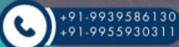


CBSE

RELATION FUNCTIONS MATHEMATICS


YOUR GATEWAY TO EXCELLENCE IN

IIT-JEE, NEET AND CBSE EXAMS

RELATION **FUNCTIONS**

CONTACT US:

BASIC CONCEPTS

1. Relation: If A and B are two non-empty sets, then any subset B of $A \times B$ is called relation from set A to set B.

i.e.,
$$R: A \to B \Leftrightarrow R \subset A \times B$$

If $(x, y) \in R$, then we write x R y (read as x is R related to y) and if $(x, y) \notin R$, then we write x R y (read as x is not R related to y).

- 2. Domain and Range of a Relation: If R is any relation from set A to set B then,
 - (a) Domain of R is the set of all first coordinates of elements of R and it is denoted by Dom (R).
 - **(b)** Range of *R* is the set of all second coordinates of *R* and it is denoted by Range (*R*). *A* relation *R* on set *A* means, the relation from *A* to *A* i.e., $R \subseteq A \times A$.
- 3. Some Standard Types of Relations:

Let A be a non-empty set. Then, a relation R on set A is said to be

- (a) **Reflexive:** If $(x, x) \in R$ for each element $x \in A$, i.e., if xRx for each element $x \in A$.
- **(b)** Symmetric: If $(x, y) \in R \Rightarrow (y, x) \in R$ for all $x, y \in A$, *i.e.*, if $xRy \Rightarrow yRx$ for all $x, y \in A$.
- (c) Transitive: If $(x, y) \in R$ and $(y, z) \in R \Rightarrow (x, z) \in R$ for all $x, y, z \in A$, i.e., if xRy and $yRz \Rightarrow xRz$.
- **4. Equivalence Relation:** Any relation *R* on a set *A* is said to be an equivalence relation if *R* is reflexive, symmetric and transitive.
- **5. Antisymmetric Relation**: A relation *R* in a set *A* is antisymmetric

if
$$(a, b) \in R$$
, $(b, a) \in R \implies a = b \ \forall \ a, b \in R$, or aRb and $bRa \implies a = b, \ \forall \ a, b \in R$.

For example, the relation "greater than or equal to, "≥" is antisymmetric relation as

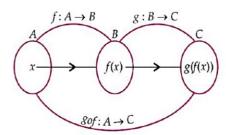
$$a \ge b, b \ge a \implies a = b \ \forall \ a, b$$

[Note: "Antisymmetric" is completely different from not symmetric.]

6. Equivalence Class: Let R be an equivalence relation on a non-empty set A. For all a ∈ A, the equivalence class of 'a' is defined as the set of all such elements of A which are related to 'a' under R. It is denoted by [a].

i.e.,
$$[a] = \text{equivalence class of } 'a' = \{x \in A : (x, a) \in R\}$$

7. **Function:** Let X and Y be two non-empty sets. Then, a rule f which associates to each element $x \in X$, a unique element, denoted by f(x) of Y, is called a function from X to Y and written as $f: X \to Y$ where, f(x) is called image of x and x is called the **pre-image** of f(x) and the set Y is called the **co-domain** of f and $f(X) = \{f(x): x \in X\}$ is called the range of f.



8. Types of Function:

- (i) One-one function (injective function): A function f: X → Y is defined to be one-one if the image of distinct element of X under rule f are distinct, i.e., for every x₁, x₂ ∈ X, f(x₁) = f(x₂) implies that x₁ = x₂.
- (ii) Onto function (Surjective function): A function $f: X \to Y$ is said to be onto function if each element of Y is the image of some element of x i.e., for every $y \in Y$, there exists some $x \in X$, such that y = f(x). Thus f is onto if range of f = co-domain of f.
- (iii) One-one onto function (Bijective function): A function $f: X \to Y$ is said to be one-one onto, if f is both one-one and onto.
- (iv) Many-one function: A function $f: X \to Y$ is said to be a many-one function if two or more elements of set X have the same image in Y. i.e.,

 $f: X \to Y$ is a many-one function if there exist $a, b \in X$ such that $a \neq b$ but f(a) = f(b).

9. Composition of Functions: Let $f: A \to B$ and $g: B \to C$ be two functions. Then, the composition of f and g, denoted by $g \circ f$, is defined as the function.

$$gof: A \to C$$
 given by $gof(x) = g(f(x)), \forall x \in A$

Clearly, dom(gof) = dom(f)

Also, *gof* is defined only when range(f) \subseteq dom(g)

10. **Identity Function:** Let R be the set of real numbers. A function $I: R \to R$ such that

$$I(x) = x \ \forall \ x \in R$$
 is called identity function.

Obviously, identity function associates each real number to itself.

- 11. **Invertible Function:** For $f: A \to B$, if there exists a function $g: B \to A$ such that $g \circ f = I_A$ and $f \circ g = I_B$, where I_A and I_B are identity functions, then f is called an invertible function, and g is called the inverse of f and it is written as $f^{-1} = g$.
- 12. Number of Functions: If X and Y are two finite sets having m and n elements respectively then the number of functions from X to Y is n^m .
- 13. **Vertical Line Test:** It is used to check whether a relation is a function or not. Under this test, graph of given relation is drawn assuming elements of domain along *x*-axis. If a vertical line drawn anywhere in the graph, intersects the graph at only one point then the relation is a function, otherwise it is not a function.
- 14. Horizontal Line Test: It is used to check whether a function is one-one or not. Under this test graph of given function is drawn assuming elements of domain along *x*-axis. If a horizontal line (parallel to *x*-axis) drawn anywhere in graph, intersects the graph at only one point then the function is one-one, otherwise it is many-one.

Mι

MULT	TIPLE CHOICE C	DUESTIONS		
Choose	e and write the correct of	option in the following qu	estions.	
1.		$set A = \{1, 2, 3, 4\} given$	by $R = \{(1, 2), (2, 2), (1, 2), (2, $	1), (4, 4), (1, 3), (3, 3), (3, 2)}
	is	matria but not transitiva		
	•	metric but not transitive		
		sitive but not symmetric		
		ansitive but not reflexive		
	(d) an equivalence re		V ()	
2.		a relation $R = \{(a, b), (b,$		
	(a) symmetric only	- 777	(b) transitive only	
	(c) reflexive and tran		(d) symmetric and tra	
3.	For real numbers x an relation R is	dy, define xRy if and on	aly if $x - y + \sqrt{2}$ is an in	rational number. Then the [NCERT Exemplar]
	(a) reflexive	(b) symmetric	(c) transitive	(d) none of these
4.	Consider the non-em	pty set consisting of chi	ldren in a family and a	a relation R defined as aRb
	if a is brother of b . The	nen R is		[NCERT Exemplar]
	(a) symmetric but no	t transitive	(b) transitive but not	symmetric
	(c) neither symmetric	nor transitive	(d) both symmetric ar	nd transitive
5.	The maximum numb	er of equivalence relation	on on the set $A = \{1, 2, 3\}$	3} are [NCERT Exemplar]
	(a) 1	(b) 2	(c) 3	(d) 5
6.	Let L denotes the set	of all straight lines in a	plane. Let a relation I	R be defined by <i>lRm</i> if and
		ular to $m \forall l, m \in L$. The		[NCERT Exemplar]
	(a) reflexive	(b) symmetric	(c) transitive	(d) none of these
7.	Let $A = \{1, 2, 3\}$. Then	number of relations co	ontaining (1, 2) and (1,	3) which are reflexive and
	symmetric but not tra			
	(a) 1	(b) 2	(c) 3	(d) 4
8.		number of equivalence		
	(a) 1	(b) 2	(c) 3	(d) 4
9.			lements respectively. T	he number of relations that
	can be defined from A	(b) 2^{m+n}	(4)	(3) 0
40	(a) 2 ^{mn}		(c) mn	(d) 0
10.			ents. Then the number	r of injective mapping that
	can be defined from A		(a) 24	[NCERT Exemplar]
44	(a) 144	(b) 12	(c) 24	(d) 64
11.		$R ext{ defined by } f(x) = 2^x + 2$		
	(a) One-one and onto)	(b) Many-one and on	
10	(c) One-one and into	alamanta and the eat D	(d) Many-one and int	
12.	and onto mapping fro		contains 6 elements, tr	nen the number of one-one
	(a) 720	(b) 120	(c) 0	(d) none of these
13	PROPERTY OF THE PERSON OF THE	ng functions from Z into		[NCERT Exemplar]
10.	(a) $f(x) = x^3$		(c) f(x) = 2x + 1	
14				
14.	Let $j: [2, \infty) \to K$ be the	ne function defined by f	(x) = x - 4x + 5, then the	[NCERT Exemplar]

 $(c)~[4,\infty)$

(a) R

 $(b)~[1,\infty)$

(d) $[5, \infty)$

15.	Let $f: R \to R$ be defined by $f(x) = x^2 + 1$. Then, pre-images of 17 and -3, respectively, are				
	(-) 1 (4 4)	(1) (0 0) 1	7.5 (4 4) 1	[NCERT Exemplar]	
		(b) $\{3, -3\}, \phi$			
16.		$R \to R$ be defined by $f(x)$			
	(a) one-one but not o		(15) 5)	(b) onto but not one-one	
	(c) neither one-one n	or onto	(d) one-one and onto		
17.		The state of the s		choose the correct answer.	
	SE OF BEINGE AND	(b) $(3,8) \in R$		$(d) (8,7) \in R$	
18.	Let $f: R \to R$ be defi	ined as $f(x) = x^4$. Choose	the correct answer		
	(a) f is one-one onto		(b) f is many one onto		
	(c) f is one-one but no	ot onto	(d) f is neither one-one nor onto.		
19.		ined as $f(x) = 3x$. Choose			
	(a) f is one-one onto.		(b) f is many one onto		
	(c) f is one-one but no	ot onto	(d) f is neither one-or	ne nor onto.	
20.	Let $f: \mathbb{R} \longrightarrow \mathbb{R}$ defi	ned by			
	$f(x) = 2x^3 + 2x^2 + 300$	$x + 5 \sin x$ then f is			
	(a) one-one onto	(b) one-one into	(c) many one onto	(d) many one into	
21.		ined by $f(x) = x^2 + 1$. The			
		(b) $\{(3, -3), \phi$			
22.	The domain of the fu	nction $f: R \to R$ define	ed by $f(x) = \sqrt{x^2 - 4}$ is		
	(a) $[-2, 2]$	(b) (-2, 2)	$(c)\ (-\infty,-2]\cup [2,\infty)$	$(d) (-\infty, \infty)$	
		$\begin{bmatrix} 3x, & \text{if } x \end{bmatrix}$	c > 3		
23.	Let $f: R \to R$ be defined by $f(x) = \begin{cases} 3x, & \text{if } x > 3 \\ x^2, & \text{if } 1 < x \le 3 \\ x, & \text{if } x \le 1 \end{cases}$				
	$\begin{cases} x, & \text{if } x \le 1 \end{cases}$ Then $f(-2) + f(0) + f(2) + f(5)$ is equal to				
	(a) 0		(c) - 4	(d) none of these	
24				there be m ordered pairs in	
24.	R. Then	non on a mine set A hav	nig " element, and let	there be m ordered parts in	
	(a) $m \ge n$	(b) $m \leq n$	(c) $m = n$	(d) none of these	
25.	The domain of the fu	nction $f(x) = \log_{3+x}(x^2 - x^2)$	-1) is		
	(a) $(-3, -1) \cup (1, \infty)$		(b) $[-3, -1) \cup [1, \infty)$		
	(c) $(-3,-2) \cup (-2,-1)$	$1) \cup (1, \infty)$	(d) $[-3,-2) \cup (-2,-1)$	1)∪[1,∞)	
26.	Let $f: R \to [0, \frac{\pi}{2})$ de	fined by $f(x) = \tan^{-1}(x^2)$	+x+a), then the set of	of values of a for which f is	
	onto is				
	(a) $[0,\infty)$	(b) $\left[\frac{1}{4},\infty\right)$	(c) [2, 1]	(d) none of these	
27.	If the function $f:R$	$\rightarrow R$ and $g: R \rightarrow R$ are	defined as		
	$f(x) = \begin{cases} 0, & x \in \text{ration} \\ x, & x \in \text{irration} \end{cases}$				
	and $g(x) = \begin{cases} 0, & x \in \text{irrational} \\ x, & x \in \text{rational} \end{cases}$				
	then $(f-g)$ is				
	(a) one-one onto.		(b) many-one onto		

(c) one-one but not onto

(d) neither one-one nor onto.

28.	If a relation R on the set $\{1, 2, 3, 4\}$ is defined by $R = \{(1, 2), (3, 4)\}$. Then R is				
	(a) reflexive	(b) transitive	(c) symmetric		
29.	If the set A contains 4 elements and the set B contains 5 elements, then the number of one-one and onto mappings from A to B is				
	(a) 0	(b) 4^5	$(c) 5^4$	(d) none of these	
30.	Let $A = \{x, y, z\}$ and B	$= \{a, b\}$ then the numbe	r of onto function from	n A to $B $ is	
	(a) 0	(b) 3	(c) 6	(d) 8	
31.	If A and B have 4 and 6 elements respectively then the number of one-one function from A to B is				
	(a) 4^6	(b) 6^4	(c) 360	(d) 240	
32.	If A and B have 4 electo B is	ments each then the nur	nber of one-one onto	(bijective) function from A	
	(a) 0	(b) 24	(c) 4^2	(d) None of these	
22	, ,	e relation on A , then R^{-1}		(u) Notic of these	
33.	(a) Transitive only		(c) Reflexive only	(d) Equivalence relation	
24			1271	(u) Equivalence relation	
34.	•	than" denoted by > in t		(d) Niene of these	
	(a) Symmetric	(b) Reflexive	(c) Transitive	(d) None of these	
35.		netric relations in a set A		(1)	
	(a) Reflexive	(b) Symmetric	(c) Transitive	(d) None of these	
36.		R defined by $f(x) = 4^x +$			
	(a) one-one and into		(b) one-one and onto		
	(c) many one and into (d) many one and onto				
37.	Identity relation R or	$\mathbf{a} \mathbf{set} A \mathbf{is}$			
	(a) Reflexive only	(b) Symmetric only	(c) Transitive only	(d) Equivalence	
38.	The relation "congruence modulo m " on the set $\mathbb Z$ of all integers is a relation of type				
	(a) Reflexive only	(b) Symmetric only	(c) Transitive only	(d) Equivalence	
39.	Let $f: \mathbb{R} \longrightarrow \left[0, \frac{\pi}{2}\right]$ defined by $f(x) = \tan^{-1}(x^2 + x + 2a)$ then the set of values of 'a' for which				
	f is onto, is		Га\	[1]	
	(a) $\left(-\frac{1}{4},\infty\right)$	(b) $[-1,\infty)$	(c) $\left[-\frac{1}{8},\infty\right)$	(d) $\left[\frac{1}{8},\infty\right)$	
40.	If the function $f(x)$ sa	tisfying $(f(x))^2 - 4f(x)f'$	$(x) + (f'(x))^2 = 0$ then f	(x) equals	
		$(b) \lambda e^{(2-\sqrt{5})x}$	DE CONTRACTOR DE	(d) $\lambda e^{(3-\sqrt{3})x}$	
41.	Let $f:(-1,1) \longrightarrow B$ where $f(x) = \tan^{-1}\left(\frac{2x}{1-x^2}\right)$ is one-one and onto, then B equals				
		$(b) \left[-\frac{\pi}{2}, \frac{\pi}{2} \right]$	$(c) \left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$	(d) $\left(0,\frac{\pi}{2}\right)$	
42.	The function $y = \frac{\lambda}{1+}$	$\frac{1}{ x }, x \in \mathbb{R}, y \in \mathbb{R}$ is			
	(a) One-one onto		(b) Onto but not one-	one	
	(c) One-one but not o		(d) None of these		
43.	A relation R in the sthen R is	et of non-zero complex	s number is defined b	$y z_1 R z_2 \Leftrightarrow \frac{z_1 - z_2}{z_1 + z_2}$ is real,	
	(a) Reflexive	(b) Symmetric	(c) Transitive	(d) Equivalence	
44.	Number of onto (sub	jective) functions from	A to B if $n(A) = 6$ and n	a(B) = 3 are	
		(b) $3^6 - 3$	(c) 340	(d) None of these	

45.	Let $A = \{7, 8, 9, 10\}$ and $R \{(8, 8), (9, 9), (10, 10), (7, 8)\}$ be a relation on A , then R is				
	(a) Transitive		(c) Symmetric	(d) None of these	
46.	Let f , g be a function from the set $\{1, 2,, 12\}$ to the set $\{1, 2, 3,, 11\}$ then which of the followi is correct?				
	(a) Number of onto fu	unctions from $A \text{ to } B = \frac{1}{2}$	$\frac{2 \times 11}{2}$		
		unctions from A to $B = 1$			
	(c) The functions whi	ich are not onto = 11^{12} –	$\frac{12\times11}{2}$		
	(d) All of these		2		
47.		ve integers, f is a function	on defined for positive	numbers and attains only	
		that $f[x f(y)] = x^a y^b$ the			
	$(a) b^2 = a$	$(b) \ a = b$	0	(d) None of these	
48.	Let $f: (-1, 1) \rightarrow B$, be a when B is the interva	function defined by $f(x)$		f is both one-one and onto	
	(a) $\left[0,\frac{\pi}{2}\right)$	(b) $\left(0,\frac{\pi}{2}\right)$		(d) $\left[-\frac{\pi}{2},\frac{\pi}{2}\right]$	
		$e^{x^2} - e^{-x^2}$			
49.	Let $f: \mathbb{R} \longrightarrow \mathbb{R}$ define	ined by $f(x) = \frac{e^{x^2} - e^{-x^2}}{e^{x^2} + e^{-x^2}}$	then		
	(a) $f(x)$ is one-one but	The state of the s	(b) $f(x)$ is neither one	one nor onto	
	(c) $f(x)$ is many one b	ut onto	(d) $f(x)$ is one-one and	d onto	
50.	If $A = \{7, 8, 9\}$, then th	ne relation $R = \{(8, 9)\}$ in .	A is		
	(a) Symmetric only	(b) Non-symmetric	(c) Reflexive only	(d) Equivalence	
51.	Let A be the finite se	et containing n distinct	elements . The numb	er of relations that can be	
	defined on A is		9		
	(a) 2^n	(b) n^2	(c) 2^{n^2}	(d) 2^{n-1}	
52.		ivalence relations on a se			
	(a) Reflexive	(b) Symmetric	(c) Transitive	(d) None of these	
53.	Let R be the relation then domain of R is	defined on the set N of	natural numbers by th	e rule x R y iff x + 2 y = 8,	
	(a) $\{2,4,8\}$	(b) {2,4,6}	(c) {2,4,6,8}	(d) {1,2,3,4}	
54.	Let $A = \{a,b,c\}$ and $R =$	$=\{(a,a), (b,b), (c,c), (b,c), (b,c)$	a,b)} be a relation on A	A, then R is	
	(a) Symmetric	(b) Transitive	(c) Reflexive	(d) Equivalence	
55.	"Every relation is a for statement?	unction and every funct	ion is a relation" then	which is correct for given	
	(a) True	(b) False	(c) Can't say anythin	g (d) None of these	
56.	If a relation R on the	set {1, 2, 3} be defined by	$y R = \{(1, 2)\}, \text{ then } R \text{ is }$		
	(a) Reflexive	(b) Transitive	(c) Symmetric	(d) None of these	
57.	Let us define a relation R in R as $a R b$ if $a \ge b$. Then, R is				

 $R = \{(a, b) : a \ge b\}$

- (a) An equivalence relation
- (b) Reflexive, transitive but not symmetric
- (c) Symmetric, transitive but not reflexive
- (d) Neither transitive nor reflexive but symmetric

- 58. If $A = \{1, 2, 3\}$ and consider the relation $R = \{(1, 1), (2, 2), (3, 3), (1, 2), (2, 3), (1, 3)\}$. Then, R is
 - (a) Reflexive but not symmetric
- (b) Reflexive but not transitive
- (c) Symmetric and transitive
- (d) Neither Symmetric nor transitive
- 59. The relation R defined on the set $A = \{1, 2, 3, 4, 5\}$ by $R = \{(a, b) : |a^2 b^2| < 7\}$ is given by
 - (a) $\{(1, 1), (2, 1), (3, 1), (4, 1), (2, 3)\}$
 - (b) $\{(2,2),(3,2),(4,2),(2,4)\}$
 - (c) $\{(3,3), (4,3), (5,4), (3,4)\}$
 - (d) $\{(1, 1), (2, 2), (3, 3), (4, 4), (5, 5), (1, 2), (2, 3)\}$

Answers

1. (b)	2. (<i>d</i>)	3. (a)	4. (b)	5. (d)	6. (b)
7. (a)	8. (b)	9. (a)	10. (c)	11. (c)	12. (c)
13. (b)	14. (b)	15. (c)	16 . (<i>d</i>)	17. (c)	18. (<i>d</i>)
19. (a)	20. (a)	21. (c)	22. (c)	23. (b)	24. (a)
25. (c)	26. (b)	27. (a)	28. (b)	29. (a)	30. (<i>c</i>)
31 . (c)	32 . (b)	33. (d)	34 . (c)	35 . (b)	36. (<i>a</i>)
37. (d)	38. (d)	39. (<i>d</i>)	40. (c)	41. (c)	42. (c)
43. (<i>d</i>)	44. (d)	45. (a)	46. (<i>d</i>)	47. (c)	48. (c)
49. (b)	50. (<i>b</i>)	51. (<i>c</i>)	52. (c)	53. (<i>b</i>)	54. (<i>c</i>)
55. (<i>b</i>)	56. (<i>b</i>)	57. (<i>b</i>)	58. (a)	59. (<i>d</i>)	

CASE-BASED QUESTIONS

Choose and write the correct option in the following questions.

1. Read the following and answer any four questions from (i) to (v).

A general election of Lok Sabha is a gigantic exercise. About 911 million people were eligible to vote and voter turnout was about 67%, the highest ever

ONE – NATION
ONE – ELECTION
FESTIVAL OF
DEMOCRACY
GENERAL ELECTION– 2019

Let *I* be the set of all citizens of India who were eligible to exercise their voting right in general election held in 2019. A relation '*R*' is defined on *I* as follows:

 $R = \{(V_1, V_2) : V_1, V_2 \in I \text{ and both use their voting right in general election } -2019\}$

[CBSE Question Bank]

Answer the questions given below.

- (i) Two neighbours X and $Y \in I$. X exercised his voting right while Y did not cast her vote in general election 2019. Which of the following is true?
 - (a) $(X, Y) \in R$

(b) $(Y, X) \in R$

(c) $(X, X) \notin R$

- $(d)(X,Y) \notin R$
- (ii) Mr.'X' and his wife 'W' both exercised their voting right in general election -2019, Which of the following is true?
 - (a) both (X,W) and $(W,X) \in R$
- (b) $(X,W) \in R$ but $(W,X) \notin R$
- (c) both (X,W) and $(W,X) \notin R$
- (d) $(W,X) \in R$ but $(X,W) \notin R$
- (iii) Three friends F_1 , F_2 and F_3 exercised their voting right in general election-2019, then which of the following is true?
 - (a) $(F_1, F_2) \in R$, $(F_2, F_3) \in R$ and $(F_1, F_3) \in R$
 - (b) $(F_1, F_2) \in R$, $(F_2, F_3) \in R$ and $(F_1, F_3) \notin R$
 - (c) $(F_1, F_2) \in R$, $(F_2, F_2) \in R$ but $(F_3, F_3) \notin R$
 - (d) $(F_1, F_2) \notin R$, $(F_2, F_3) \notin R$ and $(F_1, F_3) \notin R$
- (iv) The above defined relation R is
 - (a) Symmetric and transitive but not reflexive
 - (b) Universal relation
 - (c) Equivalence relation
 - (d) Reflexive but not symmetric and transitive
- (v) Mr. Shyam exercised his voting right in General Election 2019, then Mr. Shyam is related to which of the following?
 - (a) All those eligible voters who cast their votes
 - (b) Family members of Mr.Shyam
 - (c) All citizens of India
 - (d) Eligible voters of India
- **Sol.** We have a relation 'R' is defined on I as follows:

 $R = \{V_1, V_2\} : V_1, V_2 \in I \text{ and both use their voting right in general election } -2019\}$

(i) Two neighbors X and $Y \in I$. Since X exercised his voting right while Y did not cast her vote in general election – 2019

Therefore, $(X, Y) \notin R$

- ∴ Option (d) is correct.
- (ii) Since Mr. 'X' and his wife 'W' both exercised their voting right in general election 2019.
 - \therefore Both (X, W) and $(W, X) \in R$.
 - :. Option (a) is correct.
- (iii) Since three friends F_1 , F_2 and F_3 exercised their voting right in general election 2019, therefore

 $(F_1, F_2) \in R, (F_2, F_3) \in R \text{ and } (F_1, F_3) \in R$

- :. Option (a) is correct.
- (iv) This relation is an equivalence relation
 - :. Option (c) is correct.
- (v) Mr. Shyam exercised his voting right in General election 2019, then Mr. Shyam is related to all those eligible votes who cast their votes.
 - :. Option (a) is correct.

2. Read the following and answer any four questions from (i) to (v).

Sherlin and Danju are playing Ludo at home during Covid-19. While rolling the dice, Sherlin's sister Raji observed and noted the possible outcomes of the throw every time belongs to set {1,2,3,4,5,6}. Let A be the set of players while B be the set of all possible outcomes.

 $A = \{S, D\}, B = \{1,2,3,4,5,6\}$

[CBSE Question Bank]

Answer the questions given below.

- (i) Let $R: B \to B$ be defined by $R = \{(x, y): y \text{ is divisible by } x\}$ is
 - (a) Reflexive and transitive but not symmetric
 - (b) Reflexive and symmetric and not transitive
 - (c) Not reflexive but symmetric and transitive
 - (d) Equivalence
- (ii) Raji wants to know the number of functions from A to B. How many number of functions are possible?
 - (a) 6^2
- $(b) 2^6$
- (c) 6!
- $(d) 2^{12}$
- (iii) Let R be a relation on B defined by $R = \{(1,2), (2,2), (1,3), (3,4), (3,1), (4,3), (5,5)\}$. Then R is
 - (a) Symmetric
- (b) Reflexive
- (c) Transitive
- (d) None of these three
- (iv) Raji wants to know the number of relations possible from A to B. How many numbers of relations are possible?
 - (a) 6^2
- $(b) 2^6$
- (c) 6!
- $(d) 2^{12}$
- (v) Let $R: B \to B$ be defined by $R=\{(1,1),(1,2),(2,2),(3,3),(4,4),(5,5),(6,6)\}$, then R is
 - (a) Symmetric

- (b) Reflexive and Transitive
- (c) Transitive and symmetric
- (d) Equivalence
- **Sol.** (*i*) Given $R: B \rightarrow B$ be defined by

 $R = \{(x, y) : y \text{ is divisible by } x\}$

Reflexive : Let $x \in B$, since x always divide x itself.

$$(x, x) \in R$$

It is reflexive.

Symmetric: Let $x, y \in B$ and let $(x, y) \in R$

 \Rightarrow *y* is divisible by *x*

$$\Rightarrow \frac{y}{x} = k_1$$
, where k_1 is an integer.

$$\Rightarrow \frac{x}{y} = \frac{1}{k_1} \neq \text{integer.}$$

$$(y, x) \notin R$$

It is not symmetric.

Transitive : Let x, y, $z \in B$ and

Let
$$(x, y) \in R \implies \frac{y}{x} = k_1$$
, where k_1 is an integer.

and,
$$(y, z) \in R \implies \frac{z}{y} = k_2$$
, where k_2 is an integer.

$$\therefore \quad \frac{y}{x} \times \frac{z}{y} = k_1 . k_2 = k \text{ (integer)}$$

$$\Rightarrow \frac{z}{x} = k \qquad \Rightarrow (x, z) \in R$$

It is transitive.

Hence, relation is reflexive and transitive but not symmetric.

- :. Option (a) is correct.
- (ii) We have,

$$A = \{ S, D \} \Rightarrow n(A) = 2$$

and,
$$B = \{1, 2, 3, 4, 5, 6\} \Rightarrow n(B) = 6$$

- \therefore Number of functions from A to B is 6^2 .
- :. Option (a) is correct.
- (iii) Given,

R be a relation on B defined by

$$R = \{(1, 2), (2, 2), (1, 3), (3, 4), (3, 1), (4, 3), (5, 5)\}$$

R is not reflexive since (1, 1), (3, 3), $(4, 4) \notin R$

R is not symmetric as $(1, 2) \in R$ but $(2, 1) \notin R$

and, R is not transitive as $(1,3) \in R$ and $(3,1) \in R$ but $(1,1) \notin R$

- :. R is neither reflexive nor symmetric nor transitive.
- .. Option (d) is correct.
- (iv) Total number of possible relations from A to $B = 2^{12}$
 - .. Option (d) is correct.
- (v) Given $R: B \to B$ be defined by $R = \{(1, 1), (1, 2), (2, 2), (3, 3), (4, 4), (5, 5), (6, 6)\}$
 - \therefore R is reflexive as each elements of B is related to itself and R is also transitive as $(1, 2) \in \mathbb{R}$ and $(2, 2) \in \mathbb{R}$
 - \Rightarrow $(1,2) \in R$
 - :. R is reflexive and transitive.
 - :. Option (b) is correct.

3. Read the following and answer any four questions from (i) to (v).

An organization conducted bike race under 2 different categories-boys and girls. In all, there were 250 participants. Among all of them finally three from Category 1 and two from Category 2 were selected for the final race. Ravi forms two sets *B* and *G* with these participants for his college project.

Let $B = \{b_1, b_2, b_3\}$ $G = \{g_1, g_2\}$ where B represents the set of boys selected and G the set of girls who were selected for the final race. [CBSE Question Bank]

Rav	vi decides to explo	ore these sets for vario	us types of relat	ions and functions		
	swer the question Ravi wishes to f possible?		possible from I	3 to G. How many such relations are		
	(a) 2^6	$(b) 2^5$	(c) 0	(d) 2^3		
(ii)	Let $R: B \to B$ be defined by $R = \{(x, y) : x \text{ and } y \text{ are students of same sex}\}$, Then this relation R is					
	(a) Equivalence					
	(b) Reflexive only					
	(c) Reflexive and symmetric but not transitive					
	(d) Reflexive and	d transitive but not sy	mmetric			
(iii)	Ravi wants to know among those relations, how many functions can be formed from B to G?					
	(a) 2^2	$(b) 2^{12}$	(c) 3^2	$(d) 2^3$		
(iv)	Let $R: B \to G$ be defined by $R = \{ (b_1, g_1), (b_2, g_2), (b_3, g_1) \}$, then R is					
	(a) Injective		(b) Surjective			
	(c) Neither Surje	ective nor Injective	(d) Surjective	e and Injective		
(v)	Ravi wants to fin	and the same of th	ective functions	from B to G. How many numbers of		
	(a) 0	(b) 2!	(c) 3!	(d) 0!		

Sol. We have sets

$$B=\{b_1,\,b_2,\,b_3\},\,G=\{g_1,\,g_2\}$$

$$\Rightarrow$$
 $n(B) = 3$ and $n(G) = 2$

- (i) Number of all possible relations from B to $G = 2^{3 \times 2} = 2^6$
 - :. Option (a) is correct.
- (ii) Given relation $R = \{(x, y) : x \text{ and } y \text{ are student of same sex}\}$

On the set B.

Since the set is $B = \{b_1, b_2, b_3\}$ = all boys

- :. It is ans equivalence relation.
- :. Option (a) is correct.

(iii) We have,

$$B = \{b_1, b_2, b_3\} \implies n(B) = 3$$

$$G = \{g_1, g_2\} \Rightarrow n(G) = 2$$

- \therefore Total no. of possible functions from B to $G = 2^3$
- :. Option (d) is correct.
- (iv) We have,

$$R: B \to G$$
 be defined by

$$R = \{(b_1, g_1), (b_2, g_2), (b_3, g_1)\}\$$

It is not injective because $(b_1, g_1) \in R$ and $(b_3, g_1) \in R$

So
$$b_1 \neq b_3 \Rightarrow \text{ same image } g_1$$
.

It is surjective because its Co-domain = Range.

- \therefore R is Surjective.
- \therefore Option (b) is correct.
- (v) Since R is not injective therefore number of injective functions = 0
 - :. Option (a) is correct.

ASSERTION-REASON QUESTIONS

In the following questions, a statement of Assertion (A) is followed by a statement of Reason (R). Choose the correct answer out of the following choices.

- (a) Both A and R are true and R is the correct explanation of A.
- (b) Both A and R are true but R is not the correct explanation of A.
- (c) A is true but R is false.
- (d) A is false and R is also false.
- **1. Assertion (A):** Let L be the collection of all lines in a plane and R_1 be the relation on L as $R_1 = \{(L_1, L_2) : L_1 \perp L_2\}$ is a symmetric relation.
 - **Reason** (R): A relation R is said to be symmetric if $(a, b) \in R \Rightarrow (b, a) \in R$.
- 2. Assertion (A): Let R be the relation on the set of integers Z given by $R = \{(a, b) : 2 \text{ divides } (a b)\}$ is an equivalence relation.
 - **Reason** (R): A relation R in a set A is said to be an equivalence relation if R is reflexive, symmetric and transitive.
- **3.** Assertion (A): Let $f: \mathbb{R} \to \mathbb{R}$ given by f(x) = x, then f is a one-one function.
 - **Reason** (R): A function $g: A \to B$ is said to be onto function if for each $b \in B$, $\exists a \in A$ such that g(a) = b.
- **4.** Assertion (A): Let function $f: \{1, 2, 3\} \rightarrow \{1, 2, 3\}$ be an onto function. Then it must be one-one function.
 - **Reason** (R): A one-one function $g: A \rightarrow B$, where A and B are finite set and having same number of elements, then it must be onto and vice-versa.

Answers

- **1.** (a)
- **2.** (a)
- 3. (b)
- **4.** (a)

HINTS/SOLUTIONS OF SELECTED MCQS

1. Since every element of *A* is related to itself in the given relation *R*, therefore *R* is reflexive and as $(1,2) \in R$ and $(2,2) \in R \Rightarrow (1,2) \in R$ also $(1,3) \in R$ and $(3,2) \in R \Rightarrow (1,2) \in R$. Again $(1,3) \in R$ and $(3,3) \in R \Rightarrow (1,3) \in R$. Thus *R* is also transitive. Hence relation *R* is reflexive and transitive but not symmetric because, $(1,2) \in R$ but $(2,1) \notin R$, also $(1,3) \in R$ but $(3,1) \notin R$ and $(3,2) \in R$ but $(2,3) \notin R$.

Option (b) is correct.

2. On the set $A = \{a, b, c, d\}$ given relation $R = \{(a, b), (b, a), (a, a)\}$ is symmetric and transitive only.

Since, $(a, b) \in R \Rightarrow (b, a) \in R$, therefore it is symmetric

Also, $(a, b) \in R$ and $(b, a) \in R \Rightarrow (a, a) \in R$, so it is also transitive. As (b, b), (c, c) and (d, d) does not belong to R hence R is not reflexive.

Hence relation *R* is symmetric and transitive only.

Option (d) is correct.

3. For any $x \in \mathbb{R}$

$$x - x + \sqrt{2} = \sqrt{2}$$
 is an irrational number $\Rightarrow (x, x) \in R \ \forall \ x \in \mathbb{R}$

:. R is reflexive

For 2,
$$\sqrt{2} \in \mathbb{R}$$

$$\sqrt{2}$$
 -2+ $\sqrt{2}$ = 2 $\sqrt{2}$ -2 is an irrational number.

$$\Rightarrow (\sqrt{2}, 2) \in \mathbb{R}$$

But
$$2 - \sqrt{2} + \sqrt{2} = 2$$
 which is a rational number

$$\Rightarrow (2,\sqrt{2}\,) \notin R$$

 \Rightarrow R is not reflexive

R is not transitive

For 2,
$$\sqrt{3}$$
, $\sqrt{2} \in \mathbb{R}$

$$\therefore 2 - \sqrt{3} + \sqrt{2} = 2 - (\sqrt{3} - \sqrt{2})$$
 is an irrational number

$$\Rightarrow$$
 (2, $\sqrt{3}$) $\in R$

Also
$$\sqrt{3} - \sqrt{2} + \sqrt{2} = \sqrt{3}$$
 which is an irrational number

$$\Rightarrow (\sqrt{3}, \sqrt{2}) \in R$$

But
$$2 - \sqrt{2} + \sqrt{2} = 2$$
 which is a rational number.

$$\Rightarrow (2, \sqrt{2}) \notin R$$

$$\Rightarrow$$
 R is not transitive

Option (a) is correct.

4. Given, $aRb \Rightarrow a$ is brother of b

This does not mean that *b* is also a brother of *a* because *b* can be a sister of *a*.

Hence, *R* is not symmetric.

Again, $aRb \Rightarrow a$ is brother of b and $bRc \Rightarrow b$ is brother of c.

So, a is brother of c.

Hence, R is transitive.

Option (b) is correct.

5. We are given set $A = \{1, 2, 3\}$

Number of equivalance relation on $A = number of possible portion of {1, 2, 3}$

i.e.,
$$3 = 1 + 1 + 1$$
 Only one combination

$$3 = 1 + 2$$
 3 Possible combination

i.e., (i)
$$\{\{1\}, \{2\}, \{3\}\}$$
 i.e., $\{(1, 1), (2, 2), (3, 3)\}$

(ii)
$$\{\{1, 2\}, \{3\}$$
 i.e., $\{(1, 2), (2, 1), (3, 3)\}$

(iii)
$$\{\{1,3\},\{2\}\}$$
 i.e., $\{(1,3),(3,1),(2,2)\}$

$$(iv)$$
 {{2, 3}, {1}} $i.e.$, {(2, 3), (3, 2), (1, 1)}

$$(v) \{\{1, 2, 3\}\}\$$
 i.e., $\{(1, 1), (1, 2), (1, 3), (2, 1), (2, 2), (2, 3), (3, 1), (3, 2), (3, 3)\}$

i.e., Total number of equivalence relation = 5

Option (d) is correct.

6. For $l, m \in L$

if
$$(l, m) \in R \Rightarrow l \perp m \Rightarrow m \perp l \Rightarrow (m, l) \in R$$

 \therefore R is symmetric.

Option (b) is correct.

7. Required relation is reflexive and symmetric but not transitive is given by

$$R = \{(1, 1), (2, 2), (3, 3), (1, 2), (2, 1), (1, 3), (3, 1)\}$$

which is reflexive as $(a, a) \in R \ \forall \ a \in A$

which is symmetric as $(a, b) \in R \Rightarrow (b, a) \in R$ for $a, b \in A$

But
$$(2, 1), (1, 3) \in R \implies (2, 3) \in R$$

Hence *R* is not transitive.

There is only one such relation.

Option (a) is correct.

- **9.** We have n(A) = m, n(B) = n.
 - :. Number of relations defined from A to B
 - = number of possible subsets of A × B = $2^{n(A \times B)} = 2^{mn}$

Option (a) is correct.

10. The total number of injective mappings from the set containing n elements into the set containing m elements is ${}^{m}P_{n}$. So here it is ${}^{4}P_{3} = 4! = 24$.

Option (c) is correct.

11. We have $f: \mathbb{R} \to \mathbb{R}$: such that

$$f(x) = 2^{x} + 2^{|x|} = \begin{cases} 2^{x} + 2^{x} & \text{if } x \ge 0 \\ 2^{x} + 2^{-x} & \text{if } x < 0 \end{cases} = \begin{cases} 2^{x+1} & \text{if } x \ge 0 \\ 2^{x} + 2^{-x} & \text{if } x < 0 \end{cases}$$
$$\Rightarrow f'(x) = \begin{cases} 2^{x+1} \log 2 & \text{if } x \ge 0 \\ 2^{x} \log 2 + (-2^{-x} \log 2) & \text{if } x < 0 \end{cases} = \begin{cases} 2^{x+1} \log 2 & \text{if } x \ge 0 \\ \log 2 (2^{x} - 2^{-x}) & \text{if } x < 0 \end{cases}$$

$$f'(x) > 0 \forall x \ge 0$$
 and $f'(x) < 0 \forall x < 0$

 \Rightarrow f(x) is strictly increasing in $\mathbb{R} \Rightarrow f(x)$ is one-one.

Also,
$$f(x) \to \infty$$
 if $x \to \pm \infty$ and $f(x) > 0 \ \forall \ x \in \mathbb{R}$

- \Rightarrow *f* is an into function.
- \therefore f(x) is one-one and into function.

Option (c) is correct.

- **12.** We have n(A) = 5 and n(B) = 6
 - \therefore Number of one-one mopping from A to B = 6!

As n(A) < n(B)

- \Rightarrow There is no onto function from A to B. i.e., number of onto function = 0.
- \therefore Number of one-one and onto functions from A to B = 0

Option (c) is correct.

13. $f: \mathbb{Z} \to \mathbb{Z}$ given by f(x) = x + 2

One-one For
$$x_1, x_2 \in \mathbb{Z}$$
 such that $x_1 \neq x_2 \implies x_1 + 2 \neq x_2 + 2$

$$\Rightarrow f(x_1) \neq f(x_2)$$

 \Rightarrow *f* is one-one.

Onto Let $y \in \mathbb{Z}$ (co-domain) such that

$$f(x) = y \implies x + 2 = y \implies x = y - 2$$

For $y \in \mathbb{Z}$ (co-domain), $\exists x = y - 2 \in \mathbb{Z}$ (domain) such that

$$f(x) = f(y-2) = y-2+2 = y$$

 \Rightarrow f is onto

As *f* is one-one and onto.

 \Rightarrow f is a bijective function.

Option (b) is correct.

14. Given that, $f(x) = x^2 - 4x + 5$

$$y = x^2 - 4x + 5$$

$$y = x^2 - 4x + 4 + 1 = (x - 2)^2 + 1$$

$$\Rightarrow x = 2 + \sqrt{y-1}$$

$$(x-2)^2 = y-1 \qquad \Rightarrow \qquad x-2 = \sqrt{y-1}$$

$$y - 1 \ge 0, y \ge 1$$

Range =
$$[1, \infty)$$

Option (b) is correct.

15. Let $f(x) = 17 \Rightarrow x^2 + 1 = 17$

$$\Rightarrow$$
 $x = \pm 4 \Rightarrow$ Pre image of 17 are $\{4, -4\}$

and let $f(x) = -3 \implies x^2 + 1 = -3 \implies x^2 = -4$ which is not true and hence -3 has no pre image

17. : b > 6 and a = b - 2

$$\Rightarrow$$
 (6,8) \in R as 8 > 6 and 6 = 8 - 2

Option (c) is correct.

18. *f* is not one-one because

$$f(-2) = (-2)^4 = 16$$

$$f(2) = (2)^4 = 16$$

i.e., -2 and $2 \in R$ (Domain) have same f-image in R (co-domain)

 \Rightarrow f is not one-one.

Also $f(x) = x^4$ never achieve negative value.

- \Rightarrow All negative real number of co-domain R have no pre-image in Domain R.
- \Rightarrow f is not onto.

Hence, *f* is neither one-one nor onto.

Option (d) is correct.

19. *f* is one-one because

$$f(x_1) = f(x_2) \Rightarrow 3x_1 = 3x_2$$

$$\Rightarrow x_1 = x_2 \quad \forall x_1, x_2 \in R \quad (Domain)$$

Also f is onto as

Let
$$f(x) = y \implies 3x = y \implies x = \frac{y}{3}$$

$$\forall y \in R \text{ (codomain) } \exists x = \frac{y}{3} \in R \text{ (domain)}$$

such that
$$f(x) = f\left(\frac{y}{3}\right) = 3 \times \frac{y}{3} = y$$

$$\Rightarrow f(x)$$
 is onto

Therefore, f is one-one onto.

Option (a) is correct.

21. Let x be the pre image of 5

$$\Rightarrow f(x) = 5$$

$$\Rightarrow x^2 + 1 = 5$$

$$\Rightarrow x^2 = 4$$

$$\Rightarrow x = \pm 2$$

i.e., pre-image of 5 is -2, +2.

Similarly if x be pre-image of -5

$$\Rightarrow f(x) = -5$$

$$\Rightarrow x^2 + 1 = -5$$

$$\Rightarrow x^2 = -6$$

$$x = \pm \sqrt{-6} \notin R$$

i.e., No real number is pre-image of – 5. Hence ϕ is the primage of –5.

Option (c) is correct.

22. To find out the domain of f, we have to find out that value of x for which f(x) is real.

$$\Rightarrow x^2 - 4 \ge 0$$

$$\Rightarrow$$
 $(x+2)(x-2) \ge 0$

$$\Rightarrow$$
 $(x+2) \ge 0, (x-2) \ge 0 \text{ or } (x+2) \le 0, (x-2) \le 0$

$$\Rightarrow x \ge -2, x \ge 2 \text{ or } x \le -2, x \le 2$$

$$\Rightarrow x \ge 2 \text{ or } x \le -2$$

Domain of f is $(-\infty, -2] \cup [2, \infty)$

Option (c) is correct.

23.
$$f(-2) + f(0) + f(2) + f(5) = -2 + 0 + 4 + 15 = 17$$

Option (b) is correct.

24. As *R* is reflexive relation on *A*, and for being reflexive $(a, a) \in R, \forall a \in A$

Therefore, the minimum number of ordered pair in R is n.

$$\Rightarrow m \geq n$$
.

Option (a) is correct.

25. Given function is $f(x) = \log_{3+x} (x^2 - 1)$

It is obvious that f(x) is defined when $x^2 - 1 > 0$, 3 + x > 0 and $3 + x \ne 1$.

Now,
$$x^2 - 1 > 0 \Rightarrow x^2 > 1$$

 $\Rightarrow x < -1 \text{ or } x > 1$
 $3 + x > 0 \Rightarrow x > -3$

$$3 + x \neq 1 \Rightarrow x \neq -2$$

Therefore, domain of the function $f(x) = (-3, -2) \cup (-2, -1) \cup (1, \infty)$

Option (c) is correct.

26. From definition of onto function,

Range of function = Codomain of function = $[0, \frac{\pi}{2})$

$$\Rightarrow 0 \le \tan^{-1}(x^2 + x + a) < \frac{\pi}{2}$$

$$\rightarrow 0 \le (x^2 + x + a) < \infty$$

$$\Rightarrow x^2 + x + a > 0 \ \forall x \in R$$

Hence $D \le 0$

$$\Rightarrow$$
 $1^2 - 4a \le 0$

$$\Rightarrow 4a \ge 1$$

$$\Rightarrow a \ge \frac{1}{4}$$

$$\Rightarrow a \in [\frac{1}{4}, \infty)$$

Option (b) is correct.

27. We have,

 $f: R \rightarrow R$ and $g: R \rightarrow R$ are such that

$$f(x) = \begin{cases} 0, & x \in \text{rational} \\ x, & x \in \text{irrational} \end{cases}$$

and
$$g(x) = \begin{cases} 0, & x \in \text{irrational} \\ x, & x \in \text{rational} \end{cases}$$

$$\therefore$$
 $(f-g): R \to R$ such that,

$$(f - g)(x) = \begin{cases} -x, & x \in \text{rational} \\ x, & x \in \text{irrational} \end{cases}$$

From definition of $(f-g): R \to R$, it is obvious that, each rational number of domain of (f-g)(x), associate to its negative rational number in codomain/range and each irrational number of domain of (f-g)(x), associate to same irrational number in codomain/range.

 \Rightarrow For each $x \in \text{Domain of } (f-g)(x)$, there is only one value in codomain/range of (f-g)(x).

Hence, (f - g)(x) is one-one onto.

Option (a) is correct.

28. We have set $A = \{1, 2, 3, 4\} & \text{relation}$

$$R = \{(1, 2), (3, 4)\}$$
 on A

As for $(a, b) \in R$, $\mathbb{Z}(b, c) \in R$ such that

$$(a,c) \in R$$
.

Hence R is transitive.

So (b) is correct option.

Option (b) is correct.

29. |A| = 4, |B| = 5 so there does not exist.

one-one and onto |B| > |A| so it is not onto.

So (a) is correct option.

Option (a) is correct.

30. Number of onto functions are given by

$$2^3 - {}^2C_1(2-1)^3 + {}^2C_2(2-2)^3$$

$$= 8 - 2 \times 1 + 0 = 8 - 2 = 6$$

Option (c) is correct.

31. Number of one-one function = 6P_4

$$=\frac{6}{2}=\frac{720}{2}=360$$

Option (c) is correct.

- 32. Number of one-one and onto function from A to B where |A| = m is |m|.
 - \therefore Number of one-one onto function = 4 = 24

Option (b) is correct.

[**Note:** One-one onto function (bijective) from *A* to *B* is possible if *A* and *B* have same number of elements.]

34. Let *R* be a relation on the set of all intergers \mathbb{Z} , defined by

$$aRb \Leftrightarrow a > b \ \forall \ a,b \in \mathbb{Z}$$

(i) Reflexive: For $1 \in \mathbb{Z}$

 $1 R 1 \text{ as } 1 \not> 1 \text{ so } (1, 1) \notin R \Rightarrow R \text{ is not reflexive on } \mathbb{Z}$

(ii) Symmetric: $(3, 2) \subset R$ as 3 > 2

But
$$(2,3) \notin R$$
 as $2 \not\geqslant 3$

Hence R is not symmetric on \mathbb{Z}

(iii) **Transitive:** Let $(a, b) \in R$ and $(b, c) \in R$ a > b and b > c

Now
$$a > b > c \Rightarrow a > c \Rightarrow (a, c) \in R$$

Hence R is a transitive relation on \mathbb{Z}

Option (c) is correct.

36. $f(x) = 4^x + 4^{|x|}$

One-one

Let $x_1, x_2 \in R$ (domain) such that

$$x_1 \neq x_2$$

$$\Rightarrow 4^{x_1} + 4^{|x_1|} \neq 4^{x_2} + 4^{|x_2|}$$

$$\Rightarrow f(x_1) \neq f(x_2)$$

f is one-one

Onto

For $0 \in R$ (Co-domain) there is no $x \in R$ (domain) such that f(x) = 0.

$$\therefore$$
 f is not onto

Range of
$$f = R - \{0\} \subseteq R$$

Hence *f* is one-one into function.

Option (a) is correct.

39. Here co-domain =
$$\left[0, \frac{\pi}{2}\right)$$

For onto function, we have

Co-domain = Range =
$$0 \le x < \frac{\pi}{2}$$

This is valid if
$$x^2 + x + 2a \ge 0$$

[:
$$f(x) \ge 0$$
 i.e. $Ax^2 + Bx + C \ge 0$ then $D \le 0$ if $A > 0$.]

i.e.,
$$x^2 + x + 2a \ge 0 \Rightarrow 1^2 - 4 \times 1 \times 2a \le 0$$

$$\rightarrow 1 - 8a \le 0 \rightarrow 1 \le 8a \rightarrow 8a \ge 1 \rightarrow a \ge \frac{1}{8}$$

$$\therefore a \in \left[\frac{1}{8}, \infty\right)$$

Option (d) is correct.

40. We are given that

$$(f(x))^2 - 4f(x)f'(x) + (f'(x))^2 = 0$$

$$\Rightarrow f'(x) = \frac{4f(x) \pm \sqrt{16(f(x))^2 - 4(f(x))^2}}{2}$$

$$f'(x) = \frac{4f(x) \pm 2f(x)\sqrt{4-1}}{2}$$
$$= \frac{4f(x) \pm 2\sqrt{3}f(x)}{2}$$

$$=f(x)(2\pm\sqrt{3})$$

$$\Rightarrow \frac{f'(x)}{f(x)} = (2 \pm \sqrt{3})$$

Integrating, we get

$$\Rightarrow \log f(x) = (2 \pm \sqrt{3})x + C$$

$$\Rightarrow f(x) = e^{(2\pm\sqrt{3})x+C} = e^C e^{(2\pm\sqrt{3})x} = \lambda e^{(2\pm\sqrt{3})x}$$

where
$$\lambda = e^{C}$$

$$\Rightarrow f(x) = \lambda e^{(2 \pm \sqrt{3})x} = \lambda e^{(2 + \sqrt{3})x}, \lambda e^{(2 - \sqrt{3})x}$$

Option (c) is correct.

41.
$$f(x) = \tan^{-1}\left(\frac{2x}{1-x^2}\right) = 2 \tan^{-1}x$$

f(x) is one-one and onto

i.e.,
$$f'(x) > 0$$
 or $f'(x) < 0$ and co-domain = range of $f(x)$
 $B = f(-1, 1) = (2 \tan^{-1}(-1), 2 \tan^{-1}(1))$

$$=\left(2\times\left(-\frac{\pi}{4}\right),2\times\frac{\pi}{4}\right)=\left(-\frac{\pi}{2},\frac{\pi}{2}\right)$$

Option (c) is correct.

42. Let
$$f(x) = y = \frac{x}{1 + |x|} \forall x \in \mathbb{R}, y \in \mathbb{R}$$

$$\therefore f(x) = \frac{x}{1+x} \text{ or } \frac{x}{1-x} \text{ is one-one}$$

Here range of f(x) is $R - \{-1, 1\}$

But y can not have any of the values -1, 1 for some x.

 \therefore f(x) is not an onto function.

Option (c) is correct.

44. Number of onto function

$$= 3^{6} - {}^{3}C_{1}(3-1)^{6} + {}^{3}C_{2}(3-2)^{6} - {}^{3}C_{3}(3-3)^{6}$$

$$= 3^{6} - 3 \times 2^{6} + 3 \times 1 = 3^{6} - 3 \times 2^{6} + 3$$

$$= 3 \times (3^{5} - 2^{6} + 1) = 3(243 - 64 + 1)$$

$$= 3 \times (244 - 64) = 3 \times 180 = 540$$

Option (d) is correct.

45. As $(7,7) \notin R$, so R can not be reflexive

Again $(7, 8) \in R$ but $(8, 7) \notin R$, so R is not symmetric.

As
$$(7, 8), (8, 8) \in R \Rightarrow (7, 8) \in R \Rightarrow R$$
 is transitive.

Option (a) is correct.

46. Let
$$A = \{1, 2, 3,, 12\}, n(A) = 12 (say m)$$

$$B = \{1, 2, 3, ..., 11\}, n(B) = 11 \text{ (say } n)$$

$$\therefore$$
 Total number of function from A to $B = 11^{12}$

... Number of onto functions from A to
$$B = \sum_{r=1}^{n} (-1)^{n-r} {\choose r} r^m$$

= coefficient of
$$x^m$$
 in $m! (e^x - 1)^n ... (i)$

Putting m = 12, n = 11 and r = 1, 2, 3, ..., 11. The number of onto functions is given by

$$= (-1)^{11-1}\,{}^{11}C_1\,1^{12} + (-1)^{11-2}\,{}^{11}C_2\,2^{12} + (-1)^{11-3}\,{}^{11}C_3\,3^{12}$$

$$+...+(-1)^{1} {}^{11}C_{10} 10^{12} + (-1)^{0} {}^{11}C_{11} 11^{12}$$

$$= {}^{11}C_{11}11^{12} - {}^{11}C_{10}10^{12} + {}^{11}C_{9}9^{12} + ... + {}^{11}C_{3}3^{12} - {}^{11}C_{2}2^{12} + {}^{11}C_{1}1^{12}$$

$$={}^{11}C_0\,11^{12}-{}^{11}C_110^{12}+{}^{11}C_29^{12}+\ldots+{}^{11}C_83^{12}-{}^{11}C_92^{12}+{}^{11}C_{10}1^{12}$$

Also, coefficient x^{12} in 12! $(e^x - 1)^{11}$

= coefficient of
$$x^{12}$$
 in $12! \left(1 + \frac{x}{1!} + \frac{x^2}{2!} + \dots + \infty - 1\right)^{11}$

= coefficient of
$$x^{12}$$
 in $12! \left(\frac{x}{1!} + \frac{x^2}{2!} + + \infty \right)^{11}$

= coefficient of
$$x^{12}$$
 in $12! x^{11} \left(\frac{1}{1!} + \frac{x}{2!} + \frac{x^2}{3!} + \dots + \infty \right)^{11}$

= coefficient of x in
$$12! \times \left[1 + \left(\frac{x}{2!} + \frac{x^2}{3!} + \dots + \infty\right)\right]^{11}$$

= coefficient of
$$x$$
 in $12! \left[{}^{11}C_0 1 + {}^{11}C_1 \left(\frac{x}{2!} + \frac{x^2}{3!} + \dots + \infty \right) + {}^{11}C_2 \left(\frac{x}{2!} + \frac{x^2}{3!} + \dots + \infty \right) + \dots \right]$

= coefficient of x in
$$12! \left[{}^{11}C_1 \left(\frac{1}{2!} \right) \right] = \frac{12! \times 11}{2!}$$

Total number of functions which are not onto = $11^{12} - \frac{12! \times 11}{2}$

Option (*d*) is correct.

47.
$$\therefore f(x \ f(y)) = x^a y^b \qquad \dots (i)$$

Replacing x by $\frac{1}{f(y)}$, we have from (i)

$$f(x \times f(y)) = f\left(x \times \frac{1}{x}\right) = \left(\frac{1}{f(y)}\right)^a y^b$$

$$f(1) = \frac{y^b}{(f(y))^a} \Rightarrow (f(y))^a = \frac{y^b}{f(1)}$$

$$\therefore$$
 Put $y = 1, (f(1))^a = \frac{1^b}{f(1)} = \frac{1}{f(1)}$

$$\Rightarrow (f(1))^{a+1} - 1$$

$$\Rightarrow f(1) = 1^{\left(\frac{1}{a+1}\right)} = 1$$

$$\Rightarrow f(1) = \frac{y^b}{(f(y))^a} = 1 \Rightarrow (f(y))^a = y^b$$

$$\Rightarrow f(y) = y^{b/a}$$

Replacing y as x, we have

$$f(x) = x^{b/a} \qquad \dots (ii)$$

$$\therefore f(x \cdot y^{b/a}) = x^a y^b$$

Let
$$y^{b/a} = t \Rightarrow y = t^{a/b}$$

$$f(x \cdot t) = x^a t^a \Rightarrow f(x) = x^a \qquad \dots(iii)$$

Now from (ii) and (iii), we get

$$x^{b/a} = x^a \Rightarrow \frac{a}{b} = \frac{1}{a} \Rightarrow b = a^2$$

Option (c) is correct.

- 51. Number of relations that can be defined on $A = 2^{n^2}$ Option (c) is correct.
- **54.** We have $R = \{(a, a), (b, b), (c, c), (b, c), (a, b)\}$

For
$$(b, c) \in R$$
, but $(c, b) \notin R$.

Hence *R* is not symmetric.

Also for (a, b), $(b, c) \in R$ but $(a, c) \notin R$.

 \Rightarrow R is not transitive.

As
$$(a, a) \in R \ \forall \ a \in A$$

Hence R is reflexive.

Option (c) is correct.

55. Let $A = \{1, 2\}, B = \{a, b\}$

Let $R = \{(1, a), (1, b), (2, a), (2, b)\}$

Clearly R is a relation from A to B

But R is not a function.

As (1, a), $(1, b) \in R$ and (2, a), $(2, b) \in R$

Option (b) is correct.

56. $R = \{(1, 2)\}, A = \{1, 2, 3\}$

Clearly R is neither reflexive nor symmetric.

As $(1, 2) \in R$ but $\not\equiv (2, b) \in R$ for $b \in A$ such that $(1, b) \notin R$.

Hence R is a transitive relation on A.

Option (b) is correct.

57. $R = \{(a, b) : a \ge b\}$

Reflexive

Clearly $(a, a) \in R \ \forall a \in R$.

Hence R is reflexive.

Symmetric

 $\therefore (2,1) \in R$ but $(1,2) \notin R$

Hence R is not symmetric.

Transitive

Let (a, b) and $(b, c) \in R$

 \Rightarrow $a \ge b$ and $b \ge c$

 $\Rightarrow a \ge c$

Hence (a, b) and $(b, c) \in R \Rightarrow (a, c) \in R$

 \Rightarrow R is a transitive relation on R.

Option (b) is correct.

59. $R = \{(x, y) : |x^2 - y^2| < 7\}$

 $R = \{(1, 1), (2, 2), (3, 3), (4, 4), (5, 5), (1, 2), (2,3)\}$

Option (d) is correct.

STAND ALONE MCQs

(1 Mark each)

- Q. 1. Let T be the set of all triangles in the Euclidean plane, and let a relation R on T be defined as aRb if ais congruent to $b \forall a, b \in T$. Then R is
 - (A) reflexive but not transitive
 - (B) transitive but not symmetric
 - (C) equivalence relation
 - (D) None of these

Ans. Option (C) is correct.

Explanation: Consider that aRb, if a is congruent to $b, \forall a, b \in T$.

Then, $aRa \Rightarrow a \cong a$,

Which is true for all $a \in T$

So, R is reflexive, ...(i)

Let $aRb \Rightarrow a \cong b$

 $\Rightarrow b \cong a$

 $\Rightarrow hRa$

So, R is symmetric. ...(ii) (A) 1

...(iii)

(B) 2

Let aRb and bRc

(C) 3

(D) 5

 $\Rightarrow b \cong b \text{ and } b \cong a$

 $\Rightarrow a \cong c \Rightarrow aRc$

So, R is transitive

Hence, R is equivalence relation.

Q. 2. Consider the non-empty set consisting of children in a family and a relation R defined as aRb if a is Ans. Option (D) is correct.

brother of b. Then R is

Ans. Option (B) is correct.

be a sister of a.

(A) symmetric but not transitive

(B) transitive but not symmetric

Hence, R is not symmetric.

and $bRc \Rightarrow b$ is a brother of c.

 $aRb \Rightarrow a$ is brother of b

So, a is brother of c.

Hence, R is transitive.

the set $A = \{1, 2, 3\}$ are

(C) neither symmetric nor transitive (D) both symmetric and transitive

Explanation: $aRb \Rightarrow a$ is brother of b.

This does not mean b is also a brother of a as b can

Explanation: Given that, $A = \{1, 2, 3\}$

Q. 3. The maximum number of equivalence relations on

Now, number of equivalence relations are as

 $R_1 = \{(1, 1), (2, 2), (3, 3)\}$

 $R_2 = \{(1, 1), (2, 2), (3, 3), (1, 2), (2, 1)\}$

- $R_3 = \{(1, 1), (2, 2), (3, 3), (1, 3), (3, 1)\}$ $R_4 = \{(1, 1), (2, 2), (3, 3), (2, 3), (3, 2)\}$ $R_5 = \{(1, 2, 3) \Leftrightarrow A \times A = A^2\}$
- :. Maximum number of equivalence relations on the set $A = \{1, 2, 3\} = 5$
- **Q. 4.** If a relation R on the set $\{1, 2, 3\}$ be defined by $R = \{(1, 2)\}$, then R is
 - (A) reflexive
- (B) transitive
- (C) symmetric
- (D) None of these

Ans. Option (B) is correct.

Explanation: R on the set $\{1, 2, 3\}$ is defined by $R = \{(1, 2)\}$

- It is clear that R is transitive.
- (A) an equivalence relation
- (B) reflexive, transitive but not symmetric

Q. 5. Let us define a relation R in R as aRb if $a \ge b$. Then R is

- (C) symmetric, transitive but not reflexive
- (D) neither transitive nor reflexive but symmetric.

Ans. Option (B) is correct.

Explanation: Given that, aRb if $a \ge b$

- ⇒ aRa ⇒ $a \ge a$ which is true Let aRb, $a \ge b$, then $b \ge a$ which is not true as R is not symmetric. But aRb and bRc
- $\Rightarrow a \ge b \text{ and } b \ge c$
- $\Rightarrow a \ge c$

Hence, R is transitive.

Q. 6. Let $A = \{1, 2, 3\}$ and consider the relation R = (1, 1), (2, 2), (3, 3), (1, 2), (2, 3), (1, 3).

Then R is

- (A) reflexive but not symmetric
- (B) reflexive but not transitive
- (C) symmetric and transitive
- (D) neither symmetric, nor transitive

Ans. Option (A) is correct.

Explanation: Given that $A = \{1, 2, 3\}$ and $R = \{1, 1\}$, $\{2, 2\}$, $\{3, 3\}$, $\{1, 2\}$, $\{2, 3\}$, $\{1, 3\}$.

: $(1, 1), (2, 2), (3, 3) \in R$ Hence, R is reflexive. $(1, 2) \in R$ but $(2, 1) \notin R$

Hence, *R* is not symmetric.

- $(1,2) \in R \text{ and } (2,3) \in R$
- \Rightarrow $(1,3) \in R$

Hence, R is transitive.

- **Q.** 7. Let *R* be the relation in the set $\{1, 2, 3, 4\}$ given by $R = \{(1, 2), (2, 2), (1, 1), (4, 4), (1, 3), (3, 3), (3, 2)\}$. Choose the correct answer:
 - (A) R is reflexive and symmetric but not transitive
 - **(B)** R is reflexive and transitive but not symmetric
 - (C) R is symmetric and transitive but not reflexive
 - (D) R is an equivalence relation

Ans. Option (B) is correct.

Explanation: Let R be the relation in the set $\{1, 2, 3, 4\}$ is given by:

 $R = \{(1, 2), (2, 2), (1, 1), (4, 4), (1, 3), (3, 3), (3, 2)\}$

- (a) $(1, 1), (2, 2), (3, 3), (4, 4) \in R$ Therefore, R is reflexive.
- (b) $(1, 2) \in R$ but $(2,1) \notin R$. Therefore, R is not symmetric.
- (c) If $(1,3) \in R$ and $(3,2) \notin R$ then $(1,2) \in R$. Therefore, R is transitive.
- **Q. 8.** Let $A = \{1, 2, 3\}$. Then number of relations containing (1, 2) and (1, 3) which are reflexive and symmetric but not transitive is
 - (A) 1
- (B) 2
- (C) 3
- (D) 4

Ans. Option (A) is correct.

Explanation: The given set is $A = \{1, 2, 3\}$.

The smallest relation containing (1, 2) and (1, 3), which is reflexive and symmetric, but not transitive is given by:

 $R = \{(1, 1), (2, 2), (3, 3), (1, 2), (1, 3), (2, 1), (3, 1)\}$

This is because relation R is reflexive as

 $(1, 1), (2, 2), (3, 3) \in R.$

Relation R is symmetric since (1, 2), $(2, 1) \in R$ and (1, 3), $(3, 1) \in R$.

But relation R is not transitive as (3, 1), $(1, 2) \in R$, but $(3, 2) \notin R$.

Now, if we add any two pairs (3, 2) and (2, 3) (or both) to relation R, then relation R will become transitive.

Hence, the total number of desired relations is

- **Q. 9.** If the set *A* contains 5 elements and the set *B* contains 6 elements, then the number of one-one and onto mappings from *A* to *B* is
 - (A) 720
- (B) 120
- (C) 0
- (D) None of these

Ans. Option (C) is correct.

Explanation: We know that, if A and B are two non-empty finite sets containing m and n elements, respectively, then the number of one-one and onto mapping from A to B is

n! if m = n

 $0, \text{ if } m \neq n$

Given that, m = 5 and n = 6

∴ m ≠ n

Number of one-one and onto mapping = 0

- **Q. 10.** Let $A = \{1, 2, 3, ...n\}$ and $B = \{a, b\}$. Then the number of surjections from A into B is
 - (A) $^{n}P_{2}$
- (B) $2^n 2$
- (C) $2^n 1$
- (D) None of these

Ans. Option (B) is correct.

Explanation: Total number of functions from A to $B = 2^n$

Number of into functions = 2

Number of surjections from A to $B = 2^n - 2$

- **Q. 11.** Let $f: R \to R$ be defined by $f(x) = \frac{1}{x}$, $\forall x \in R$. Then f is
 - (A) one-one
- (B) onto
- (C) bijective
- (D) f is not defined

Ans. Option (D) is correct.

Explanation: We have,
$$f(x) = \frac{1}{x}$$
, $\forall x \in R$

For x = 0, f(x) is not defined.

Hence, f(x) is a not defined function.

- **Q. 12.** Which of the following functions from *Z* into *Z* are bijections?
 - $(\mathbf{A}) \ f(x) = x^3$
- (B) f(x) = x + 2
- (C) f(x) = 2x + 1
- (D) $f(x) = x^2 + 1$

Ans. Option (B) is correct.

Explanation: For bijection on Z, f(x) must be oneone and onto.

Function $f(x) = x^2 + 1$ is many-one as f(1) = f(-1)

Range of $f(x) = x^3$ is not Z for $x \in Z$.

Also f(x) = 2x + 1 takes only values of type

= 2k + 1 for $x \in k \in \mathbb{Z}$

But f(x) = x + 2 takes all integral values for $x \in Z$

Hence f(x) = x + 2 is bijection of Z.

- **Q. 13.** Let $f: R \to R$ be defined as $f(x) = x^4$. Choose the correct answer.
 - (A) f is one-one onto
 - (B) f is many-one onto
 - **(C)** *f* is one-one but not onto

(D) f is neither one-one nor onto

Ans. Option (D) is correct.

Explanation: We know that $f: R \to R$ is defined as $f(x) = x^4$.

Let $x, y \in R$ such that f(x) = f(y)

$$\Rightarrow \qquad x^4 =$$

$$x = \pm y$$

$$f(x) = f(y)$$

does not imply that x = y. For example, f(1) = f(-1) = 1

 \therefore f is not one-one.

Consider an element 2 in co-domain R. It is clear that there does not exist any x in domain R such that f(x) = 2.

 \therefore f is not onto.

Hence, function f is neither one-one nor onto.

- **Q. 14.** Let $f: R \to R$ be defined as f(x) = 3x. Choose the correct answer.
 - (A) f is one-one onto
 - (B) f is many-one onto
 - (C) f is one-one but not onto
 - (D) f is neither one-one nor onto

Ans. Option (A) is correct.

Explanation: $f: R \to R$ is defined as f(x) = 3x.

Let $x, y \in R$ such that f(x) = f(y)

$$\Rightarrow \qquad 3x = 3y$$

$$\Rightarrow x = 1$$

 \therefore f is one-one.

Also, for any real number y in co-domain R, there

exists
$$\frac{y}{3}$$
 in R such that $f\left(\frac{y}{3}\right) = 3\left(\frac{y}{3}\right) = y$.

:. f is onto.

Hence, function f is one-one and onto.

ASSERTION AND REASON BASED MCQs

(1 Mark each)

Directions: In the following questions, A statement of Assertion (A) is followed by a statement of Reason (R). Mark the correct choice as.

- (A) Both A and R are true and R is the correct explanation of A
- (B) Both A and R are true but R is NOT the correct explanation of A
- (C) A is true but R is false
- (D) A is false and R is True
- **Q. 1.** Let *W* be the set of words in the English dictionary. A relation *R* is defined on *W* as

 $R = \{(x, y) \in W \times W \text{ such that } x \text{ and } y \text{ have at least one letter in common}\}.$

Assertion (A): R is reflexive.

Reason (R): R is symmetric.

Ans. Option (B) is correct.

Explanation: For any word $x \in W$

x and x have atleast one (all) letter in common

 $(x, x) \in R, \forall x \in W : R \text{ is reflexive}$

Symmetric: Let $(x, y) \in R$, $x, y \in W$

- \Rightarrow x and y have atleast one letter in common
- $\Rightarrow y$ and x have atleast one letter in common
- \Rightarrow $(y, x) \in R :: R \text{ is symmetric}$

Hence A is true, R is true; R is not a correct explanation for A.

Q. 2. Let R be the relation in the set of integers Z given by $R = \{(a, b) : 2 \text{ divides } a - b\}.$

Assertion (A): R is a reflexive relation.

Reason (R): A relation is said to be reflexive if xRx, $\forall x \in Z$.

Ans. Option (A) is correct.

Explanation: By definition, a relation in Z is said to be reflexive if xRx, $\forall x \in Z$. So R is true.

 $a - a = 0 \Rightarrow 2$ divides $a - a \Rightarrow aRa$.

Hence R is reflexive and A is true.

R is the correct explanation for A.

Q. 3. Consider the set $A = \{1, 3, 5\}$.

Assertion (A): The number of reflexive relations on set A is 2^9 .

Reason (R): A relation is said to be reflexive if xRx, $\forall x \in A$.

Ans. Option (D) is correct.

Explanation: By definition, a relation in *A* is said to be reflexive if xRx, $\forall x \in A$. So R is true.

The number of reflexive relations on a set containing *n* elements is 2^{n^2-n} .

Here n = 3.

The number of reflexive relations on a set A = $2^{9-3}=2^6$

Hence A is false.

Q. 4. Consider the function $f: R \to R$ defined as $f(x) = x^3$ **Assertion** (A): f(x) is a one-one function.

Reason (R): f(x) is a one-one function if co-domain = range.

Ans. Option (C) is correct.

Explanation: f(x) is a one-one function if

$$f(x_1) = f(x_2) \Rightarrow x_1 = x_2$$

Hence R is false.

Let $f(x_1) = f(x_2)$ for some $x_1, x_2 \in R$

$$\Rightarrow \qquad (x_1)^3 = (x_2)^3$$

$$\Rightarrow \qquad x_1 = x_2$$

Hence f(x) is one-one.

Hence A is true.

Q. 5. If $A = \{1, 2, 3\}$, $B = \{4, 5, 6, 7\}$ and $f = \{(1, 4), (2, 5), (2, 5), (3, 5), (4,$

(3,6)} is a function from A to B.

Assertion (A): f(x) is a one-one function.

Reason (**R**): f(x) is an onto function.

Ans. Option (C) is correct.

Given, $A = \{1, 2, 3\}, B = \{4, 5, 6, 7\}$ and $f: A \to B$ is defined as $f = \{(1, 4), (2, 5), (3, 6)\}$ i.e., f(1) = 4,

f(2) = 5 and f(3) = 6.

It can be seen that the images of distinct elements of A under f are distinct. So, f is one-one.

So, A is true.

Range of $f = \{4, 5, 6\}$.

Co-domain = $\{4, 5, 6, 7\}$.

Since co-domain \neq range, f(x) is not an onto function. Hence R is false.

Q. 6. Consider the function $f: R \to R$ defined as

$$f(x) = \frac{x}{x^2 + 1}.$$

Assertion (A): f(x) is not one-one.

Reason (**R**): f(x) is not onto.

Ans. Option (B) is correct.

Explanation: Given, $f: R \rightarrow R$;

$$f(x) = \frac{x}{1+x^2}$$

Taking $x_1 = 4$, $x_2 = \frac{1}{4} \in R$

$$f(x_1) = f(4) = \frac{4}{17}$$

$$f(x_2) = f\left(\frac{1}{4}\right) = \frac{4}{17}$$
 $(x_1 \neq x_2)$

:. f is not one-one.

A is true.

Let $y \in R$ (co-domain)

$$f(x) = y$$

$$\Rightarrow \frac{x}{1+x^2} = y$$

$$\Rightarrow \qquad y.(1+x^2) = x$$

$$\Rightarrow yx^2 + y - x = 0$$

$$\Rightarrow \qquad x = \frac{1 \pm \sqrt{1 - 4y^2}}{2y}$$

since, $x \in R$,

$$\therefore 1 - 4y^2 \ge 0$$

$$\Rightarrow \qquad -\frac{1}{2} \le y \le \frac{1}{2}$$

So Range
$$(f) \in \left[-\frac{1}{2}, \frac{1}{2}\right]$$

Range $(f) \neq R$ (Co-domain)

 \therefore f is not onto.

R is true.

R is not the correct explanation for A.

CASE-BASED MCQs

Attempt any four sub-parts from each question. Each sub-part carries 1 mark.

I. Read the following text and answer the following questions on the basis of the same:

A general election of Lok Sabha is a gigantic exercise.

About 911 million people were eligible to vote and voter turnout was about 67%, the highest ever

Let I be the set of all citizens of India who were eligible to exercise their voting right in general election held in 2019. A relation 'R' is defined on I as follows:

ONE - NATION ONE - ELECTION FESTIVAL OF DEMOCRACY **GENERAL ELECTION - 2019**

 $R = \{(V_1, V_2) : V_1, V_2 \in I \text{ and both use their voting } \}$ right in general election - 2019}

[CBSE QB 2021]

- **Q. 1.** Two neighbours X and $Y \in I$. X exercised his voting right while Y did not cast her vote in general election - 2019. Which of the following is true?
 - (A) $(X, Y) \in R$
- (B) $(Y, X) \in R$
- (C) $(X, X) \notin R$
- (D) $(X, Y) \notin R$

Ans. Option (D) is correct.

Explanation: $(X, Y) \notin R$.

∴ X exercised his voting right while, Y did not cast her vote in general election-2019

And $R = \{(V_1, V_2) : V_1 V_2 \in I \text{ and both use their }\}$ voting right in general election-2019}

- Q. 2. Mr. 'X' and his wife 'W' both exercised their voting right in general election -2019, Which of the following is true?
 - (A) both (X, W) and $(W, X) \in R$
 - **(B)** $(X, W) \subset R$ but $(W, X) \not\subset R$
 - (C) both (X, W) and $(W, X) \notin R$
 - (D) $(W, X) \in R$ but $(X, W) \notin R$

Ans. Option (A) is correct.

- Q. 3. Three friends F_1 , F_2 and F_3 exercised their voting right in general election-2019, then which of the following is true?
 - (A) $(F_1, F_2) \in R$, $(F_2, F_3) \in R$ and $(F_1, F_3) \in R$
 - **(B)** $(F_1, F_2) \in R$, $(F_2, F_3) \in R$ and $(F_1, F_3) \notin R$
 - (C) $(F_1, F_2) \in R$, $(F_2, F_2) \in R$ but $(F_3, F_3) \notin R$
 - **(D)** $(F_1, F_2) \notin R$, $(F_2, F_3) \notin R$ and $(F_1, F_3) \notin R$

Ans. Option (A) is correct.

- **Q. 4.** The above defined relation *R* is
 - (A) Symmetric and transitive but not reflexive
 - (B) Universal relation
 - (C) Equivalence relation
 - (D) Reflexive but not symmetric and transitive

Ans. Option (C) is correct.

Explanation: R is reflexive, since every person is friend or itself.

i.e., $(F_1, F_2) \in R$

Further, $(F_1, F_2) \in R$

- \Rightarrow F_1 is friend of F_2
- \Rightarrow F_2 is friend of F_1
- $\Rightarrow (F_2, F_1) \in R$
- \Rightarrow R is symmetric

Moreover, $(F_1, F_2), (F_2, F_3) \in R$

- \Rightarrow F_1 is friend of F_2 and F_2 is friend of F_3 .
- $\Rightarrow F_1$ is a friend of F_3 .

 $\Rightarrow (F_1, F_3) \in R$

Therefore, R is an equivalence relation.

- Q. 5. Mr. Shyam exercised his voting right in General Election - 2019, then Mr. Shyam is related to which of the following?
 - (A) All those eligible voters who cast their votes
 - (B) Family members of Mr. Shyam
 - (C) All citizens of India
 - (D) Eligible voters of India

Ans. Option (A) is correct.

II. Read the following text and answer the following questions on the basis of the same:

Sherlin and Danju are playing Ludo at home during Covid-19. While rolling the dice, Sherlin's sister Raji observed and noted the possible outcomes of the throw every time belongs to set {1, 2, 3, 4, 5, 6}. Let A be the set of players while B be the set of all possible outcomes.

 $A = \{S, D\}, B = \{1, 2, 3, 4, 5, 6\}$

[CBSE QB 2021]

- **Q. 1.** Let R : B \rightarrow B be defined by R = $\{(x, y) : y \text{ is divisible } \}$ by x} is
 - (A) Reflexive and transitive but not symmetric
 - (B) Reflexive and symmetric but not transitive
 - (C) Not reflexive but symmetric and transitive
 - (D) Equivalence

Ans. Option (A) is correct.

Explanation: R is reflexive, since every element

 $B = \{1, 2, 3, 4, 5, 6\}$ is divisible by itself.

i.e., (1, 1), (2, 2), (3, 3), (4, 4), (5, 5), $(6, 6) \in R$

further,

 $(1,2) \in R$

but

 $(2,1) \notin R$

Moreover,

 $(1,2),(2,4) \in R$

 $(1,4) \in R$

R is transitive.

Therefore, R is reflexive and transitive but not symmetric.

- Q. 2. Raji wants to know the number of functions from A to B. How many number of functions are possible?
 - (A) 6^2
- (B) 2^6
- (C) 6!
- (D) 212

Ans. Option (A) is correct.

- **Q. 3.** Let *R* be a relation on *B* defined by $R = \{(1, 2), (2, 2), (1, 3), (3, 4), (3, 1), (4, 3), (5, 5)\}$. Then *R* is
 - (A) Symmetric
 - (B) Reflexive
 - (C) Transitive
 - (D) None of these

Ans. Option (D) is correct.

Explanation: $R = \{(1, 2), (2, 2), (1, 3), (3, 4), (3, 1), (4, 3), (5, 5)\}$

R is not reflexive.

Since, (1, 1), (3, 3), (4, 4), $(6, 6) \in R$

R is not symmetric.

Because, for $(1, 2) \in R$ there does not exist

 $(2, 1) \in R$.

R is not transitive.

Because for all element of B there does not exist, (a, b) $(b, c) \in R$ and $(a, c) \in R$.

- **Q. 4.** Raji wants to know the number of relations possible from *A* to *B*. How many numbers of relations are possible?
 - (A) 6^2
- (B) 2⁶
- (C) 6!
- (D) 2¹²

Ans. Option (D) is correct.

- **Q. 5.** Let $R: B \to B$ be defined by $R = \{(1, 1), (1, 2), (2, 2), (3, 3), (4, 4), (5, 5), (6, 6)\}$, then R is
 - (A) Symmetric
 - (B) Reflexive and Transitive
 - (C) Transitive and symmetric
 - (D) Equivalence

Ans. Option (B) is correct.

III. Read the following text and answer the following questions on the basis of the same:

An organization conducted bike race under 2 different categories—boys and girls. Totally there were 250 participants. Among all of them finally three from Category 1 and two from Category 2 were selected for the final race. Ravi forms two sets *B* and *G* with these participants for his college project.

Let $B = \{b_1, b_2, b_3\}$ $G = \{g_1, g_2\}$ where B represents the set of boys selected and G the set of girls who were selected for the final race. **[CBSE QB 2021]**

Ravi decides to explore these sets for various types of relations and functions

- **Q. 1.** Ravi wishes to form all the relations possible from *B* to *G*. How many such relations are possible?
 - $(A) 2^6$
- (B) 2^5
- (C) 0
- (D) 2^3

Ans. Option (A) is correct.

- **Q. 2.** Let $R: B \to B$ be defined by $R = \{(x, y) : x \text{ and } y \text{ are students of same sex}\}$, Then this relation R is
 - (A) Equivalence
 - (B) Reflexive only
 - (C) Reflexive and symmetric but not transitive
 - (D) Reflexive and transitive but not symmetric

Ans. Option (A) is correct.

Explanation:

 $R: B \rightarrow B$ be defined by $R = \{(x, y) : x \text{ and } y \text{ are students of same sex}\}$

R is reflexive, since, $(x, x) \in R$

R is symmetric, since, $(x, y) \in R$ and $(y, x) \in R$

R is transitive. For $a, b, c \in B$

$$\exists (a, b) (b, c) \in R$$

and

$$(a, c) \in R$$
.

Therefore R is equivalence relation.

- **Q. 3.** Ravi wants to know among those relations, how many functions can be formed from *B* to *G*?
 - (A) 2^2
- (B) 2^{12}
- $(C) 3^2$
- (D) 2^3

Ans. Option (D) is correct.

- **Q. 4.** Let $R: B \to G$ be defined by $R = \{(b_1, g_1), (b_2, g_2), (b_3, g_1)\}$, then R is_____
 - (A) Injective
 - (B) Surjective
 - (C) Neither Surjective nor Injective
 - (D) Surjective and Injective

Ans. Option (B) is correct.

Explanation:

 $R: B \to G$ be defined by $R = \{(b_1, g_1), (b_2, g_2), (b_3, g_3)\}$

R is surjective, since, every element of G is the image of some element of B under R, i.e., For g_1 , $g_2 \in G$,

there exists an elements b_1 , b_2 , $b_3 \in B$,

 $(b_1 g_1) (b_2, g_2), (b_3, g_1) \in R.$

- Q. 5. Ravi wants to find the number of injective functions from B to G. How many numbers of injective functions are possible?
 - (A) 0
- (B) 2!
- (C) 3!
- (D) 0!

Ans. Option (A) is correct.

IV. Read the following text and answer the following questions on the basis of the same:

Students of Grade 9, planned to plant saplings

along straight lines, parallel to each other to one side of the playground ensuring that they had enough play area. Let us assume that they planted one of the rows of the saplings along the line y = x - 4. Let L be the set of all lines which are parallel on the ground and R be a relation on L.

[CBSE QB 2021]

- **Q. 1.** Let relation R be defined by $R = \{(L_1, L_2) : L_1 \parallel L_2 \text{ where } L_1, L_2 \in L\}$ then R is _____ relation
 - (A) Equivalence
 - (B) Only reflexive
 - (C) Not reflexive
 - (D) Symmetric but not transitive

Ans. Option (A) is correct.

Explanation: Let relation R be defined by

 $R = \{(L_1, L_2) : L_1 \parallel L_2 \text{ where } L_1, L_2 \in L\}.$

R is reflexive, since every line is parallel to itself.

Further, $(L_1, L_2) \in R$

- $\Rightarrow L_1$ is parallel to L_2
- $\Rightarrow L_2$ is parallel to L_1
- $\Rightarrow (L_2, L_1) \in R$

Hence, R is symmetric.

Moreover, (L_1, L_2) , $(L_2, L_3) \in R$

- \Rightarrow L_1 is parallel to L_2 and L_2 is parallel to L_3
- $\Rightarrow L_1$ is parallel to L_3
- $\Rightarrow (L_1, L_3) \in R$

Therefore, R is an equivalence relation

- **Q. 2.** Let $R = \{(L_1, L_2) : L_1 \perp L_2 \text{ where } L_1, L_2 \in L\}$ which of the following is true?
 - (A) R is Symmetric but neither reflexive nor transitive
 - (B) R is Reflexive and transitive but not symmetric
 - (C) R is Reflexive but neither symmetric nor transitive
 - (D) R is an Equivalence relation

Ans. Option (A) is correct.

Explanation: R is not reflexive, as a line L_1 can not be perpendicular to itself, i.e., $(L_1, L_1) \neq R$.

R is symmetric as $(L_1, L_2) \in R$

As, L_1 is perpendicular to L_2

and L_2 is perpendicular to L_1

$$(L_2, L_1) \in R$$

R is not transitive. Indeed, it L_1 is perpendicular to L_2 and L_2 is perpendicular to L_3 , then L_1 can never be perpendicular to L_3 .

In fact L_1 is parallel to L_3 ,

i.e., $(L_1, L_2) \in R$, $(L_2, L_3) \in R$ but $(L_1, L_3) \notin R$

i.e., symmetric but neither reflexive nor transitive.

- **Q. 3.** The function $f: R \to R$ defined by f(x) = x 4 is
 - (A) Bijective
 - (B) Surjective but not injective
 - (C) Injective but not Surjective
 - (D) Neither Surjective nor Injective

Ans. Option (A) is correct.

Explanation:

The function f is one-one,

for
$$f(x_1) = f(x_2)$$

$$\Rightarrow x_1 - 4 = x_2 - 4$$

$$x_1 = x_2$$

Also, given any real number y in R, there exists y + 4 in R

Such that f(y + 4) = y + 4 - 4 = y

Hence, f is onto

Hence, function is both one-one and onto, i.e., bijective.

- **Q. 4.** Let $f: R \to R$ be defined by f(x) = x 4. Then the range of f(x) is _____
 - (A) R
- (B) 2
- (C) W
- (D) Q

Ans. Option (A) is correct.

Explanation: Range of f(x) is R

- **Q. 5.** Let $R = \{(L_1, L_2) : L_1 \parallel L_2 \text{ and } L_1 : y = x 4\}$ then which of the following can be taken as L_2 ?
 - (A) 2x 2y + 5 = 0
- (B) 2x + y = 5
- (C) 2x + 2y + 7 = 0
- (D) x + y = 7

Ans. Option (A) is correct.

Explanation: Since, $L_1 \parallel L_2$

then slope of both the lines should be same.

Slope of
$$I_1 = 1$$

$$\Rightarrow$$
 Slope of $L_2 = 1$

And
$$2x - 2y + 5 = 0$$

 $-2y = -2x - 5$

$$y = x + \frac{5}{2}$$

Slope of
$$2x - 2y + 5 = 0$$
 is 1

So,
$$2x - 2y + 5 = 0$$
 can be taken as L_2 .

V. Read the following text and answer the following questions n the basis of the same:

Raji visited the Exhibition along with her family. The Exhibition had a huge swing, which attracted

many children. Raji found that the swing traced the path of a Parabola as given by $y = x^2$.

[CBSE QB-2021]

- **Q. 1.** Let $f: R \to R$ be defined by $f(x) = x^2$ is
 - (A) Neither Surjective nor Injective
 - (B) Surjective
 - (C) Injective
 - (D) Bijective

Ans. Option (A) is correct.

Explanation:

 $f: R \to R$ be defined by $f(x) = x^2$ f(-1) = f(1) = 1, but $-1 \neq 1$

:. f is not injective

Now, $-2 \in R$. But, there does not exist any element $x \in R$ such that f(x) = -2 or $x^2 = -2$ $\therefore f$ is not surjective.

Hence, function f is neither injective nor surjective.

- **Q. 2.** Let $f: N \to N$ be defined by $f(x) = x^2$ is _____
 - (A) Surjective but not Injective
 - (B) Surjective
 - (C) Injective
 - (D) Bijective

Ans. Option (C) is correct.

Explanation: $f: N \to N$ be defined by $f(x) = x^2$ for $x, y \in N$, f(x) = f(y)

$$\Rightarrow$$

$$x^2 = y^2$$

$$x^2 = y^2$$

 $x = y$

$$\therefore$$
 f is injective

Now; $2 \in N$, But, there does not exist any x in n such that $f(x) = x^2 = 2$

:. f is not surjective

Hence, function is injective but not surjective.

- **Q. 3.** Let $f: \{1, 2, 3,\} \rightarrow \{1, 4, 9,\}$ be defined by $f(x) = x^2$ is _____
 - (A) Bijective
 - (B) Surjective but not Injective
 - (C) Injective but Surjective
 - (D) Neither Surjective nor Injective

Ans. Option (A) is correct.

Explanation:

 $f: \{1, 2, 3,\} \rightarrow \{1, 4, 9, ...\}$ be defined by

$$f(x) = x^2$$

 $x_1 \in \{1, 2, 3, ...\}$ and $x_2 \in \{1, 2, 9,\}$

$$f(x_1) = f(x_2)$$

 \Rightarrow

$$x_1^2 = x_2^2$$

⇒

$$x_1 = x_2$$

:. f is injective

Now, $4 \in \{1, 4, 9...\}$, there exist 2 in $\{1, 2, 3...\}$ such that $f(x) = 2^2 = 4$, Hence, f is surjective Therefore f is bijective.

- **Q.** 1. Let : N \rightarrow R be defined by $f(x) x^2$. Range of the function among the following is _____
 - (A) {1, 4, 9, 16,...}
 - (B) {1, 4, 8, 9, 10,...}
 - (C) {1, 4, 9, 15, 16,...}
 - (D) {1, 4, 8, 16,...}

Ans. Option (A) is correct.

Explanation:

Range of
$$f = \{1, 4, 9, 16, ...\}$$

 $N = \{1, 2, 3,\}$

- **Q. 5.** The function $f: Z \to Z$ defined by $f(x) = x^2$ is ____
 - (A) Neither Injective nor Surjective
 - (B) Injective
 - (C) Surjective
 - (D) Bijective

or

Ans. Option (A) is correct.

Explanation: $f: z \to z$ defined by $f(x) = x^2$

So,
$$f(-1) = f(1)$$
, but $1 \neq -1$

:. f is not injective

Now, $-2 \in \mathbb{Z}$, but, there does not exist any element $x \in \mathbb{Z}$ such that

$$f(x) = -2$$

$$x^2 = -2$$

∴ ∫ is not surjective

Hence, f is neither injective nor surjective.