO(g) nitric oxide g strikes. gas (CO + H ₂) is formed. This er to steam
F] ENDOTHI reaction which proceeds wite eat). Reaction between nitrog N ₂ (g) Nitrogen This is one of the major re Preparation of water gas eaction is also and endothe C(s) + Red hot coke Some other endothermic ❖ Dissolution of am	en and oxy en and oxy + eactions wh s. When st processes monium c	ter (H ₂ O) C Real rption of ygen . Ni O ₂ (g) oxygen hich take ceam (H2 ion.) → are, hloride (). heat is ca trogen re es place i 2O(v)) is Heat (NH₄Cl) in UCI	eacts wi + in the a passed n water	ith oxyge Heat tmosphe over rec + * Co n are	en at abo ere when I hot coke CO(g) water ga onversion	ut 3000 $3000^{\circ}C$ \rightarrow lightnin e, water $+ H_2(g)$ n of water $C \blacksquare (0)$	°C to form nitric oxide (NO). 2NO(g) nitric oxide g strikes. gas (CO + H₂) is formed. This er to steam
F F F F F F F F F F F F F F F F F F F	en and oxy en and oxy + eactions wh s. When st processes monium c	ter (H ₂ O) C Real rption of ygen . Ni O ₂ (g) oxygen hich take ceam (H2 ion.) → are, hloride (). heat is ca trogen re es place i 2O(v)) is Heat (NH₄Cl) in UCI	eacts wi + in the a passed n water reductio (i) In te	ith oxyge Heat tmosphe over red + • Cu N are erms of g	en at abo ere when I hot coke CO(g) · water ga onversion E A C I ain or loss	ut 3000° 3000°C \rightarrow lightnin e, water $+ H_2(g)$ n of wate $C \blacksquare O 1$ s of oxyge	°C to form nitric oxide (NO). 2NO(g) nitric oxide g strikes. gas (CO + H₂) is formed. This er to steam SS en or hydrogen.
F] ENDOTH reaction which proceeds wit eat). Reaction between nitrog N ₂ (g) Nitrogen This is one of the major re Preparation of water ga eaction is also and endothe C(s) + Red hot coke Some other endothermic ☆ Dissolution of am CIDATION	aO) with wa E R M I h the absor en and oxy + eactions wl s. When st rmic react H ₂ O(v) steam processes monium c s of describ	ter (H ₂ O) C Real ption of ygen . Ni $O_2(g)$ oxygen hich take team (H2 ion.) → are, hloride (R E D ing oxida). heat is ca trogen re es place i 2O(v)) is Heat (NH₄Cl) in UCT tion and p	eacts wi + in the a passed n water reductio (i) In te (ii) In t	ith oxyge Heat tmosphe over red + & Cu n are erms of g erms of g	en at abo ere when I hot coke CO(g) · water ga onversion E A C 1 ain or loss oss or gain	ut 3000° 3000°C \rightarrow lightnin e, water $+ H_2(g)$ n of wate f of oxygen n of elect	°C to form nitric oxide (NO). 2NO(g) nitric oxide g strikes. gas (CO + H₂) is formed. This er to steam SS en or hydrogen.
F ENDOTH reaction which proceeds wit eat). Reaction between nitrog N2(g) Nitrogen This is one of the major re Preparation of water ga eaction is also and endothe C(s) + Red hot coke Some other endothermic ☆ Dissolution of am XIDATION The two most common ways Oxidation and Reduction Any process which involves	aO) with wa E R M I h the absor en and oxy + eactions wh s. When st mic react H ₂ O(v) steam processes monium c s of describ on in term	ter (H ₂ O) C Real ption of ygen . Ni $O_2(g)$ oxygen hich take team (H2 ion.) → are, hloride (R E D ing oxida). heat is ca trogen re es place i 2O(v)) is Heat (NH₄Cl) in UCT tion and p	eacts wi + in the a passed n water reductio (i) In te (ii) In t	ith oxyge Heat tmosphe over red + & Cu n are erms of g erms of g	en at abo ere when I hot coke CO(g) · water ga onversion E A C 1 ain or loss oss or gain	ut 3000° 3000°C \rightarrow lightnin e, water $+ H_2(g)$ n of wate f of oxygen n of elect	°C to form nitric oxide (NO). 2NO(g) nitric oxide g strikes. gas (CO + H₂) is formed. This er to steam SS en or hydrogen.
F ENDOTHI reaction which proceeds with eat). Reaction between nitrog N ₂ (g) Nitrogen This is one of the major re Preparation of water gas eaction is also and endothe C(s) + Red hot coke Some other endothermic Some other endothermic Some other endothermic The two most common ways Oxidation and Reduction Any process which involves (i) Addition of oxygen	aO) with wa E R M I h the absor en and oxy + eactions wi s. When st rmic react H ₂ O(v) steam processes monium c s of describ on in term	ter (H ₂ O) C Real rption of ygen . Ni $O_2(g)$ oxygen hich take team (H2 ion.) → are, hloride (R E D ing oxida hs of gai). heat is ca trogen re es place i 2O(v)) is Heat (NH4Cl) in UCC	eacts wi + in the a passed n water C reductio (i) In ta (ii) In t s of oxy	ith oxyge Heat tmosphe over red + & Cu n are erms of g erms of g	en at abo ere when I hot coke CO(g) · water ga onversion E A C 1 ain or loss oss or gain	ut 3000° 3000°C \rightarrow lightnin e, water $+ H_2(g)$ n of wate f of oxygen n of elect	°C to form nitric oxide (NO). 2NO(g) nitric oxide g strikes. gas (CO + H₂) is formed. This er to steam SS en or hydrogen.
F] ENDOTH reaction which proceeds wit eat). Reaction between nitrog N₂(g) Nitrogen This is one of the major re Preparation of water ga action is also and endothe C(s) + Red hot coke Some other endothermic ♦ Dissolution of am XIDATION The two most common ways Oxidation and Reduction Any process which involves (i) Addition of oxygen	aO) with wa E R M I h the absor en and oxy + eactions wi s. When st rmic react H ₂ O(v) steam processes monium c s of describ on in term	ter (H ₂ O) C Real rption of ygen . Ni $O_2(g)$ oxygen hich take team (H2 ion.) → are, hloride (R E D ing oxida hs of gai). heat is ca trogen re es place i 2O(v)) is Heat (NH4Cl) in UCC	eacts wi + in the a passed n water C reductio (i) In ta (ii) In t s of oxy	ith oxyge Heat tmosphe over red + & Cu n are erms of g erms of g	en at abo ere when I hot coke CO(g) · water ga onversion E A C 1 ain or loss oss or gain	ut 3000° 3000°C \rightarrow lightnin e, water $+ H_2(g)$ n of wate f of oxygen n of elect	°C to form nitric oxide (NO). 2NO(g) nitric oxide g strikes. gas (CO + H₂) is formed. This er to steam SS en or hydrogen.
F] ENDOTHI reaction which proceeds with eat). Reaction between nitrog N2(g) Nitrogen This is one of the major re Preparation of water gas eaction is also and endothe C(s) + Red hot coke Some other endothermic ◆ Dissolution of am CIDATION The two most common ways Oxidation and Reduction Any process which involves (i) Addition of oxygen	aO) with wa E R M J h the absor en and oxy + eactions wi s. When st rmic react H ₂ O(v) steam processes monium ci s of describ on in term gen Is to	ermed as). heat is ca trogen re es place i 2O(v)) is Heat (NH4Cl) in UCC in or los s oxidatio	eacts wi + in the a passed n water C reductio (i) In ta (ii) In t s of oxy	ith oxyge Heat tmosphe over red + & Cu n are erms of g erms of g	en at abo ere when I hot coke CO(g) · water ga onversion E A C 1 ain or loss oss or gain	ut 3000° 3000°C \rightarrow lightnin e, water $+ H_2(g)$ n of wate f of oxygen n of elect	°C to form nitric oxide (NO). 2NO(g) nitric oxide g strikes. gas (CO + H₂) is formed. This er to steam SS en or hydrogen.
F] ENDOTHI reaction which proceeds with eat). Reaction between nitrog N₂(g) Nitrogen This is one of the major redingen Preparation of water gates and endothe C(s) + Red hot coke Some other endothermic Some other endothermic Some other endothermic Dissolution of am XIDATION The two most common ways Oxidation and Reduction Any process which involves (i) Addition of oxygen r (ii) Removal of hydrogen	aO) with wa E R M I h the absor en and oxy + eactions wi s. When st rmic react H ₂ O(v) steam processes monium c A N D C so of describ on in term gen Is to ctions	ermed as). heat is ca trogen re es place i 2O(v)) is Heat (NH4Cl) in UCC in or los s oxidatio	eacts wi + in the a passed n water C reductio (i) In ta (ii) In t s of oxy	ith oxyge Heat tmosphe over red + & Cu n are erms of g erms of g	en at abo ere when I hot coke CO(g) · water ga onversion E A C 1 ain or loss oss or gain	ut 3000° 3000°C \rightarrow lightnin e, water $+ H_2(g)$ n of wate f of oxygen n of elect	°C to form nitric oxide (NO). 2NO(g) nitric oxide g strikes. gas (CO + H₂) is formed. This er to steam SS en or hydrogen.

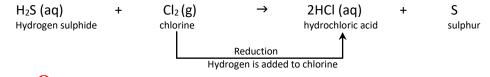
Burning of carbon: Carbon burns in the presence of oxygen to form carbon dioxide. This is an oxidation reaction because oxygen is added to carbon.

 $\begin{array}{ccc} & & & & & & \\ \text{Burning} \\ \text{C(s)} & + & & \text{O}_2(g) & \rightarrow & \text{CO}_2 \\ \text{Carbon} & & & & \text{oxygen} \end{array}$

Burning of magnesium and phosphorus: Magnesium and phosphorus also burn in the presence of oxygen forming their oxides. These are also oxidation reactions because oxygen is added to magnesium and phosphorus

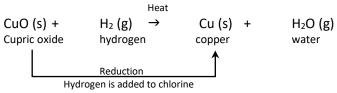
0 0			Burn			/0-		0		
	2Mg(s) + Magnesium	O ₂ (g) oxygen	→ Burn	2MgO(s magnesiun						
	P4(s) + Phosphorus	5O ₂ (s) oxygen	\rightarrow	2P ₂ O ₅ (s)		de				
	l of Hydro									
Oxidation o	f H ₂ S: Hydroger	n sulphide	e (H₂S) is	oxidised	by bror	mine (Br ₂)	to sulphur.			
	H ₂ S (aq) Hydrogen sulphide	+	Br ₂ (aq)	\rightarrow	2HBr (ac	ı) +	S sulphur		
					Oxidatio	n		↑		
				(Hydroger	n is remove	ed from H ₂ S)				
Oxidation o	f hydrochloric a	acid by m	anganes	se dioxid	e: Wher	n hydrochl	oric acid is	heated wi	th manga	nese dioxide
it gets oxidised	to chlorine.									
-					Heat					
4HCl	+	MnO_2		\rightarrow	$MnCl_2$	-	+ 2H ₂	0	+	2Cl ₂
Hydrochloric aci	d mangan	ese dioxide							chlorine	↑

Oxidation (Here, hydrogen is removed from HCl)


A process which involves

(*i*) Addition of hydrogen

Or (*ii*) Removal of oxygen is termed reduction. **•** Reduction is the reverse of oxidation. Examples of reduction reactions.....


(i) ADDITION OF HYDROGEN

Reaction between hydrogen sulphide and chlorine: Hydrogen sulphide (H₂S) when reacted with chlorine (Cl₂) gets oxidized to sulphur whereas chlorine (Cl₂) gets reduced to HCl.

(i) **Removal of Oxygen**

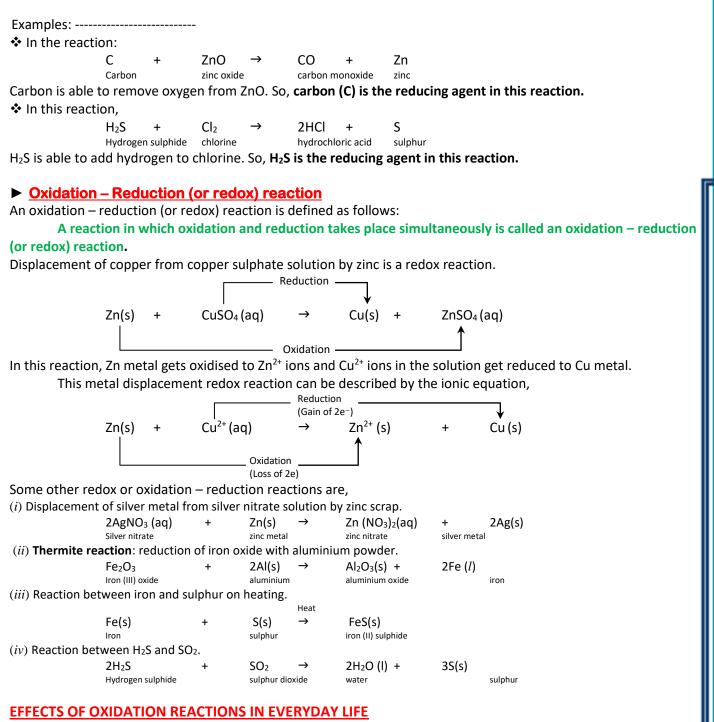
Reaction between heated cupric oxide and hydrogen: When hydrogen gas is passed over heated cupric oxide (CuO), CuO gets reduced to copper (Cu).

Oxidising and Reducing agents: -----

► The substance which can bring about oxidation of other substance is called an oxidising agent. In other words,

A substance which causes addition of oxygen or removal of hydrogen from other substance is called an oxidising agent.

Some common oxidising agents are, oxygen, chlorine, hydrogen peroxide, conc. sulphuric acid, potassium permanganate, potassium dichromate etc.


www.aepstudycircle.com **Q**

A E P STUDY CIRCLE

HEMISTRY

Many chemical reactions that occur around us are oxidation reaction. For example, burning of fuels, such as, Coal, LPG, Petrol etc., respiration, rusting of iron etc., are oxidation reactions. In this section, two typical processes due to oxidation are described

<u>CORROSION</u>

In our daily life, we see many metals that react with the environment. For example,

- ► Silver gets tarnished, i.e., it loses its shine
- Iron gets coated with a brittle brown coloured layer
- Copper and brass get a green coloured deposit on their surfaces
- ► Surface of aluminium becomes dull and loses its shine and so on.

"Slow destruction of metals due to their interaction with the environment is called corrosion".

Corrosion takes place on the exposed surface. When the upper layer of the metal gets corrected, then the inner surface of the metal gets exposed, and the corrosion then continues up to certain depth.

- Corrosion needs oxygen (or air) and moisture to take place.
- Corrosion is accelerated by the presence of electrolytes in water.
- Corrosion causes damage to the structures made of iron, such as, bridges, car bodies, iron railings, ships etc.

Corrosion is a very serious problem in industries. The chemical reactors and plants need replacement due to corrosion. This requires lot of money and time.

www.aepstudycircle.com Q

Prevention of corrosion:

Corrosion can be prevented

▶ By coating the surface with paint, oil, grease or varnish etc.

▶ By coating/depositing a thin layer of any other metal which does not corrode. For example, coating iron with zinc, brass with chromium etc.

RANCIDITY

Have you tasted or smelt the oil – containing food materials, such as, namkeen etc., left for a long time? The taste and smell of such foodstuff have gone bad. This is due to the degradation of oil/fat.

Rancidity is the natural oxidative chemical degradation of oils. Rancidity causes a change in the smell and taste of fat/ oils or any foodstuff containing oil.

Rancidity is due to a process which converts esters present in the oil into free fatty acids by reacting with air, moisture etc. Different oils become rancid after different time periods. The best way to prevent rancidity is to add an antioxidant in the foodstuff.

Keeping food in airtight containers helps to slow down oxidation, hence delays the rancidity.

Chips, namkeen manufacturers flush the package of chips/ namkeen with oxygen – free nitrogen gas. This also prevents the oxidation of oil/fat in the food material.

A E P: CONCEPTUALS.....

Q.1. Hydrogen and oxygen react to form water. Write the balanced chemical equation for this reaction.

Ans. The chemical equation for the reaction between hydrogen and oxygen to written as follows:

Step 1: The reactants and product are identified as follows:

Reactants: Hydrogen and oxygen

Step 2: Writing the formulae of reactants and product on either side of an arrow. The molecular formula of hydrogen is H_2 and that of oxygen is O_2 . So, the skeleton equation is,

		- ()		
H2(g)	+	O2(g)	\rightarrow	H ₂ O(I)

Step 3: Counting of the atoms of each element on both the sides gives,

Element	No. of atoms on the						
	Reactant side (left – hand side)	Product side (right - hand side)					
Н	2	2					
0	2	1					

The number of atoms of oxygen (O) in not equal on both the sides, viz., there are two atoms on the reactant side (left – hand side), while there is only one O atom on the product side (right – hand side). Thus, the number of oxygen atoms on both the sides can be made equal by placing a coefficient of 2 before H_2O (on the product side). Thus,

But, by doing so, the number of hydrogen atoms on the right – hand side has become four. On the left - hand side, there are only two hydrogen atoms. So, hydrogen atoms can be equalized by placing a coefficient of 2 before H_2 (on the reactant side). Then, the chemical equation becomes,

 $2H_2(g) + O_2(g) \rightarrow 2H_2O(I)$ Now, counting of the number of atoms of each element shows that there are four hydrogen atoms and two oxygen atoms on both the sides. Thus, the balanced chemical equation for the reaction between hydrogen and oxygen is,

 $2H_2(g) + O_2(g) \rightarrow 2H_2O(I)$

Q.2. Rewrite the following information in the form of a balanced chemical equation. "Magnesium burns in carbon dioxide to form magnesium oxide and carbon."

Ans. The reaction can be written as follows:

Magnesium	+	Carbon dioxide	\rightarrow	Magnesium oxide	+	Carbon
Mg(s)	+	CO ₂ (g)	\rightarrow	MgO(s)	+	C(s)

Inspection of this equation shows that it is not a balanced equation. The equation may be balanced by the hit – and – trial method, as follows.

(I) The balancing of the chemical equation may be started by balancing the oxygen atoms. This can be done by placing a coefficient 2 before MgO. So, the chemical equation may be rewritten as,

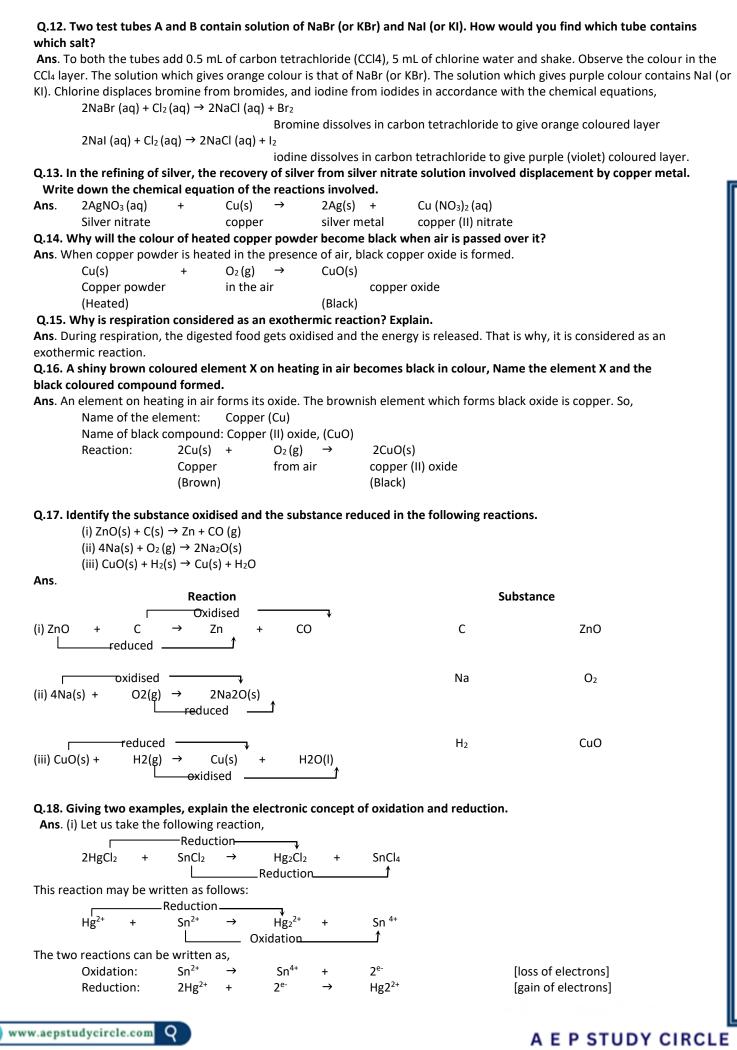
$$Mg(s) + CO_2(g) \rightarrow 2MgO(s) + C(s)$$

(II) Now, Mg can be balanced by placing a coefficient 2 before Mg. So, one gets,

2Mg(s) + $CO_2(g)$ \rightarrow 2MgO(s) + C(s)

- This is the balanced equation.
- Q. 3. Rewrite the following equation in a balanced form showing in it that Al(OH)₃ is an insoluble product. Al₂(SO₄)₃ + NaOH \rightarrow Al(OH)₃ + Na₂SO₄

Ans. T	he chemi	cal equation, Al ₂ (SO ₄) ₃	+	NaOH		→	Al(OH)		+	Na ₂ SO ₄
N	When hala	anced by the hit – a			l as follo	ws	AI(OH)	3	т	Na2504
·	When ball	Al ₂ (SO ₄) ₃	+	6 NaOł		→ →	2AI(OF	1)3	+	3Na ₂ SO ₄ (aq)
The fo	ormation of	of insoluble produ				n arrow p	•			
		(C ₂ H ₂) burns in ai			-		-			
,	Write the	balanced chemica	al equatio	n for thi	is reactio	on.				
		ints and products i			2,					
		: Acetylene (C ₂ H ₂)								
		Carbon dioxide (C	:O ₂) and w	ater (H ₂	0)					
The re		ay be written as,	0	(from a)	(m)	\rightarrow	Carbon	dioxide		+ Water
(I) The	Acetyle skeleton	ene + equation is,	Oxygen	(from ai	ir <i>)</i>	-	Carbon	uloxide		+ Water
(1) 1110	Skeleton	$C_2H_2(g)$	+	O ₂ (g)	\rightarrow	CO₂(g)		+	H₂O(I)	
(II) Ins	pection o						drogen, k		.,	lydrogen atoms are balanced.
										n the right, there is only one.
There	fore, CO ₂	(on RHS) should be	e multiplie	ed by 2.	The resu	lting equa	tion is,			
		C ₂ H ₂ (g)	+	O2(g)	\rightarrow	H2O (I)		+	2CO2(g	
		bserve the numbe			s. There a	are 5 on R	HS and c	only 2 on I	HS. Ther	efore, multiply
C	D ₂ (LHS) b	y 5/2 . The resultin			(-)				200 /	A Contraction of the second seco
(1)/)	Now mu	C ₂ H ₂ (g) tiply throughout b	+ 2 to cor	5/2 O ₂ (→ al coeffici	H ₂ O (I) ent to th		2CO ₂ (g	
(17)	now, mui	$2C_2H_2(g)$	+	50 ₂ (g)		al coerfici 2H₂O (I		4CO ₂ (g		inis gives,
		202112(8)	•	JO2(8)		21120 (1	, .	4002(8	/	
0.5.	Translate	the following sta	tements i	nto cher	mical equ	uations an	d then b	alance th	em.	
		gas burns in hydro							,	
		chloride reacts wit		-			and a pr	ecipitate	of bariun	n sulphate.
(i	ii) Hydrog	en sulphide gas bι	urns in air	to give v	water and	d sulphur	dioxide.			
		ium metal replace	s iron fror	n iron o	kide Fe ₂ C) ₂ giving a	luminiur	n avida a	nd iron	
-	/) Hydrog						nunnnun	n oxide al	nu iron.	
		en gas combines w	-	-	/e ammo	nia.	nummu	n oxide al	nu iron.	
	/i) Phosph	iorus burns in oxyg	gen to give	e phosph	ve ammo norus per	nia. ntoxide.			na iron.	
(\	/i) Phosph /ii) Sodiun	norus burns in oxyg n metal reacts with	gen to give h water to	e phosph give soo	ve ammo norus per dium hyd	nia. ntoxide. Iroxide an	d hydrog	gen gas.	na iron.	
(\ (\	/i) Phosph /ii) Sodiun /iii) Carbo	norus burns in oxyg n metal reacts with n disulphide burns	gen to give h water to s in air to g	e phosph give soo give carb	ve ammo norus per dium hyd oon dioxid	nia. ntoxide. Iroxide an de and sul	d hydrog	gen gas.	na iron.	[skeleton equation]
(\	/i) Phosph /ii) Sodiun	norus burns in oxyg n metal reacts with n disulphide burns Cl2 (g) +	gen to give h water to	e phosph give soo give carb →	ve ammo norus per dium hyd oon dioxid HCl (g)	nia. ntoxide. Iroxide an de and sul	d hydrog phur dio	gen gas. xide.		[skeleton equation]
(\ (\	/i) Phosph /ii) Sodiun /iii) Carbo	norus burns in oxyg n metal reacts with n disulphide burns Cl ₂ (g) + Chlorine	gen to give h water to in air to و H2 (g)	e phosph give soo give carb → hydrog	ve ammo norus per dium hyd oon dioxid HCI (g) gen	nia. ntoxide. Iroxide an de and sul	d hydrog phur dio	gen gas.		
(\ (\	vi) Phosph vii) Sodiun viii) Carbo (i)	n metal reacts with n disulphide burns Cl ₂ (g) + Chlorine Cl ₂ (g) +	gen to give h water to in air to و H2 (g) H2 (g)	e phosph o give soo give carb → hydrog →	ve ammo norus per dium hyd oon dioxid HCI (g) gen 2HCI (g	nia. ntoxide. Iroxide an de and sul g)	d hydrog phur dio hydrog	gen gas. xide. en chloric		[skeleton equation] [balanced equation]
(\ (\	/i) Phosph /ii) Sodiun /iii) Carbo	norus burns in oxyg n metal reacts with n disulphide burns Cl ₂ (g) + Chlorine	gen to give h water to in air to و H2 (g) H2 (g)	e phosph o give soo give carb → hydrog →	ve ammo horus per dium hyd bon dioxid HCI (g) gen 2HCI (g → Bariun	nia. ntoxide. Iroxide an de and sul g)	d hydrog phur dio hydrog e + Zinc c	gen gas. xide. en chloric		
(\ (\	vi) Phosph vii) Sodiun viii) Carbo (i) (ii)	norus burns in oxyg n metal reacts with n disulphide burns Cl₂ (g) + Chlorine Cl₂ (g) + Barium chloride BaCl₂ (aq) ► The equation	gen to give h water to s in air to g H ₂ (g) H ₂ (g) H ₂ (g) + Zinc su + ZnS(n is baland	e phosph o give soo give carb → hydrog → Ilphate - D₄ (aq)	ve ammo horus per dium hyd bon dioxid HCI (g) gen 2HCI (g → Bariun →	nia. htoxide. Iroxide an de and sul g) n sulphate	d hydrog phur dio hydrog e + Zinc c	gen gas. xide. en chloric hloride		
(\ (\	vi) Phosph vii) Sodiun viii) Carbo (i)	norus burns in oxyg n metal reacts with n disulphide burns Cl₂ (g) + Chlorine Cl₂ (g) + Barium chloride BaCl₂ (aq) ► The equatio Hydrogen sulph	gen to give h water to s in air to g H ₂ (g) H ₂ (g) + Zinc su + ZnSC n is balance hide +	e phosph o give soo give carb → hydrog → Ilphate - D₄ (aq)	ve ammo horus per dium hyd bon dioxid HCI (g) gen 2HCI (g → Bariun →	nia. htoxide. lroxide an de and sul g) n sulphate BaSO4(s) Water	d hydrog phur dio hydrog e + Zinc c	gen gas. xide. en chloric hloride hCl ₂ (aq) +	de sulphur	[balanced equation]
(\ (\	vi) Phosph vii) Sodiun viii) Carbo (i) (ii)	norus burns in oxyg n metal reacts with n disulphide burns Cl₂ (g) + Chlorine Cl₂ (g) + Barium chloride BaCl₂ (aq) ► The equation	gen to give h water to s in air to g H ₂ (g) H ₂ (g) e + Zinc su + ZnS(n is baland hide + O ₂ (g)	e phosph o give soo give carb → hydrog → Ilphate - D₄ (aq) ced as su Air	ve ammo norus per dium hyd oon dioxid HCI (g) gen 2HCI (g → Bariun → uch.	nia. htoxide. Iroxide an de and sul de and sul g) n sulphate BaSO4(s)	d hydrog phur dio hydrog e + Zinc c	gen gas. xide. en chloric hloride nCl ₂ (aq)	de sulphur	[balanced equation]
(\ (\	vi) Phosph vii) Sodiun viii) Carbo (i) (ii)	norus burns in oxyg n metal reacts with n disulphide burns Cl₂ (g) + Chlorine Cl₂ (g) + Barium chloride BaCl₂ (aq) ► The equation Hydrogen sulph H₂S (g) +	gen to give h water to s in air to g $H_2(g)$ $H_2(g)$ e + Zinc su + ZnSC n is balance hide + $O_2(g)$ (From a	e phosph o give soo give carb → hydrog → Ilphate - D₄ (aq) ced as su Air	ve ammo horus per dium hyd bon dioxid HCI (g) gen 2HCI (g → Bariun → uch. →	nia. htoxide. Iroxide an de and sul g) n sulphate BaSO4(s) Water H2O (I)	d hydrog phur dio hydrog e + Zinc c + Zr	gen gas. xide. en chloric hloride nCl ₂ (aq) + +	de sulphur SO ₂ (g)	[balanced equation] dioxide [skeleton equation]
(\ (\	vi) Phosph vii) Sodiun viii) Carbo (i) (ii) (iii)	norus burns in oxyg n metal reacts with n disulphide burns Cl₂ (g) + Chlorine Cl₂ (g) + Barium chloride BaCl₂ (aq) ► The equation Hydrogen sulph H₂S (g) + 2H₂S (g) +	gen to give h water to is in air to g $H_2(g)$ H_2	e phosph o give soo give carb → hydrog → llphate - D4 (aq) ced as su Air ir)	ve ammo horus per dium hyd bon dioxid HCI (g) gen 2HCI (g → Bariun → uch. → →	nia. htoxide. Iroxide an de and sul s) n sulphate BaSO4(s) Water H ₂ O (I) 2H ₂ O (I)	d hydrog phur dio hydrog e + Zinc c + Zr	gen gas. xide. en chloric hloride hCl ₂ (aq) +	de sulphur SO ₂ (g)	[balanced equation]
(\ (\	vi) Phosph vii) Sodiun viii) Carbo (i) (ii)	norus burns in oxyg n metal reacts with n disulphide burns Cl₂ (g) + Chlorine Cl₂ (g) + Barium chloride BaCl₂ (aq) ► The equation Hydrogen sulph H₂S (g) + 2H₂S (g) + Aluminium met	gen to give h water to s in air to g H_2 (g) H_2 (g) H_2 (g) H_2 (g) H_2 (g) H_2 (g) (From a $3O_2$ (g) cal + Ferric	e phosph give soc give carb → hydrog → llphate - D₄ (aq) ced as su Air ir) c oxide -	ve ammo horus per dium hyd oon dioxid HCI (g) gen 2HCI (g → Bariun → ach. → ach. → Alumir	nia. htoxide. Iroxide an de and sul asod n sulphate BaSO4(s) Water H ₂ O (I) 2H ₂ O (I) 1000 0000	d hydrog phur dio hydrog e + Zinc c + Zr) + e + Iron	gen gas. xide. en chloric hloride hCl ₂ (aq) + + 2SO ₂ (g)	de sulphur SO ₂ (g)	[balanced equation] dioxide [skeleton equation] [balanced equation]
(\ (\	vi) Phosph vii) Sodiun viii) Carbo (i) (ii) (iii) (iii)	norus burns in oxyg n metal reacts with n disulphide burns Cl₂ (g) + Chlorine Cl₂ (g) + Barium chloride BaCl₂ (aq) ► The equation Hydrogen sulph H₂S (g) + 2H₂S (g) + Aluminium met Al(s) +	gen to give h water to g in air to g H ₂ (g) H ₂ (g) H 2 (g) e + Zinc su + ZnSC n is baland hide + O ₂ (g) (From a 3O ₂ (g) tal + Ferric Fe ₂ O ₃ (s)	e phosph give soc give carb → hydrog → hydrog → ced as su Air ir) coxide -	ve ammo horus per dium hyd oon dioxid HCI (g) gen 2HCI (g → Bariun → ach. → Alumir →	nia. htoxide. Iroxide an de and sul a s) n sulphate BaSO4(s) Water H ₂ O (I) 2H ₂ O (I) 2H ₂ O (I)	d hydrog phur dio hydrog e + Zinc c + Zr) + e + Iron +	gen gas. xide. en chloric hloride hCl2 (aq) + + 2SO2 (g) Fe(s)	de sulphur SO ₂ (g)	[balanced equation] dioxide [skeleton equation]
(\ (\	vi) Phosph vii) Sodiun viii) Carbo (i) (ii) (iii) (iii)	norus burns in oxyg n metal reacts with n disulphide burns Cl₂ (g) + Chlorine Cl₂ (g) + Barium chloride BaCl₂ (aq) ► The equation Hydrogen sulph H₂S (g) + 2H₂S (g) + Aluminium met Al(s) + seleton equation ca	gen to give h water to g in air to g H ₂ (g) H ₂ (g) e + Zinc su + ZnSC n is baland hide + O ₂ (g) (From a 3O ₂ (g) (Erom a 3O ₂ (g) cal + Ferric Fe ₂ O ₃ (s) an be bala	e phosph give soo give carb → hydrog → hydrog → llphate - O4 (aq) ced as su Air ir) coxide -) anced by	ye ammo horus per dium hyd yon dioxid HCI (g) gen 2HCI (g → Bariun → uch. → uch. → Alumir → the hit -	nia. htoxide. Iroxide and de and sul a and sul n sulphate BaSO4(s) Water H ₂ O (l) 2H ₂ O (l) 2H ₂ O (l) Al ₂ O ₃ (s) - and - tria	d hydrog phur dio hydrog e + Zinc c + Zr) + e + Iron) + al metho	gen gas. xide. en chloric hloride hCl2 (aq) + + 2SO2 (g) Fe(s) d to get,	de sulphur SO ₂ (g)	[balanced equation] dioxide [skeleton equation] [balanced equation] [skeleton equation]
(\ (\	vi) Phosph vii) Sodiun viii) Carbo (i) (ii) (ii) (iii) (iii) This sk	norus burns in oxyg n metal reacts with n disulphide burns Cl₂ (g) + Chlorine Cl₂ (g) + Barium chloride BaCl₂ (aq) ► The equation Hydrogen sulph H₂S (g) + 2H₂S (g) + Aluminium met Al(s) + seleton equation ca 2Al(s) +	gen to give h water to in air to g H ₂ (g) H ₂ (g) H_2 (e phosph give soc give carb → hydrog → llphate - D4 (aq) ced as su Air ir) c oxide - anced by)	ve ammo horus per dium hyd bon dioxid HCI (g) gen 2HCI (g → Bariun → uch. → uch. → Alumir → the hit - →	nia. ntoxide. Iroxide and de and sul de and sul s) n sulphate BaSO4(s) Water H ₂ O (I) 2H ₂ O (I) 2H ₂ O (I) al ₂ O ₃ (s) - and – tria Al ₂ O ₃ (s)	d hydrog phur dio hydrog e + Zinc c + Zr) + e + Iron) + al metho	gen gas. xide. en chloric hloride hCl2 (aq) + + 2SO2 (g) Fe(s)	de sulphur SO ₂ (g)	[balanced equation] dioxide [skeleton equation] [balanced equation]
(\ (\	vi) Phosph vii) Sodiun viii) Carbo (i) (ii) (iii) (iii)	n metal reacts with n metal reacts with n disulphide burns Cl₂ (g) + Chlorine Cl₂ (g) + Barium chloride BaCl₂ (aq) ► The equation Hydrogen sulph H₂S (g) + 2H₂S (g) + Aluminium met Al(s) + seleton equation ca 2Al(s) + Hydrogen gas +	gen to give h water to g in air to g H ₂ (g) H ₂ (g) H ₂ (g) e + Zinc su + ZinC su + ZinC su (From a 3O ₂ (g) (g) (From a 3O ₂ (g) (g) tal + Ferrio Fe ₂ O ₃ (s) Nitrogen	e phosph give soc give carb → hydrog → llphate - D4 (aq) ced as su Air ir) c oxide - anced by)	ve ammo horus per dium hyd bon dioxid HCI (g) gen 2HCI (g → Bariun → uch. → uch. → Alumir → the hit - →	nia. htoxide. lroxide and de and sul and and sul and and sul n sulphate BaSO4(s) Water H ₂ O (l) 2H ₂ O (l) 2H ₂ O (l) 2H ₂ O (l) and - tria Al ₂ O ₃ (s) and - tria Al ₂ O ₃ (s) and - tria	d hydrog phur dio hydrog e + Zinc c + Zr) + e + Iron) + al metho	gen gas. xide. en chloric hloride hCl2 (aq) + + 2SO2 (g) Fe(s) d to get,	de sulphur SO ₂ (g)	[balanced equation] dioxide [skeleton equation] [balanced equation] [skeleton equation]
(\ (\	vi) Phosph vii) Sodiun viii) Carbo (i) (ii) (ii) (iii) (iii) (iv) This sk (v)	norus burns in oxyg n metal reacts with n disulphide burns Cl₂ (g) + Chlorine Cl₂ (g) + Barium chloride BaCl₂ (aq) ► The equation Hydrogen sulph H₂S (g) + 2H₂S (g) + Aluminium met Al(s) + seleton equation ca 2Al(s) + Hydrogen gas +	gen to give h water to in air to g H ₂ (g) H ₂ (g) H ₂ (g) e + ZnSc n is baland hide + O ₂ (g) (From a 3O ₂ (g) cal + Ferrio Fe ₂ O ₃ (s) an be bala Fe ₂ O ₃ (s) Nitrogen N ₂ (g)	e phosph give soc give carb \rightarrow hydrog \rightarrow llphate - O_4 (aq) ced as su Air ir) c oxide - anced by gas $\rightarrow A$	ve ammo horus per dium hyd oon dioxid HCI (g) gen 2HCI (g → Bariun → uch. → → Alumir → the hit - → Ammonia	nia. htoxide. lroxide and de and sul and and sul and and sul n sulphate BaSO4(s) Water H ₂ O (l) 2H ₂ O (l) 2H ₂ O (l) 2H ₂ O (l) and - tria Al ₂ O ₃ (s) and - tria Al ₂ O ₃ (s) and - tria	d hydrog phur dio hydrog e + Zinc c + Zr) + e + Iron) + al metho	gen gas. xide. en chloric hloride hCl2 (aq) + + 2SO2 (g) Fe(s) d to get,	de sulphur SO ₂ (g)	[balanced equation] dioxide [skeleton equation] [balanced equation] [skeleton equation] [balanced equation]
(\ (\	vi) Phosph vii) Sodiun viii) Carbo (i) (ii) (ii) (iii) (iv) This sk (v) The ba	norus burns in oxyg n metal reacts with n disulphide burns $Cl_2(g) +$ Chlorine $Cl_2(g) +$ Barium chloride BaCl ₂ (aq) The equation Hydrogen sulph H ₂ S(g) + 2H ₂ S(g) + 2H ₂ S(g) + 2H ₂ S(g) + aluminium met Al(s) + teleton equation ca 2Al(s) + Hydrogen gas + H ₂ (g) + alanced equation is 3H ₂ (g) +	gen to give h water to g in air to g H ₂ (g) H ₂ (g) e + Zinc su + ZnS(n is baland hide + O ₂ (g) (From a 3O ₂ (g) (Frogen N ₂ (g) S, N ₂ (g)	e phosph give soc give carb → hydrog → llphate - O_4 (aq) ced as su Air ir) coxide - anced by gas → A →	ve ammo horus per dium hyd yon dioxic HCl (g) gen 2HCl (g > Bariun \rightarrow uch. \rightarrow \rightarrow Alumir \rightarrow the hit - \rightarrow NH ₃ (g) 2NH ₃ (g)	nia. ntoxide. Iroxide and de and sul a and sul n sulphate BaSO4(s) Water H ₂ O (I) 2H ₂ O (I) 2H ₂ O (I) 2H ₂ O (I) a dl ₂ O ₃ (s) a dl ₂ O ₃ (s)	d hydrog phur dio hydrog e + Zinc c + Zr) + e + Iron) + al metho	gen gas. xide. en chloric hloride hCl2 (aq) + + 2SO2 (g) Fe(s) d to get,	de sulphur SO ₂ (g)	[balanced equation] dioxide [skeleton equation] [balanced equation] [skeleton equation] [balanced equation]
(\ (\	vi) Phosph vii) Sodiun viii) Carbo (i) (ii) (ii) (iii) (iii) (iv) This sk (v)	norus burns in oxyg n metal reacts with n disulphide burns $Cl_2(g) +$ Chlorine $Cl_2(g) +$ Barium chloride BaCl ₂ (aq) The equation Hydrogen sulph H ₂ S(g) + 2H ₂ S(g) + 2H ₂ S(g) + 2H ₂ S(g) + eleton equation ca 2Al(s) + Hydrogen gas + H ₂ (g) + elanced equation is 3H ₂ (g) + Phosphorus + C	gen to give h water to g in air to g H ₂ (g) H ₂ (g) e + Zinc su + Zinc su + ZinSC ide $+$ O ₂ (g) (From a 3O ₂ (g) (From a 3O ₂ (g) (From a 3O ₂ (g) (From a 3O ₂ (g) (S) Nitrogen N ₂ (g) (S) N ₂ (g) (S) (S) (S) (S) (S) (S) (S) (S	e phosph give soc give carb → hydrog → llphate - O_4 (aq) ced as su Air ir) coxide - anced by gas → A →	ye ammo horus per dium hyd bon dioxid HCI (g) gen 2HCI (g → Bariun → uch. → auch. → Alumir → the hit - → the hit - Ammonia NH ₃ (g) 2NH ₃ (g	nia. ntoxide. Iroxide and de and sul a and sul a and sul b asO4(s) Water H2O (I) 2H2O (I) 2H2O (I) 2H2O (I) a Al2O3(s) a and - tria Al2O3(s) b aso b aso a and - tria Al2O3(s) a and - tria b aso b aso b aso b aso control of the second a and sul b aso b aso b aso control of the second b aso control of the second b aso b aso b aso control of the second b aso control of the second control of the seco	d hydrog phur dio hydrog e + Zinc c + Zr) + e + Iron) + al metho	gen gas. xide. en chloric hloride hCl2 (aq) + + 2SO2 (g) Fe(s) d to get,	de sulphur SO ₂ (g)	[balanced equation] dioxide [skeleton equation] [balanced equation] [skeleton equation] [balanced equation] [skeleton equation] [balanced equation]
(\ (\	vi) Phosph vii) Sodiun viii) Carbo (i) (ii) (iii) (iii) (iv) This sk (v) The ba (vi)	norus burns in oxyg n metal reacts with n disulphide burns $Cl_2(g) +$ Chlorine $Cl_2(g) +$ Barium chloride BaCl ₂ (aq) The equation Hydrogen sulph H ₂ S (g) + 2H ₂ S (g) + 2H ₂ S (g) + Aluminium met Al(s) + teleton equation ca 2Al(s) + Hydrogen gas + H ₂ (g) + and call a cal	gen to give h water to g in air to g H ₂ (g) H ₂ (g) e + Zinc su + Zinc	e phosph give soc give carb → hydrog → llphate - O_4 (aq) ced as su Air ir) coxide - anced by gas → A →	ve ammo horus per dium hyd yon dioxic HCl (g) gen 2HCl (g > Bariun \rightarrow uch. \rightarrow \rightarrow Alumir \rightarrow the hit - \rightarrow NH ₃ (g) 2NH ₃ (g)	nia. ntoxide. Iroxide and de and sul a and sul a and sul b asO4(s) Water H2O (I) 2H2O (I) 2H2O (I) 2H2O (I) a Al2O3(s) a and - tria Al2O3(s) b aso b aso a and - tria Al2O3(s) a and - tria b aso b aso b aso b aso control of the second a and sul b aso b aso b aso control of the second b aso control of the second b aso b aso b aso control of the second b aso control of the second control of the seco	d hydrog phur dio hydrog e + Zinc c + Zr) + e + Iron) + al metho	gen gas. xide. en chloric hloride hCl2 (aq) + + 2SO2 (g) Fe(s) d to get,	de sulphur SO ₂ (g)	[balanced equation] dioxide [skeleton equation] [balanced equation] [skeleton equation] [balanced equation] [skeleton equation]
(\ (\	vi) Phosph vii) Sodiun viii) Carbo (i) (ii) (iii) (iii) (iv) This sk (v) The ba (vi)	norus burns in oxyg n metal reacts with n disulphide burns Cl ₂ (g) + Chlorine Cl ₂ (g) + Barium chloride BaCl ₂ (aq) ► The equation Hydrogen sulph H ₂ S (g) + 2H ₂ S (g) + Aluminium meta Al(s) + celeton equation ca 2Al(s) + Hydrogen gas + H ₂ (g) + celeton equation is 3H ₂ (g) + Phosphorus + C P ₄ (s) + celen equation is	gen to give h water to in air to g H ₂ (g) H ₂ (g) H ₂ (g) e + Zinc su + ZinC su + ZinC su + ZinC su (From a 3O ₂ (g) (g) (From a 3O ₂ (g) (g) (al + Ferric Fe ₂ O ₃ (s) Nitrogen N ₂ (g) (s) N ₂ (g) (s) N ₂ (g) (s) N ₂ (g) (s) (s) (s) (s) (s) (s) (s) (s	e phosph give soc give carb \rightarrow hydrog \rightarrow llphate - D_4 (aq) ced as su Air ir) c oxide - inced by gas $\rightarrow A$ \rightarrow Phospho \rightarrow	ve ammo horus per dium hyd bon dioxic HCl (g) gen 2HCl (g \rightarrow Bariun \rightarrow uch. \rightarrow \rightarrow \rightarrow \rightarrow Alumir \rightarrow \rightarrow \rightarrow Alumir \rightarrow \rightarrow $Alumir \rightarrowAlumir \rightarrowAlumir \rightarrowAlumir \rightarrowAlumir \rightarrowAlumir \rightarrowAlumir \rightarrowAlumir \rightarrowAlumir \rightarrowAlumir aAlumir BarAlumir BarAlumir BarAlumir BarAlumir BarAlumir (alumir)BarAlumir (alumir)BarBarAlumir (alumir)BarAlumir (alumir)Alumir (alumir)Alumir)$	nia. ntoxide. Iroxide and de and sulf and and sulf n sulphate BaSO4(s) Water H ₂ O (I) 2H ₂ O (I) 2H ₂ O (I) 2H ₂ O (I) and – tria Al ₂ O ₃ (s) and – tria and – tria and – tria and – tria black (s) and – tria black (s) and – tria black (s) and – tria and – tria black (s) and – tria black (s) black (s) bla	d hydrog phur dio hydrog e + Zinc c + Zr) + e + Iron) + al metho	gen gas. xide. en chloric hloride hCl2 (aq) + + 2SO2 (g) Fe(s) d to get,	de sulphur SO ₂ (g)	[balanced equation] dioxide [skeleton equation] [balanced equation] [balanced equation] [skeleton equation] [skeleton equation] [balanced equation] [skeleton equation]
(\ (\	vi) Phosph vii) Sodiun viii) Carbo (i) (ii) (ii) (iii) (iii) (iv) This sk (v) The ba (vi) The ba	norus burns in oxyg n metal reacts with n disulphide burns $Cl_2(g) +$ Chlorine $Cl_2(g) +$ Barium chloride BaCl ₂ (aq) The equation Hydrogen sulph H ₂ S(g) + 2H ₂ S(g) + Aluminium meta Al(s) + seleton equation ca 2Al(s) + Hydrogen gas + H ₂ (g) + alanced equation is 3H ₂ (g) + Phosphorus + O P ₄ (s) + alanced equation is P ₄ (s) +	gen to give h water to in air to g H ₂ (g) H ₂ (g) H ₂ (g) e + Zinc su + ZinC su + ZinC su + ZinC su (From a 3O ₂ (g) (From a 3O ₂ (g) (S) Nitrogen N ₂ (g) (S) (S) (S) (S) (S) (S) (S) (S	e phosph give soc give carb \rightarrow hydrog \rightarrow llphate - O_4 (aq) ced as su Air ir) c oxide - anced by gas $\rightarrow A$ \rightarrow Phospho \rightarrow \rightarrow	ye ammo horus per dium hyd yon dioxic HCI (g) gen 2HCI (g → Bariun → uch. → → Alumir → the hit – → Mmonia NH ₃ (g) 2NH ₃ (g prus pen P ₂ O ₅ (s)	nia. ntoxide. Iroxide and de and sul and and sul n sulphate BaSO4(s) Water H ₂ O (I) 2H ₂ O (I) 2H ₂ O (I) 2H ₂ O (I) Al ₂ O ₃ (s) and – tria Al ₂ O ₃ (s) and	d hydrog phur dio hydrog e + Zinc c + Zr + zr + e + Iron + al metho + +	gen gas. xide. en chloric hloride hCl2 (aq) + + 2SO2 (g) Fe(s) d to get,	de sulphur SO ₂ (g)	[balanced equation] dioxide [skeleton equation] [balanced equation] [skeleton equation] [balanced equation] [skeleton equation] [balanced equation]
(\ (\	vi) Phosph vii) Sodiun viii) Carbo (i) (ii) (iii) (iii) (iv) This sk (v) The ba (vi)	norus burns in oxyg n metal reacts with n disulphide burns $Cl_2(g) +$ Chlorine $Cl_2(g) +$ Barium chloride BaCl ₂ (aq) The equation Hydrogen sulph H ₂ S(g) + 2H ₂ S(g) + 2H ₂ S(g) + 2H ₂ S(g) + Aluminium met Al(s) + teleton equation ca 2Al(s) + Hydrogen gas + H ₂ (g) + teleton equation is 3H ₂ (g) + Phosphorus + C P ₄ (s) + sodium + Wate	gen to give h water to g in air to g H ₂ (g) H ₂ (g) H + ZnS(n is baland hide + O ₂ (g) (From a 3O ₂ (g) (From a (From a (Fro	e phosph p give soo give carb → hydrog → llphate - D4 (aq) ced as su Air ir) coxide - anced by gas → A → Phospho → and hydrog	ve ammo horus per dium hyd yon dioxic HCl (g) gen 2HCl (g Bariun \rightarrow ach. \rightarrow \rightarrow Alumir \rightarrow the hit - \rightarrow Mmonia NH ₃ (g) 2NH ₃ (g) 2P ₂ O ₅ (s) 2P ₂ O ₅ (s)	nia. ntoxide. Iroxide and de and sul a and sul n sulphate BaSO4(s) Water H2O (I) 2H2O (I nium oxid Al2O3(s) - and - tria Al2O3(s) - and - tria Al2O3(s) - and - tria (s) s) ydrogen a	d hydrog phur dio hydrog e + Zinc c + Zr) + e + Iron) + al metho) +	gen gas. xide. en chloric hloride hCl2 (aq) + + 2SO2 (g) Fe(s) d to get, 2Fe(s)	de sulphur SO ₂ (g)	[balanced equation] dioxide [skeleton equation] [balanced equation] [balanced equation] [skeleton equation] [balanced equation] [balanced equation] [skeleton equation]
(\ (\	vi) Phosph vii) Sodiun viii) Carbo (i) (ii) (iii) (iii) (iv) This sk (v) The ba (vi) The ba (vi) The ba (vi)	norus burns in oxyg n metal reacts with n disulphide burns $Cl_2(g) +$ Chlorine $Cl_2(g) +$ Barium chloride BaCl ₂ (aq) The equation Hydrogen sulph H ₂ S(g) + 2H ₂ S(g) + 2H ₂ S(g) + 2H ₂ S(g) + 2H ₂ S(g) + Hydrogen gas + H ₂ (g) + teleton equation ca 2Al(s) + Hydrogen gas + H ₂ (g) + teleton equation is 3H ₂ (g) + Phosphorus + C P ₄ (s) + sodium + Wate Na(s) +	gen to give h water to g in air to g H ₂ (g) H ₂ (g) e + Zinc su + ZnS(hide + O ₂ (g) (From a 3O ₂ (g) (From a (From a (Fro	e phosph p give soo give carb → hydrog → llphate - D4 (aq) ced as su Air ir) coxide - anced by gas → A → Phospho → and hydrog	ye ammo horus per dium hyd yon dioxic HCI (g) gen 2HCI (g → Bariun → uch. → → Alumir → the hit – → Mmonia NH ₃ (g) 2NH ₃ (g prus pen P ₂ O ₅ (s)	nia. ntoxide. Iroxide and de and sul a and sul n sulphate BaSO4(s) Water H2O (I) 2H2O (I nium oxid Al2O3(s) - and - tria Al2O3(s) - and - tria Al2O3(s) - and - tria (s) s) ydrogen a	d hydrog phur dio hydrog e + Zinc c + Zr + zr + e + Iron + al metho + +	gen gas. xide. en chloric hloride hCl2 (aq) + + 2SO2 (g) Fe(s) d to get,	de sulphur SO ₂ (g)	[balanced equation] dioxide [skeleton equation] [balanced equation] [balanced equation] [skeleton equation] [skeleton equation] [balanced equation] [skeleton equation]
(\ (\	vi) Phosph vii) Sodiun viii) Carbo (i) (ii) (iii) (iii) (iv) This sk (v) The ba (vi) The ba (vi) The ba	norus burns in oxyg n metal reacts with n disulphide burns $Cl_2(g) +$ Chlorine $Cl_2(g) +$ Barium chloride BaCl ₂ (aq) The equation Hydrogen sulph H ₂ S(g) + 2H ₂ S(g) + 2H ₂ S(g) + 2H ₂ S(g) + Aluminium met Al(s) + teleton equation ca 2Al(s) + Hydrogen gas + H ₂ (g) + teleton equation is 3H ₂ (g) + Phosphorus + C P ₄ (s) + sodium + Wate	gen to give h water to g in air to g H ₂ (g) H ₂ (g) e + Zinc su + ZnS(hide + O ₂ (g) (From a 3O ₂ (g) (From a (From a (Fro	e phosph o give soo give carb → hydrog → llphate - O4 (aq) ced as su Air ir) coxide -) anced by) gas → A → Phospho → im hydrog	ve ammo horus per dium hyd yon dioxic HCl (g) gen 2HCl (g Bariun \rightarrow ach. \rightarrow \rightarrow Alumir \rightarrow the hit - \rightarrow Mmonia NH ₃ (g) 2NH ₃ (g) 2P ₂ O ₅ (s) 2P ₂ O ₅ (s)	nia. ntoxide. Iroxide and de and sul an sulphate BaSO4(s) Water H2O (l) 2H2O (l) 2H2O (l) 2H2O (l) 2H2O (l) Al2O3(s) - and - tria Al2O3(s) - and - tria Al2O3(s) - and - tria (aq)	d hydrog phur dio hydrog e + Zinc c + Zr) + e + Iron) + al metho) +	gen gas. xide. en chloric hloride hCl2 (aq) + + 2SO2 (g) Fe(s) d to get, 2Fe(s)	de sulphur SO ₂ (g)	[balanced equation] dioxide [skeleton equation] [balanced equation] [balanced equation] [skeleton equation] [balanced equation] [balanced equation] [skeleton equation]


www.aepstudycircle.com Q

(viii)	Carbon dis	ulphid	e + Air	→ Carbon	dioxide	+ Sulphu	r dioxide					
. ,		5 ₂ (I)	+	O₂ (From ai	\rightarrow	CO ₂ (g)		+	SO ₂ (g)		[skeleton equa	ation]
	CS	52 (I)	+	30 ₂	\rightarrow	CO ₂ (g)		+	2SO ₂ (g)		[balanced equa	ation]
Q.6. W	/hy is decom	npositi	on read	ction called	l opposi	te of com	bination	reaction	? Write e	quatior	ns for these reactions.	
	-	-			site of c		on reactio			-	by the following reaction	s:
	2H	H₂ (g)		+	O2 (g)	\rightarrow .		Combin	ation rea	ction		1
	Ну	ydroge	n		oxygen		water					
						ectrolysis						
Decomp	position read	ction		المنام الم	2H ₂ O (I		2H ₂ (g)	-	+	O ₂ (g)		
08 14/	aat is the dif	foron	o hotw	Acidulat			hydroge mpositior		ac? Write	oxyger	ation for each type.	
							-			-	whereas in decompositior	n
	ns, a compou									oounu,		
	, mbination a		-	-				-				
Combin	ation reaction	on:						Burn				
				2Mg(s)		+	O2 (g)	\rightarrow	2MgO(s)		
Decomp	position reac	tion:		/	Heat		/ .		/ >			
	hat is differe		-	CaCO₃ (s		→ 	CaO(s)		CO ₂ (g)			
				-			-				e equations for these rea uble displacement, two	ctions.
	ent atoms or			-				uispiaceu	i, wherea	smuou	ible displacement, two	
	ement reacti		is alle u	isplaced by			groups.					
Displace		n(s)	+	CuSO4 (a	ia)	\rightarrow	ZnSO4 (a	aa)	+	Cu(s)		
Double	displacemer	• •			-17		(17		(-)		
	-	gNO₃ (a		+	NaCl (a	aq)	\rightarrow	AgCl (s)		+	NaNO₃ (aq)	
Q.10. Cl	lasssifv each	ofthe	e follow	ving reaction	ons as co	ombinatio	on. decon	nposition	ı. displac	ement	or double displacement	
reacti	-			0			,		,		· · · · · · · ·	
(1)			2KNO₃	s(s)	\rightarrow	2KNO2(9	5)	+	O2 (g)			
(II) Zn (2AgNC		\rightarrow	Zn (NO₃		+	2Ag(s)			
	(NO ₃) ₂ (aq) +		2NaOF		\rightarrow	Ni (OH);		+	2NaNO₃	(aq)		
(IV) Zn(s) +		2HCI (a		\rightarrow	ZnCl₂ (a	••	+	H2 (g)			
(V)	(-)		2CuO(2Cu(s)	D.	+	O ₂ (g)	201-01/-			
(VI) Cl ₂			2NaBr	(aq)	\rightarrow \rightarrow	Br ₂		+	2NaCl (a	(p)		
(VII) Mg (VIII)	;O(s) +		C(s) 2KClO	. (c)	\rightarrow	CO (g) 2KCl(s)		+ +	Mg(s) 3O2 (g)			
	e given react	tions a				21(0)			JO2(8)			
	Decompositi				5 () P ().	(II) Disp	lacement	reaction				
	Double disp			ction			olacemen					
	Decomposit						olacemen					
(VII)	Displaceme	nt read	ction			(VIII) De	composit	tion react	ion			
	Vrite balanc	-			-		and iden	tify the t	ype of re	action:		
	carbonate(s)						. , .					
· · –	nesium(s) + l	-			-					., ,	,	
	assium brom						n iodide (aq) + Bar	rum bror	nide (ad	1)	
	lrogen (g) + (ne balanced (of reaction	n are dive	n helow			
AII3. III		cyuati		ed equatio		the type (reaction	in are give		e of rea	ction	
		He							.,,,			
(1) 2	ZnCO₃(g)	\rightarrow		ZnO(s)	+	CO₂(g	;)		Decompo	osition r	reaction	
(11)	Mg(s) +	2HCI	(aq)	→ MgCl ₂ (aq) +	H ₂ (g)			Displace	ement r	eaction	
(111)	2KBr(aq) -	+ Bal	₂(aq)	→ 2KI(aq)) +	BaBr2 (a	q)	Do	uble – di	splacem	nent reaction	
(IV)) H ₂ (g) +	+ Cl₂(g)	-	→ 2HCl(g)			Со	mbinatio	n (syntł	nesis) reaction	

Thus, oxidation is a process which involves loss of electrons, while reduction is a process which involves gain of electrons. (ii) Another redox reaction is, **Ox**idation H₂S Cb 2HCI S Reduction-The ionic equation for this reaction is, Reduction-Г 2Cl- CI_2 \rightarrow Oxidation The two reactions may be separately written as follows. 2^{e-} S²⁻ Oxidation: [loss of electrons] S 2^{e-} 2Cl⁻ Reduction: CI_2 [gain of electrons] Q.19. In which part of the periodic table the elements which act (a) as reducing agents, and (b) as oxidising agents, are located? Ans. Oxidising elements are located in the upper right-hand portion of the periodic table, (except noble gases). O, F and Cl are strong oxidising agents. This is because these elements accept electrons easily. Reducing elements are located in the lower left part of the periodic table. Alkali metals such as potassium, rubidium and caesium are strong reducing agents. This is because these elements lose their valence electrons easily. Q.20. Identify the substance oxidised and the substance reduced in the following reactions. Write the ionic equations for the substance oxidised and reduced. 2HCl (g) (I) H₂ (g) + Cl₂ (g) \rightarrow (II) $H_2(g)$ CuO (s) \rightarrow Cu(s) $H_2O(I)$ 2H₂O (I) (III) H₂S (g) $SO_2(g) \rightarrow$ 3S(s) + (IV) 2Ag(s) Zn(s) 2AgNO₃ (aq) \rightarrow Zn (NO₃)₂ (aq) + (V) 2AI (s) + 3HCl (aq) 2AlCl₃(aq) 3H₂(g) Ans. The required information is given below: Substance Ionic equation Oxidised Reduced For oxidation For reduction (1) $H_2(g)$ $Cl_2(g)$ $H_2(g) \rightarrow 2H^+$ + 2e⁻ Cl₂ + 2*e*- \rightarrow 2Cl-Cu²⁺ + Cu²⁺ (in CuO (s)) (11) H2 (g) $H_2(g) \rightarrow 2H^+$ + 2e⁻ 2*e*- \rightarrow Cu(s) $S^{4+}(in SO_2(g))$ $2S^{2-} \rightarrow 2S$ S⁴⁺ (III) $H_2S(g)$ + 4e-+ 4*e*⁻ → S $Zn(s) \rightarrow Zn2+(aq) + 2e$ -(IV)Zn(s) AgNO₃ (aq) $2Ag + (aq) + 2e^- \rightarrow 2Ag(s)$ $2AI(s) \rightarrow 2AI^{3+}(aq) + 6^{e-}$ (V) 2AI (s) HCl (aq) 6H⁺ + 6e⁻ \rightarrow 3H²(g) Q.21. Name the substance oxidised, reduced, oxidising agent and reducing agent in the following reactions: (i) Ca + Cl₂ \rightarrow CaCl₂ (ii) 3MnO₂ + 4AI -3Mn 2Al₂O₃ (iii) Fe₂O₃ + 3CO \rightarrow 2Fe 3CO2 (iv) Fe **→** FeS S Ans. The substance oxidised, reduced, oxidising agent and reducing agent for the given reactions are as follows. Oxidising Substance Reducing Oxidised Reduced agent agent CI_2 CI_2 (i) Ca Ca (ii) Al MnO₂ MnO₂ Al (iii) CO CO Fe₂O₃ Fe₂O₃ (iv) Fe S S Fe Q.22. What is the relationship between oxidation and oxidising agent in a redox reaction? Write an example of a redox reaction showing the relationship between oxidation and oxidising agent. Ans. The substance that oxidises another substance is called an oxidising agent. Thus, an oxidising agent can remove electrons from the other substance and itself get reduced.

Example: Consider the reaction,

$$Zn(s) + Cu2+ (aq) \rightarrow Zn2+ (aq) + Cu(s)$$

$$Qxidation \longrightarrow T$$

Here Cu^{2+} (aq) oxidises Zn atom to Zn^{2+} and itself gets reduced to Cu. So in this reaction, Cu2+ (aq) is the oxidising agent and Zn gets oxidised to Zn^{2+} .

www.aepstudycircle.com Q

A E P STUDY CIRCLE

HEMISTRY

Cu(s)

copper metal (displaced)

Q.23. Why should magnesium ribbon be cleaned before burning in air?

Ans. Magnesium when kept in air for long, gets covered with a layer of magnesium oxide. So it is removed before burning the magnesium ribbon.

Q.24. Why does colour of copper sulphate solution change when an iron nail is dipped into it?

Ans. Iron displaces copper from copper sulphate solution. This is because iron is more reactive than copper.

CuSO4 (aq)	+	Fe(s)	\rightarrow	FeSO₄(aq)	+
Copper sulphate	solution	iron		Iron (II) sulphate	
(Blue coloured)		(from iro	n nail)	(Light green)	
(Light green)					

Q.25. Oil and fat – containing food items are flushed with nitrogen gas. Why?

Ans. Oil and fat containing (or fried) foodstuffs, such as, chips, namkeen etc., are flushed with nitrogen gas before packaging to prevent the oxidation of the fat / oil present in the foodstuff.

Q.26. Why dog we protect iron articles by applying paint on them?

Ans. Iron articles are painted to prevent its rusting. The paint coating does not permit air and moisture to come in contact with iron surface and hence protects it from corrosion.

Q.27. Why do gold and silver not corrode in moist air?

Ans. Gold and silver are amongst the least reactive metals. These metals do not react with oxygen (in the air) and water (present as moisture in the air). Therefore, silver and gold do not corrode in moist air.

NCERT QUESTIONS

Q.1. Why should a magnesium ribbon be cleaned before burning in air?

Ans. The magnesium ribbon which we use usually has a coasting of a white layer of magnesium oxide on its surface. It is formed by the slow action of moist air on it. This hinders the burning of magnesium, so, this layer is removed by rubbing with sandpaper before burning Q.2. Write the balanced equation for the following chemical reactions:

(i) Hydrogen + Chlorine \rightarrow Hydrogen chloride

(ii) Barium chloride + Aluminium sulphate \rightarrow Barium sulphate + Aluminium chloride

(iii) Sodium + Water \rightarrow Sodium hydroxide + Hydrogen

Ans. (i) $H_2(g) + Cl_2(g) \rightarrow 2HCl(g)$

(ii) $3BaCl_2(aq) + Al_2(SO_4)_3(aq) \rightarrow 3BaSO_4(s) + 2AICl_3(aq)$

(iii) $2Na(s) + 2H_2O(I) \rightarrow 2NaOH(aq) + H_2(g)$

Q.3. Write a balanced chemical equation with state symbols for the following reactions.

(i) Solution of barium chloride and sodium sulphate in water react to give insoluble barium sulphate and the solution chloride.(ii) Sodium hydroxide solution (in water) reacts with hydrochloric acid solution (in water) to produce sodium chloride solution and water.

Ans. (i) Barium chloride + Sodium sulphate → Barium sulphate + Sodium chloride

 $BaCl_2(aq) + Na_2SO_4(aq) \rightarrow BaSO_4(s) + 2 NaCl(aq)$

(ii) Sodium hydroxide + Hydrochloric acid → Sodium chloride + Water

NaOH (aq) + HCl (aq)
$$\rightarrow$$
 NaCl (aq) + H₂O (I)

Q.4. A solution of a substance 'X' is used for white washing,

(i) Name the substance 'X' and write its formula.(ii) Write the reaction of the substance 'X' named in (i) above with water.

Ans. (i) The substance 'X' used for white washing is quick lime (calcium oxide). The formula is CaO.

(ii) When quick lime is mixed with water, the following reaction takes place:

CaO(s)	+	H2O (I)	\rightarrow	Ca (OH)₂ (aq)	+	Heat
Quick lime			water	Calcium	hydrox	ide
(Calcium oxi	de)			(Slaked lime)		

Q.5. Why is the amount of gas collected in one of the test tubes double of the amount collected in the other in electrolysis of water experiment? Name this gas.

Ans. The gas which is collected in double the amount in the electrolysis of water experiment is hydrogen. This is because water (H₂O) contains two parts of hydrogen element as compared to only one part of oxygen element.

Q. 6. Why does the colour of copper sulphate solution change when an iron nail is dipped in it?

Ans. Iron is more reactive than copper. It displaces copper from copper sulphate solution according to the following reaction:								
Fe(s)	+	CuSO4 (aq)	\rightarrow	FeSO₄ (aq)	+	Cu(s)		
Iron		Copper sulphate	e	Iron (II) sulphate	2	Copper		
Thus, as connersulable reacts to form iron (II) sulables, the blue of connersulable colution fodos								

Thus, as copper sulphate reacts to form iron (II) sulphate, the blue of copper sulphate solution fades.

Q.7. Give an examp	le of a double displacer	nent reaction othe	r than the one between	barium chloride and so	dium sulphate
solutions.					

Ans.	AgNO₃ (aq)	+	NaCl (aq)	\rightarrow	AgCl (s)	+	NaNO₃ (aq)
	Silver nitrate		Sodium chloride		silver chloride		Sodium nitrate

Q.8. Identify the substance oxidised and the substance reduced in the following reactions:

(i)	4Na(s)	+	O ₂ (g)	\rightarrow	2Na2O (s)				
(ii)	CuO(s)	+	H ₂ (g)	\rightarrow	Cu (s)	+	H ₂ O (I)		
<i>(</i> •) • •						1 1	~		~ .

Ans. (i) In this reaction, sodium (Na) is changed into sodium oxide (Na₂O). This is the addition of oxygen to sodium. Since addition of oxygen is called oxidation, therefore, the substance oxidised is sodium (Na).

Oxygen (O₂) is changed into Na₂O. Here, the addition of metal to oxygen takes place. So the substance reduced is oxygen. (ii) Here, copper oxide is reduced to copper metal whereas hydrogen is oxidised to water.

Q.9. When you mix the solutions of lead (II) nitrate and potassium iodide.

- (i) What is the colour of the precipitate formed? Name the compound precipitated.
- (ii) Write the balanced chemical equation for this reaction.
- (iii) Is this also a double displacement reaction?

Ans. (i) Colour of the precipitate formed is yellow. The compound precipitated is lead iodide PbI₂.

- (iii) Yes, it is a double displacement reaction.

NCERT EXERCISES

Q.1. Which of the statements about the reaction below are incorrect?

2PbO	(s) +	C(s) →	2Pb (s)) + CO₂ (g)
------	-------	--------	---------	-------------

- (a) Lead is getting reduced. (b) Carbon dioxide is getting oxidised.
- (c) Carbon is setting oxidised
- (d) Lead oxide is getting reduced. (iii) a, b and c (iv) all
- (i) a and b (ii) a and c Ans. The incorrect statements are:
 - (a) Lead is getting reduced (b) carbon dioxide is getting oxidised. Hence, (i) is the correct answer.

Q.2. $Fe_2O_3 + 2AI \rightarrow Al_2O_3 + 2Fe$

(c) Decomposition reaction

The above reaction is an example of

(a) Combination reaction. (b) Double displacement reaction.

(d) Displacement reaction

Ans. The given equation is a displacement reaction in which Fe of Fe2O3 has been displaced by Al. Hence, (d) is the correct answer.

H₂

Q.3. What happens when dilute hydrochloric acid is added to iron filings? Choose the correct answer.

(a) Hydrogen gas and iron chloride are produced.

(b) Chlorine gas and iron hydroxide are produced.

(c) No reaction takes place.

(d) Iron salt and water are produced.

Ans. The following reaction takes place: Fe + 2HCl

Iron

2HCl
$$\rightarrow$$
 FeCl₂ +

Hydroxide acid Iron chloride Hydrogen

Thus, hydrogen gas and iron chloride are produced. Therefore, (a) is the correct answer.

Q.4. What is a balanced chemical equation? Why should the chemical equations be balanced?

Ans. A balance chemical equation is one which contains an equal number of atoms of each element on both sides of the equation. For example,

 $2H_2 + O_2 \rightarrow 2H_2O$

According to the law of conservation of mass, matter can neither be created nor destroyed in a chemical reaction. During a chemical reaction, the total mass of reactants and products remain the same. Hence, in a chemical reaction, the number of atoms of the various elements on both sides should be equal. Therefore, a chemical equation is to be balanced with the law of conservation of mass.

Q.5. Translate the following statements into chemical equations and then balance them.

(a) Hydrogen gas combines with nitrogen to form ammonia.

- (b) Hydrogen sulphide gas burns in air to give water and sulphur dioxide.
- (c) Barium chloride reacts with aluminium sulphate to give aluminium chloride and a precipitate of barium sulphate.
- (d) Potassium metal reacts with water to give potassium hydroxide and hydrogen gas.
- **Ans**. (a) $3H_2(g) + N_2(g) \rightarrow 2NH_3(g)$
 - (b) $2H_2S(g) + 3O_2(g) \rightarrow 2H_2O(l) + 2SO_2(g)$
 - (c) $3BaCl_2 + Al_2 (SO_4)_3 \rightarrow 2AlCl_3 + 3BaSO_4$
 - (d) $2K + 2H_2O \rightarrow 2KOH + H_2$

Q.6. Balance the following chemical equations.

- (a) $HNO_3 + Ca (OH)_2 \rightarrow Ca(NO_3)_2 + H_2O$
- (b) NaOH + $H_2SO_4 \rightarrow Na_2SO_4 + H_2O$
- (c) NaCl + AgNO₃ \rightarrow AgCl + NaNO₃
- (d) $BaCl_2 + H_2SO_4 \rightarrow BaSO_4 + HCl$
- Ans. (a) $2HNO_3 + Ca (OH)_2 \rightarrow Ca(NO_3)_2 + 2H_2O$
 - (b) $2NaOH + H_2SO_4 \rightarrow Na_2SO_4 + 2H_2O$
 - (c) NaCl + AgNO₃ \rightarrow AgCl + NaNO₃
 - (d) $BaCl_2 + H_2SO_4 \rightarrow BaSO_4 + 2HCl$

Q.7. Write the balanced chemical equations for the following reactions.

- (a) Calcium hydroxide + Carbon dioxide \rightarrow Calcium carbonate + Water
- (b) Zinc + Silver nitrate \rightarrow Zinc nitrate + Silver.
- (c) Aluminium + Copper chloride \rightarrow Aluminium chloride + Copper.
- (d) Barium chloride + Potassium sulphate → Barium Sulphate + Potassium chloride.
- Ans. (a) Ca $(OH)_2 + CO_2 \rightarrow CaCO_3 + H_2O$
 - (b) $Zn + 2AgNO_3 \rightarrow Zn (NO_3)_2 + 2 Ag$
 - (c) $2AI + 3 CuCl_2 \rightarrow 2AICl_3 + 3Cu$
 - (d) $BaCl_2 + K_2SO_4 \rightarrow BaSO_4 + 2KCl$

Q.8. Write the balanced chemical equation for the following and identify the type of reaction in each case.

(a) Potassium bromide (aq) + Barium iodide (aq) \rightarrow Potassium iodide (aq) + Barium bromide (s)

(b) Zinc carbonate(s) \rightarrow Zinc oxide (s) + Carbon dioxide (g)

(c)Hydrogen (g) + Chlorine (g) \rightarrow Hydrogen chloride (g)

(d) Magnesium (s) + Hydrochloric acid (aq) \rightarrow Magnesium chloride (aq) + Hydrogen (g)

Ans.

www.aepstudycircle.com

(a) $2KBr(aq) + Bal_2(aq) \rightarrow 2KI(aq) + BaBr_2(s);$ (b) $2nCO_3(s) \rightarrow 2nO(s) + CO_2(g)$ (c) $H_2(g) + Cl_2(g) \rightarrow 2HCl(g)$

Decomposition reaction Combination reaction

Double displacement reaction

(d) Mg(s) + 2HCl (aq) \rightarrow MgCl₂ (aq) + H₂ (g); Displacement reaction.

Q.9. What does one mean by exothermic and endothermic reactions? Give examples.

Ans. Exothermic reaction: In exothermic reaction heat is evolved during the reaction, which is indicated by '+ heat' sign on the right-hand side of the equation, for example:

CaO + 2H2O → Ca (OH)2 + H2 + Heat.

Endothermic reaction: In this reaction heat is absorbed which is indicated by putting '+ heat' sign on the

left hand side of the equation. N₂ (g) + $3H_2$ (g) + Heat $\rightarrow 2NH_3$ (g)

Q.10. Why is respiration considered as an exothermic reaction? Explain.

Ans. Rice, potatoes and bread contain carbohydrates. During digestion, these carbohydrates are broken down into simpler substance called glucose. This glucose combines with oxygen in the cells of our body and provides energy. The special name of this reaction is respiration. Thus respiration is an exothermic process because energy is produced during this process.

C₆H₁₂O₆ (aq) + 6O₂ (g) → 6CO₂ (g) + 6H₂O (l) + Energy Glucose

Q.11. Why are decomposition reactions called the opposite of combination reactions? Write equations for these reactions. **Ans**. In a combination reaction, two or more substance combine to form a single product. Also, a large amount of heat is evolved. The decomposition reactions require energy either in the form of heat, light or electricity for breaking down the reactants.

$N_2 + 3H_2 \rightarrow 2NH_3 + Heat$	Combination
$2NH_3 + Heat \rightarrow N_2 + 3H_2$	Decomposition

Q.12. Write one equation each for decomposition reactions where energy is supplied in the form of heat, light or electricity. **Ans.** Decomposition reaction involving absorption of heat

		0					
	CaCO₃ (s)		\rightarrow	CaO (s) +		CO ₂ (g)	
	Calcium carbona	te		Calcium oxide	Ś	Carbor	n dioxide
Decomposition	reaction involving	, absorpt	ion of ligh	nt			
	2AgCl (s)	\rightarrow	2Ag (s)	+		Cl ₂ (g)	
	Silver chloride		Silver			chlorine	<u>)</u>
Decomposition	reaction involving	, absorpt	ion of ele	ctrical energy			
	2H2O (I)	\rightarrow	2H2 (g)			+	O2 (g)
	Water	Curren	t Hydroge	en			Oxygen

Q

Q.13. What is the difference between displacement and double displacement reactions? Write equations for these reactions.

Ans. Displacement reaction	Double displacement reaction
 In a displacement reaction, a more reactive element displaces or removes another element fron a compound. 	The reactions in which two compounds react by an exchange of ions to form two new compounds are called double displacement reactions.
2. Zn(s) + CuSO4 (aq) → ZnSO4(aq) + Cu(s)	AgNO₃ (ag) + NaCl (aq) → AgCl(s) + NaNO₃(aq)

metal. Write down the reaction involved. Ans.

Cu (s) +	2AgNO₃ (aq) →	$Cu (NO_3)_2 (aq) + 2Ag (s)$	5)
Copper	Silver nitrate	Copper (II) nitrate	Silver

.15. What do you mean by precipitation reactions? Explain giving examples.

Ans. On mixing the clear solutions of two ionic compounds, a substance which is insoluble in water, is formed. This insoluble substance formed is known as precipitate. Any reaction that produces a precipitate can be called a precipitation reaction. When sodium sulphate solution is mixed with barium chloride solution, a white substance BaSO₄ is formed.

$$Na_2SO_4$$
 (aq) + $BaCl_2$ (aq) $\rightarrow BaSO_4$ (s) + 2 NaCl (aq)

The white precipitate of BaSO₄ is formed by the reaction of SO²⁻⁴ and Ba²⁺. The other product formed is sodium chloride which remains in the solution.

Q.16. Explain the following in terms of gain or loss of oxygen with two examples each:

(a) Oxidation (b) Reduction

Ans. (a) Oxidation: It is defined as a process which involves gain of oxygen. For example,

7 110. (u)	(i)			O ₂ (g)		0		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	i example,
	.,			Oxygen		• •	, sium ox	ide	
	Here, N	∕Ig has gai	ined oxy	gen to forr	n MgO.	Hence, N	/lg is ox	idised to N	ИgO.
					Heat				
	(ii)	2Cu (s)	+	O2 (g)	\rightarrow	2CuO (s	5)		
		Copper		Oxygen		Copper	oxide		
	In this	reaction, (Cu has ga	ained oxyg	en to fo	rm CuO.	Thus, C	u is oxidis	ed to copper oxide (CuO).
(b) Reduct	ion : It is d	efined as	s the proce	ess whic	h involve	s loss c	f oxygen.	For example,
					Heat				
	(i)	CuO	+	H ₂	\rightarrow	Cu	+	H_2O	
		Copper		Hydroge	n		Copp	er	Water
		Oxide							
	In this	reaction, o	copper o			en. So it	is being	reduced	to copper.
					leat				
	(ii)		+	С	→	Zn	+	CO	
		Zinc oxi			Carbon		Zinc		Carbon monoxide
	In this	reaction,	zinc oxid	e is losing	oxygen.	So, it is t	peing re	educed to	zinc.
	-				on heat	ing in air	becom	es black ir	n colour. Name the element 'X' and
		red comp							
Ans. El	ement X	is copper	. The bla	ck coloure	d comp	ound for	med is (copper oxi	ide.

Ans. Element X is copper. The black coloured compound formed is copper oxide.

		Heat	
2Cu +	O ₂	\rightarrow	2CuO
Copper	Oxygen		Copper oxide
(Brown)			(Black)

Q.18. Why do we apply paint on iron articles?

Ans. Paint covers the surface of the iron articles. Hence, moist air cannot attack iron and prevents rusting.

Q.19. Oil and fat containing food items are flushed with nitrogen. Why?

Ans. In the presence of oxygen of the air, the fats present in the fatty food are oxidised to compounds which have a bad smell, i.e., the food becomes rancid. Flushing with nitrogen cuts off oxygen and protects the food from rancidity. Keeping in refrigerator lowers the temperature. As a result, oxidation of the food is slowed down. Hence, the food can be preserved for longer time.

www.aepstudycircle.com

Q.20. Explain the following terms with one example each.

+

H₂S (g)

(From air)

(a) Corrosion	(b) Rancidity
---------------	---------------

Ans. (a) Corrosion: The process of slowly eating up of the metals due to attack of atmospheric gases such as oxygen, carbon dioxide, hydrogen sulphide, water vapour, etc. on the surface of the metals so as to convert the metal into oxide, carbonate, sulphide, etc. is known as *corrosion*.

> 2Ag(s) Silver

 \rightarrow $Ag_2S(s) +$ $H_2(g)$ Silver sulphide Hydrogen sulphide (Black)

(b) Rancidity: We have often noticed that a food containing oil or fat, if left for a long time, develops a bad taste and bad smell. This is because the oils and fats present in such foods get oxidised with the passage of time. The products (compounds) formed as a result of this oxidation is volatile and have bad smell. Due to this reason, the taste of the food also changes. The oxidation of oils or fats in a food resulting into a bad smell and bad taste is called *rancidity*.

SOME IMPORTANT OUESTIONS

■ Very Short Answer Questions [1 mark]

Q.1. What is a chemical reaction?

Ans. Chemical reactions are processes in which new substance with new properties are formed.

Q.2. What is wrong with the following equation?

 $Mg + O \rightarrow MgO$

Correct and balance it.

Ans. In this equation oxygen should be in molecular form (O_2) .

 $2Mg + O \rightarrow 2MgO$

Q.3. Why is photosynthesis considered an endothermic reaction? Ans. Photosynthesis is an endothermic reaction. This is because sunlight energy is absorbed during the process of photosynthesis by green plants.

Q.4. Write balanced chemical equation with state symbols for the following reaction:

Sodium hydroxide solution reacts with hydrochloric acid solution to produce sodium chloride solution and water.

Ans. NaOH (aq) HCl (aq) \rightarrow NaCl (aq) $H_2O(I)$ +

Q.5. Convey the following information in the form of a balanced chemical equation:

"An aqueous solution of ferrous sulphate reacts with an aqueous solution of sodium hydroxide to form a precipitate of ferrous hydroxide and sodium sulphate remains in solution."

Ans. FeSO₄ (aq) + 2 NaOH (ag) \rightarrow Fe (OH)₂ (s) + Na₂SO₄ (aq)

Q.6. Potassium chlorate (KClO₃) on heating forms potassium chloride and oxygen. Write a balanced equation for this reaction. Ans. $2 \text{ KClO}_3(s) \rightarrow 2 \text{ KCl}(s) + 3 \text{ O}_2(g)$

Q.7. What type of reaction is represented by the digestion of food in our body?

Ans. Decomposition reaction

Q.8. In the reaction represented by the following equation:

CuO (s) + H₂ (g) Cu(s) H₂O (I)

(a) Name the substance oxidised.

(b) Name the substance reduced.

Ans. (a) Hydrogen H₂

(b) Copper oxide, CuO.

Q.9. In the following reaction between lead sulphide and hydrogen peroxide:

4H₂O₂ (aq) PbSO₄ (s) Pbs (s) +

(a) Which substance is oxidised?

(b) Which substance is reduced?

Ans. (a) PbS (b) H₂O₂

Q.10. Identify the substance oxidised in the following reaction:

 $H_2S + Cl_2 \rightarrow S + 2HCl$

Ans. H₂S

Q

Q.11. Which term is used to indicate the development of unpleasant smell and taste in fat and oil containing foods due to oxidation?

Ans. Rancidity.

Q.12. What is the general name of the chemicals which are added t fat and oil containing foods to prevent the development of rancidity?

Ans. Anti – oxidant.

.13. Give two examples from everyday life solutions where redox reactions are taking place.

Ans. (i) Burning of a fuel in oxygen is a redox reaction.

Rusting of iron is a redox reaction.

A E P STUDY CIRCLE

4H₂O (I)

Q.14. In which type of reactions of reactants give simpler products? Ans. In decomposition reactions, the reactant breaks down to give simpler products. Q.15. When does decomposition reaction take place? Ans. The decomposition reaction takes place when the energy is supplied in the form of heat, light or electricity. Q.16. Ionic compounds usually undergo double displacement reaction. Ans. Ionic compounds usually undergo double displacement reaction. Q.17. Can a double displacement reaction take place when the products are highly soluble or highly ionised? Ans. No, double displacement reaction takes place when there is a formation of a slightly soluble salt. Q.18. Why will the colour of heated copper powder become black when air is passed over it? Ans. When copper powder is heated in the presence of air, black copper oxide is formed. Cu(s) O₂ (g) CuO (s) + Copper powder in the air Copper oxide (heated) (black) Q.19. What is the difference between the following two types of reactions? AgNO₃ HCI AgCl **HNO**₃ Mg 2HCI MgCl₂ H₂ + Ans. The first reaction is a double displacement reaction whereas second reaction is a single displacement reaction. Q.20. Name the oxidising and reducing agent in the following reaction: 2H₂S SO₂ \rightarrow 2H₂O 3S√ + **Ans**. H₂S is reducing agent while SO₂ is the oxidising agent. Q.21. Give one example of a reaction which is double displacement reaction as well as precipitation reaction? Ans. AgNO₃ (aq) NaCl (aq) \rightarrow AgCl (s) \downarrow NaNO₃ (aq) + Silver nitrate Sodium chloride Silver chloride Sodium nitrate (ppt.) Q.22. Why is hydrogen peroxide kept in coloured bottles? Ans. This is done to cut off light because hydrogen peroxide decomposes into water and oxygen in the presence of light. Q.23. Why is hydrogen peroxide kept in coloured bottles? (a) Fe + CuSO₄ \rightarrow FeSO₄ + Cu (b) $Cu + FeSO_4 \rightarrow CuSO_4 + Fe$ Which out of these two reactions will take place and why? Ans. Reaction (a) will take place. This is because Fe (iron) is more reactive than Cu (copper) and so can displace it from its compound (CuSO₄). Copper cannot displace iron, so reaction (b) will not take place. Q.24. Name the substance that has been oxidised in the following reaction: CI_2 H₂S 2HCI S Ans. H₂S has been oxidised to S. Q.25. What are the two necessary conditions for rusting of an iron article? Ans. (i) Presence of air (or oxygen). (ii) Presence of moisture (water vapour).

Short Answer Questions [2, 3 marks]

Q.1. Give some example of chemical reactions keep on occurring in our daily life.

Ans. (i) Souring of milk (ii) Formation of curd from milk.

- (iii) Process of respiration. (iv) Cooking of food.
- (v) Digestion of food in our body. (vi) Fermentation of grapes.
- (vii) Ripening of fruits (viii) Burning of candle wax and (ix) Rusting of iron

Q.2. How do we come to know that a chemical reaction has taken place?

- Ans. Any one of the following characteristics can tell us whether a chemical reaction has taken place or not.
 - (a) New substance(s) formed (b) Change of states
 - (c) Change in colour (d) Change in temperature
 - (e) Precipitates formed (f) Evolution of a gas

For example, if on mixing two substances a gas is evolved, then we can say that a chemical reaction has taken place.

Q.3. State one example of a chemical reaction characterised by the evolution of a gas.

Ans. When zinc granules react with dilute sulphuric acid, then bubbles of hydrogen gas are produced. Thus,

the chemical reaction between zinc and dilute sulphuric acid is characterised by the evolution of hydrogen gas. This chemical equation shows two characteristics: Evolution of a gas (hydrogen gas) and change in temperature (rise in temperature).

Q.4. Give an example of a chemical reaction characterised the change in temperature.

Ans. The chemical reaction between quicklime and water to form slaked lime is characterised by a change in temperature (rise in temperature).

Q.5. What is a chemical equation? Explain with the help of an example.

Ans. A chemical equation is method of representing a chemical reaction with the help of symbols and formulae of the substances involved in a chemical reaction.

When magnesium ribbon is burnt in oxygen, magnesium oxide is obtained. This discription of a chemical reaction in a sentence form is quite ling. It can be written in a shorter form as a chemical equation in words or in symbols (chemical formula).

Magnesium	ı	+	oxygen	\rightarrow	Magnesium oxide
	Reacta	ints			Products
2N	/lg	+	O ₂	\rightarrow	2MgO (balanced)

Q.6. What are the various ways in which a chemical equation can be made more informative? Give example to illustrate your answer.

Ans. The chemical equation can be made more informative in the following three ways:

(i) By indicating the physical states of the reactants and products.

Zn(s) H_2SO_4 (aq) ZnSO₄ (aq) + H₂ (g) + (ii) By indicating the heat changes in an equation: Exothermic reaction: C(s) O₂ (g) CO₂ (g) Heat + Endothermic reaction: CaCO₃(s) + Heat CaO (s) CO₂ (g) + (iii) By indicating the conditions under which the reaction takes place. 340 atm CO (g) CH₃OH (I) 2H₂ (σ)

00 (8)	. 2	112 (6/		light		
	6CO (aq)	+	6H₂O (I) →		+	6O2 (g)
			Chlo	prophyll		

Q.7. Which of the following are exothermic reactions and which are endothermic?

(a) Burning of natural gas

- (b) Photosynthesis (c) Respiration (d) Electrolysis of water
- (e) Decomposition of calcium carbonate

Ans. Exothermic reactions: (a) and (c)

Endothermic reactions: (b), (d) and (e)

Q.8. Translate the following statements into chemical equation and then balance the equations:

(a) Phosphorous burns in oxygen to give phosphorus pentoxide.

(b) Aluminium metal replaces ion from ferric oxide, Fe₂O₃, giving aluminium oxide and iron.

(c) Carbon disulphide burns in air to give carbon dioxide and sulphur dioxide.

Ans.	(a)	$P_4 + 5O_2 \rightarrow 2P_2O_5$	(b)	$2AI + Fe_2O_3 \rightarrow AI_2O_3 + 2Fe$
------	-----	----------------------------------	-----	---

(c) $CS_2 + 3O_2 \rightarrow CO_2 + 2SO_2$ (d) $BaCl_2 + ZnSO_4 \rightarrow ZnCl_2 + BaSO_4$

Q.9. When hydrogen burns in oxygen, water is formed and when water is electrolysed, then hydrogen and oxygen are produced. What type of reaction takes place in both the cases.

Ans. (i) In the first case – Combination reaction

(ii) In the second case - Decomposition reaction

Q.10. What type of chemical reactions take place when?

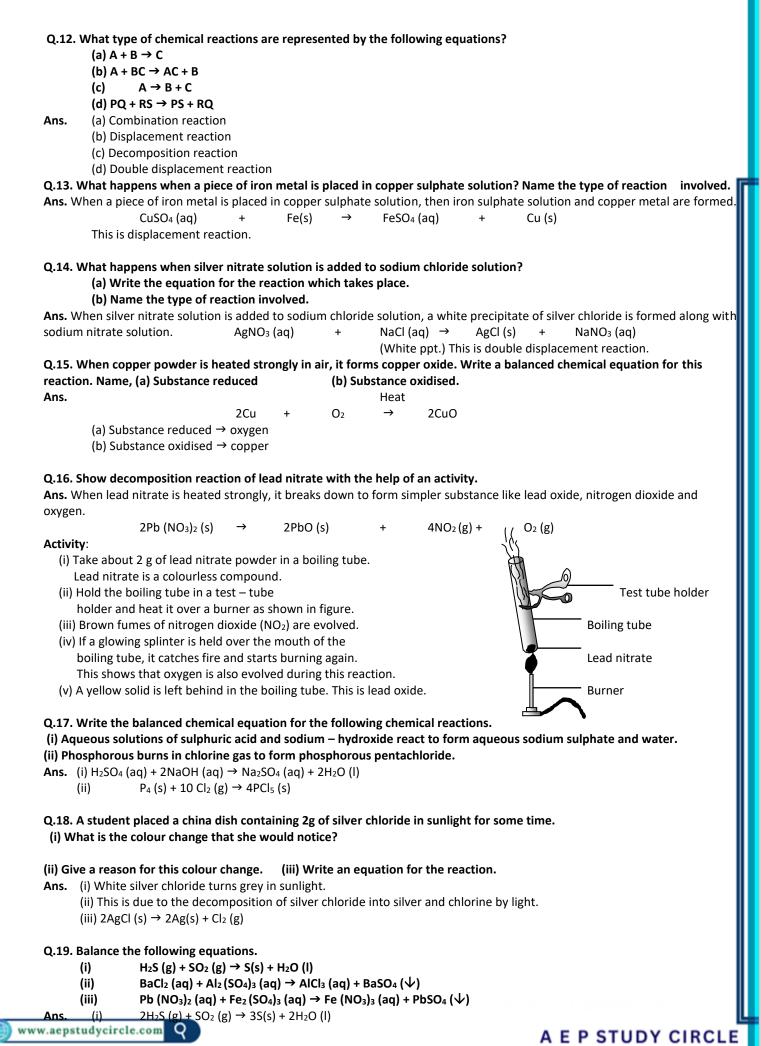
(b) A magnesium wire is burnt is air? (a) Limestone is heated?

- (c) Electricity is passed through water?
- (d) Ammonia and hydrogen chloride are mixed?
- (e) Silver bromide is exposed to sunlight?

Ans. (a) Decomposition (b) Combination (c) Decomposition (d) Combination (e) Decomposition

 $Cl_2(g)$

Q.11. What happens when silver chloride is exposed to sunlight? Write a chemical equation for this reaction. Also give one use of such a reaction.


Ans. When silver chloride is exposed to light, it decomposes to form silver metal and chlorine gas.

2Ag (s) +

2AgCl (s) This reaction is used in black and white photography. www.aepstudycircle.com Q

	(ii)	3BaCl ₂ (aq) + A	\ 2(SO4)3($a\alpha$) \rightarrow 2Al	Cl₃ (aɑ) +	3BaSO₄ (小)				
	(iii)	3Pb (NO ₃) ₂ (aq			• • •	•		(↓)			
colou	Q.20. A shiny brown coloured element X on heating in air becomes black in colour. Name the element X and the black coloured compound formed.										
Ans. A			orms its o			element	which fo	orms blac	ck oxide is copper. So,		
		of the element:		Copper		(6.0)					
		of black compou			(II) oxide		、				
	Reaction	on: 2Cu(s (Copp	•	O₂ (g) from ai	\rightarrow r	2CuO(s) (II) oxid	0			
		(Cop) (Brov	-	ii oiii ai	ſ	(Black)	(11) Oxiu	e			
0.21	Look at th	ne given equatio				(DIACK)					
Q.21.		3Fe	+	H ₂ O	→	Fe₃O₄	+	4H ₂			
How c	an this ea	uation be made	e more inf	-	•	. 0,04		2			
						vsical stat	tes of the	e reactan	ts and products are mentioned along with		
	hemical f	-			, ,	,					
The given the given the transmission of transmission of the transmission of transmission of the transmission of transm	ven equat	ion can be writt	en as follo	ws:							
	3Fe(s)	+ 4H ₂ O	(g) →	Fe₃O₄(s)	+	4H2(g)				
Where	e 'g' repre	sents gaseous st	ate and's'	represent	ts solid st	ate of th	e substa	nces.			
	-		-		mbinatio	n, decon	npositio	n, displac	cement of double displacement		
reaction	••	2KNO₃(s) → 2	• •	• •							
	(ii)	Zn (s) + 2AgN(• •	• •		••••					
	(iii)	Ni (NO3)2 (aq)		• ••		⁄) + 2NaN	lO₃ (aq)				
	(iv)	Zn (s) + 2HCl (••		l2 (g)			(v)	$2CuO(s) \rightarrow 2Cu(s) + O_2(g)$		
_	(vi)	MgO (s) + C (s						(vii)	$2\text{KClO}_3(\text{s}) \rightarrow 2\text{KCl}(\text{s}) + 3\text{O}_2(\text{g})$		
Ans.	(i)	$2KNO_3(s) \rightarrow 2$	• •	• •		()			[Decomposition reaction]		
	(ii)	Zn (s) + 2AgNC				- · ·	~ ()		[Displacement reaction]		
	(iii) (ix)	Ni (NO ₃) ₂ (aq)		• •) + 2NaNG	J₃ (aq)	ומטסען	e displacement reaction]		
	(iv) (v)	Zn (s) + 2HCl (a 2CuO (s) → 2C	•••		2 (8)				[Displacement reaction] [Decomposition reaction]		
	(v) (vi)	$MgO(s) \rightarrow 2C$						Dicolo	icement reaction]		
	(vi) (vii)	2 KClO ₃ (s) $\rightarrow 2$		• • •				լուշելց	[Decomposition reaction]		
	(***)	2110103 (3) / 2		502 (6)					[Becomposition reaction]		
0.23	Consider	the chemical eq	uation giv	en below	and answ	ver the o	uestion	s that fol	low:		
	Q.23. Consider the chemical equation given below and answer the questions that follow: Heat										
		CuO +	H ₂	→	Cu	+	H₂O				
	(i) N	ame the substan	ce which i	is getting o	oxidised.		-				
		ame the substar									
		Name the oxidise		-							

(iv) Name the reduction agent.

(v) Since oxidation and reduction is taking place simultaneously, this reaction is an example of redox reaction. Ans. (i) The substance getting oxidised is H₂.

(ii) The substance getting reduced is CuO.

(iii) CuO is the oxidising agent.

(iv) H₂ is the reducing agent.

(v) Since oxidation and reduction is taking place simultaneously, this reaction is an example of redox reaction.

Q.24. What is the difference between combination and decomposition reactions? Write an equation for each type. Ans.

substance.

Combination reactions

Decomposition reactions

1. In a combination reaction, two or more substance (elements or compounds) simply combine to form a new substance.

2. Hydrogen burns in oxygen to form water.

2H ₂	+	O ₂	\rightarrow	$2H_2O$
Hydrogen		Oxygen		Water

water, it decomposes to give hydrogen gas and oxygen gas. Electricity

When electric current passed through acidified

In a decomposition reaction, a single compound

breaks down to produce two or more simple

2H₂O	\rightarrow	2H ₂	+	O ₂
Water	a d	Hydrogen		Oxygen

www.aepstudycircle.com Q

Q.25. Name the substance oxidised and reduced in the following reactions.

- (i) $3MnO_2 + 4AI \rightarrow 3Mn + 2Al_2O_3$
- (ii) $Fe_2O_3 + 3CO \rightarrow 2Fe + 3CO_2$
- (iii) $2Na + O2 \rightarrow 2Na2O$
- (iv) $CuO + H_2 \rightarrow Cu + H_2O$

(v) $MnO_2 + 4HCI \rightarrow Mncl_2 + Cl_2$

Ans.

(i)

 $3MnO_2 + 4Al \rightarrow 3Mn + 2Al_2O_3$

Al is oxidised and MnO2 is reduced.

(ii) $Fe_2O_3 + 3CO \rightarrow 2Fe + 3CO_2$

CO is oxidised and Fe_2O_3 is reduced.

- (iii) Na is oxidised and O₂ is reduced
- (iv) H₂ is oxidised and CuO is reduced.
- (v) HCl is oxidised (to Cl₂) and MnO₂ is reduced (to MnCl₂).

Q.26. What are the different types of combination reactions?

Ans. There are three different types of combination reactions:

(i) Combination of one element with another element to form a compound.

$$2H_2(g) + O_2(g) \rightarrow 2H_2O(I)$$

(ii) Combination of two or more compounds to form a new compound.

$$MgO(s) + CO_2(g) \rightarrow MgCO_3(s)$$

(iii) The combination of one element and one compound.

$$2CO(g) + O_2(g) \rightarrow 2CO_2(g)$$

Q.27. Why does blue colour of copper sulphate solution start fading when a zinc rod is dipped in it?

Ans. Zinc is more reactive than copper. It displaces copper from copper sulphate solution to form zinc sulphate which is colourless. Hence the blue colour of copper sulphate solution starts fading.

Zn(s)	+	CuSO₄ (aq)	\rightarrow	ZnSO₄ (aq)	+	Cu
Zinc		Copper sulphate		Zinc sulphate		Copper
		(Blue)		(Colourless)		

Q.28. When iron rod is kept dipped in copper sulphate solution for some time, a brown coating is formed on the iron rod. Explain why? What change will you observe in the colour of the solution?

Ans. Iron is more reactive than copper. It displaces copper from copper sulphate solution according to the reaction

Fe(s) +	CuSO₄ (aq)	\rightarrow	FeSO₄ (aq)	+	Cu
Iron	Copper sulphate		Iron (II) sulphate		Copper
	(Blue)		(Green)		(Reddish brown)

The reddish-brown copper thus displaced is deposited on the surface of iron. Hence, there is a brown coating on iron. Further ferrous sulphate formed has green colour, Hence, the blue colour of copper sulphate solution fades and changes to light green.

Q.29. A copper coin was kept dipped in silver nitrate solution for a few hours/days. What will happen to the copper coin? What will happen to the colour of the solution?

Ans. Copper is more reactive than silver. Hence, it displaces silver from silver nitrate solution according to thereaction. $Cu(s) + 2AgNO_3(aq) \rightarrow Cu(NO_3)_2(aq) + 2Ag(s)$ CopperSilver nitrateCopper the silver thus formed is deposited on the surface of copper thereby giving it a white shining appearance.

The solution becomes blue due to the formation of copper nitrate.

Q.1. (a) Perform an activity to show that reaction between calcium oxide and water is a combination reaction.(b) A solution of calcium hydroxide formed is used for white washing the walls. Explain.

Ans. (a) Activity:

- (i) Take a small amount of calcium oxide in a beaker.
- (ii) Add some water to this slowly.
- (iii) Touch the beaker as shown in figure.
- (iv) Do you feel any change in temperature?
- (v) You will feel warm.

Calcium oxide reacts with water to form calcium hydroxide (slaked lime), liberating a large amount of heat. This makes the reaction mixture warm.

 $\begin{array}{ccc} \text{CaO}(s) & + & \text{H}_2\text{O}(l) & \rightarrow & \text{Ca}(\text{OH})_2 \text{ (aq)} \\ \text{Calcium oxide} & & \text{Calcium hydroxide} \end{array}$

CBSE

HEMISTRY

A single product, calcium hydroxide is formed by the combination of calcium oxide and water. Thus, a reaction in which two or more reactants combine to form a single product is known as a combination reaction.

(b) A solution of calcium hydroxide is used for white washing the walls. It reacts with carbon dioxide slowly in the air to form a thin layer of calcium carbonate on the walls. After two or three days of white washing calcium carbonate CaCO₃ is formed which gives a shiny finish to the walls.

Ca (OH)2 (aq)	+	CO ₂ (g)	\rightarrow	CaCO₃ (s)	+	H₂O (I)
Calcium hydroxide				Calcium carbonate		

Q.2. (a) Perform an activity to show that the decomposition reaction takes place by the action of electricity.(b) Test the gases evolved.

(c) Write the decomposition reaction in our body.

Ans. (a) Activity:

(I) Take a plastic vessel. Drill two holes at its bottom and set rubber stoppers in these holes.

(II) Insert carbon electrodes in these rubber stoppers and connect these electrodes to a 6 volt battery and a switch. (III) Fill the vessel with water such that the electrodes are immersed. Add a few drops of dilute sulphuric acid to the water in the vessel.

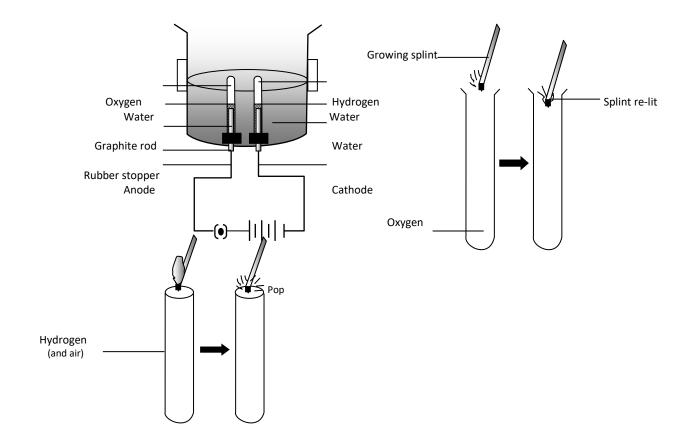
(IV) Take two graduated test tubes filled with water and inverts them over the two carbon electrodes.

(V) Switch on the current and leave the apparatus for some time.

(VI) After sometime you will observe the formation of bubbles at both the electrodes. These bubbles displace water in the graduated tubes.

(VII) Once the test tubes are filled with the respective gases remove them carefully.

(VIII) Test these gases one by one by bringing a burning splinter of wood close to the mouth of test tubes.


(IX) What happens in each case? (X) Which gas is present in each test tube?

(b) When a glowing splinter of wood is bought close to the mouth of one test tube, it relights. Oxygen is the only common gas that can do this. This is, therefore, used as the chemical test for oxygen. Oxygen is not combustible but is a supporter of combustion. When a burning splinter of wood is brought close to the mouth of second test tube, the gas burns with a pop. We say that hydrogen burns with a pop.

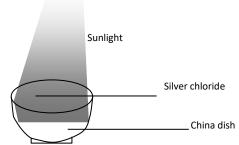
We also observe that the volume of gases collected in the two test – tubes is not the same. The volume of gas collected on the negative electron is double the volume of gas collected on the positive electrode.

(b) The digestion of food in the body is an example of decomposition reaction. When we eat foods like wheat, rice or potatoes, then the starch present in them decomposes to give simple sugars like glucose in the body and the proteins decomposes to form amino acids

Q.3. (a) Perform an activity to show that the photo decomposition is an endothermic reaction.(b) Write one more equation of photo decomposition. Give one use of this decomposition.

Ans. (a) Activity: Photo decomposition

(i) Take about 2 silver chloride on a China dish. It is white in colour.


- (ii) Place this China dish under sunlight for some time.
- (iii) Observe the colour of the silver chloride after sometime.

You will observe that white silver chloride turns grey in sunlight. This is because the light causes silver chloride to decompose into metallic silver and chlorine gas.

 $2AgBr(s) \rightarrow 2Ag(s)$

The above reactions are used in black and white photography. Thus, we have seen that this decomposition reaction require energy in the form of light for breaking down the reactants. Reactions in which energy is absorbed are known as **endothermic reactions**.

 $Br_2(g)$

Q.4. (a) What is displacement reaction? Perform an activity to show that react in between copper sulphate solution and iron nail is a displacement reaction.

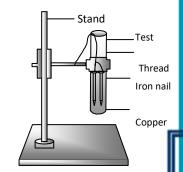
(b) Give one more example of displacement reaction.

Ans. (a) A displacement reaction is one in which one atom or a group of atoms (called radical) of a compound is replaced by another atom or group of atoms. It is indicated by the following general reaction:

A E P STUDY CIRCLE

CBSE

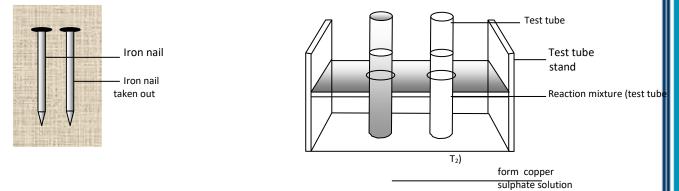
CHEMISTRY



A + BC \rightarrow B + AC <u>Activity</u>: When a piece of iron is placed in copper sulphate solution, tube

the more reactive iron displaces the less reactive copper from copper sulphate. (i) Take three iron nails and clean them by rubbing with sandpaper.

(ii) Take two test tubes marked as (T_1) and (T_2) . Sulphate


Take about 10 mL copper sulphate solution in each test tube. Solution

(iii) Tie two iron nails with a thread and immerse them carefully

in copper sulphate solution in test tube T₂. Keep one iron nail a side for comparison.

(iv)After 20 minutes, take out the iron nails from the copper sulphate solutions

- (v) Compare the intensity of the blue colour of copper sulphate solutions in test tubes (T_1) and (T_2) .
- (vi) Compare the colour of iron nails dipped in copper sulphate solution with the one kept aside.

Copper sulphate solution (test tube T₁)

We observe that iron nail becomes brownish in colour and blue colour of copper sulphate solution fades away.

CuSO ₄ (aq)	+	Fe(s)	\rightarrow	FeSO₄ (aq)	+	Cu (s)		
Copper sulphate		Iron		Ferrous sulphate		Copper		
(b) When a strip of Zn i	s place	ed in aque	eous,	blue CuSO ₄ , it does	not	take long for the d	isplacement reacti	on
to form metallic copper	r and o	colourless	ZnSC	D₄ solution.				

CuSO4 (aq)	+	Zn(s)	\rightarrow	ZnSO₄ (aq)	+	Cu (s)
Copper sulphate		Zinc		Zinc sulphate		Copper