AEP Digital
 Online Classes

LIVE INTERACTIVE SESSIONS FROM:
RANCHI, BOKARO, RAMGARH, WUWMBA, , KANPUU, HAZARIBACH, DELH INCR

LIVE INTERRCTIVE SESSIONS AVALLABLE AT:

RANCHI , BOKARO , RAMGARH, MUMBAI , KANPUR, HAZARIBAGH. DELHI NCR ,KOLKATA, BHOPAL,
INDORE, CHATRA, PATNA, BETIA, VNS ETC

1. BASIC TERMS AND DEFINITIONS

(i) Line-segment, ray and line

A part (or portion) of a line with two end points is called a line-segment and a part of a line with one end point is called a ray. The line segment $A B$ is denoted by $A B$ and its length is denoted by $A B$. Ray $A B$ is denoted by $A B$ and a line $A B$ is denoted by $A B$.
However, we do not use these symbols and denoted line segment $A B$, ray $A B$, length $A B$ and line $A B$ by the symbol $A B$. The meaning is made clear from the context. Sometimes small letters I, m, m etc. will be used to denote lines.
(ii) Collinear/non-collinear points

If three or more points lie on the same line, then they are called collinear points; otherwise they are called as non-collinear points.
(iii) Angle

An angle is formed when two rays originate from the same end point. The rays making an angle are called the arms of the angle and the end point is called the vertex of the angle. The angles are of different types such as acute angle, right angle, obtuse angle, straight angle and reflex angle.
(iv) Types of angles

An acute angle measures between 0° and 90° whereas a right angle is exactly equal to 90°. An angle greater than 90° but less than 180° is called an obtuse angle. Also, a straight angle is equal to 180°. An angle which is greater than 180° but less than 360° is called a reflex angle. Further, two angles whose sum is 90° are called complementary angles and those two angles whose sum is 180° are called supplementary angles.

(i) Acute angle: $0^{\circ}<x<90^{\circ}$

(ii) right angle :y=90

(iii) obtuse angle : $90^{\circ}<z<180^{\circ}$

(iv) Straight angle : $\mathrm{x}=180^{\circ}$

(v) reflex angle: $180^{\circ}<\mathrm{t}<360^{\circ}$
(v) Adjacent angles

Two angles are called adjacent, if they have a common vertex, a common arm and their non-common arms are on the different sides of the common arm. In the adjacent figure $\angle A B D$ and $\angle D B C$ are adjacent angles. Ray $B D$ is their common arm and point B is their common vertex. Ray $B A$ and ray $B C$ are non-common arms. Moreover, when two angles are adjacent, then their sum is always equal to the angle formed by the two common arms. So, we can write

$$
\angle \mathrm{ABC}=\angle \mathrm{ABD}+\angle \mathrm{DBC}
$$

D: $\angle A B C$ and $\angle A B D$ are not adjacent angles because their non-common arms $B D$ and $B C$ lie on the same side of the common arm BA.

Linear pair of Angles

If the non-common arms $B A$ and $B C$ form a line, then in this case $\angle A B D$ and $\angle D B C$ are called linear pair of angles.

Vertically opposite angles are formed when two lines, say $A B$ and $C D$, intersect each other say at the point O, There are two pairs of vertically opposite angles formed. One pair is $\angle A O D$ and $\angle B O C$. The other pair is $\angle A O C$ and $\angle B O D$.

Vertically opposite angles

2. INTERSECTING LINES AND NON - INTERSECTING ANGLES

We know that a line extends indefinitely on both the directions. We can draw two different lines PQ and RS on a paper in two different ways as shown ahead:

(i) Intersecting lines

(ii) Non-intersecting (parallel) lines

Different ways of drawing two lines
In figure (i), lines PQ and RS are intersecting lines and in figure (ii), lines PQ and RS are parallel lines.
Note: The lengths of the common perpendiculars at different point on parallel lines are the same. This equal length is called the distance between two parallel lines.

3. LINEAR PAIR OF ANGLES

Let a ray $O C$ stand on a line $A B$. Then, angles formed at the point O are $\angle A O C, \angle C O B$ and $\angle A O B$.
We may write that $\angle A O C+\angle B O C=\angle A O B \quad[\because \angle A O C$ and $\angle B O C$ are adjacent angles
But $\angle A O B=180^{\circ}$
$\left[\because\right.$ A straight angle $=180^{\circ}$
$\therefore \quad \angle A O C+\angle B O C=180^{\circ}$

This result leads us to an axiom given below:
Axiom 1: If a ray stands on a line, then the sum of two adjacent angles so formed is $\mathbf{1 8 0}^{\circ}$. When the sum of two adjacent angles is 180°, then they are called a linear pair of angles.

Conversely

Axiom 2: If the sum of two adjacent angles is $\mathbf{1 8 0}^{\boldsymbol{\circ}}$, then the non-common arms of the angle form a line.
The two axioms above together are called the Linear Pair Axiom.

Check: Draw adjacent angles of different measures as shown below. Keep the ruler along one of the non-common arms in each case. We see that the other non-common arms also lies along the ruler only in figure (iii), i.e., both the non-common arms lie along the ruler, that is, points A, O and B lie on the same line and ray OC stands on it. Also, we see that $\angle A O C+\angle C O B=125^{\circ}+55^{\circ}=180^{\circ}$.

From this, we conclude that the above statement is true.

Adjacent angles with different measures
4. THEOREM: If two lines intersect each other, then the vertically opposite angles are equal:

Given: Two lines $A B$ and $C D$ intersecting O
They lead to two pairs of vertically opposite angles, namely,
(i) $\angle A O C$ and $\angle B O D$
(ii) $\angle A O D$ and $\angle B O C$

To prove: (i) $\angle A O C=\angle B O D$
(ii) $\angle A O D=\angle B O C$

Proof: \because Ray OA stands on line CD
$\therefore \quad \angle A O C+\angle A O D=180^{\circ}$
... (i) [Linear Pair Axiom]
$\because \quad$ Ray OD stands on line $A B$
$\therefore \quad \angle A O D+\angle B O D=180^{\circ}$
From (1) and (2), we can write that

$$
\begin{aligned}
& & \angle A O C+\angle A O D & =\angle A O D+\angle B O D \\
& \Rightarrow & \angle A O C= & \angle B O D
\end{aligned}
$$

Similarly, we can prove that

$$
\angle A O D=\angle B O C
$$

Q. 1. In figure, lines $A B$ and $C D$ intersect at O. If $\angle A O C+\angle B O E=70^{\circ}$ and $\angle B O D=40^{\circ}$, find $\angle B O E$ and reflex $\angle C O E$.

Sol. $\because \quad$ Lines $A B$ and $C D$ intersect at O
$\therefore \quad \angle \mathrm{AOC}=\angle \mathrm{BOD} \quad$ [Vertically Opposite Angles]
But $\angle B O D=40^{\circ} \quad$... (i) [Given]
$\therefore \quad \angle A O C=40^{\circ}$
Now, $\angle A O C+\angle B O E=70^{\circ}$
$\Rightarrow \quad 40^{\circ}+\angle B O E=70^{\circ}$
$\Rightarrow \quad \angle B O E=70^{\circ}-40^{\circ}$
$\Rightarrow \quad \angle B O E=30^{\circ}$
Again, Reflex $\angle \mathrm{COE}=\angle \mathrm{COD}+\angle \mathrm{BOD}+\angle \mathrm{BOE}$

$$
\begin{aligned}
& =\angle C O D+40^{\circ}+30^{\circ} \\
& =180^{\circ}+40^{\circ}+30^{\circ} \\
& =250^{\circ}
\end{aligned}
$$

[Using (1) and (2)
\because Ray OA stands on line CD
$\therefore \angle A O C+\angle A O D=180^{\circ}$ [Linear Pair Axiom]
$=>\angle C O D=180^{\circ}$
Q. 2. In figure, lines $X Y$ and $M N$ intersect at O. If $\angle P O Y=90^{\circ}$ and $a: b=2: 3$, find c.

Sol. $\quad \because \quad$ Ray OP stands on line $X Y$
[Linear Pair Axiom]
$\therefore \quad \angle P O X+\angle P O Y=180^{\circ}$
$\left[\because \angle P O Y=90^{\circ}\right.$ (Given) $]$
$\Rightarrow \quad \angle P O X+90^{\circ}=180^{\circ}$
$\Rightarrow \quad \angle P O X=180^{\circ}-90^{\circ}$
$\Rightarrow \quad \angle P O X=90^{\circ}$
$\Rightarrow \quad \angle P O M+\angle X O M=90^{\circ}$
$\Rightarrow \quad a+b=90^{\circ}$
$\Rightarrow \quad \underline{a}=\underline{2}$
b 3
$\Rightarrow \quad \underline{a}=\underline{b}=k$ (say)
23
$\Rightarrow \quad a=2 k$
$b=3 k$
Putting the values of a and b in (1), we get

$$
\begin{array}{ll}
& \begin{array}{l}
2 \mathrm{k}+3 \mathrm{k}=90^{\circ} \\
5 \mathrm{k}=90^{\circ}
\end{array} \quad \Rightarrow \quad \mathrm{k}=\frac{90^{\circ}}{5} \\
\Rightarrow & \begin{array}{l}
\mathrm{k}=18^{\circ} \\
\therefore
\end{array} \\
& \left.\begin{array}{l}
\mathrm{a}=2 \mathrm{k}=2\left(18^{\circ}\right)=36^{\circ} \\
\mathrm{b}=3 \mathrm{k}=3\left(18^{\circ}\right)=54^{\circ}
\end{array}\right\}
\end{array}
$$

$\therefore \quad \angle X O M+\angle X O N=180^{\circ}$
[Linear Pair Axiom]
$\Rightarrow \quad b+c=180^{\circ}$
$\Rightarrow \quad 54^{\circ}+\mathrm{c}=180^{\circ}$
[Using (2)]
$\Rightarrow \quad c=180^{\circ}-54^{\circ}$
$\Rightarrow \quad C=126^{\circ}$
Q. 3. In figure, $\angle P Q R=\angle P R Q$, then prove that $\angle P Q S=\angle P R T$

Sol. $\quad \because \quad$ Ray QP stands on line ST
$\therefore \quad \angle P Q S+\angle P Q R=180^{\circ}$
... (1) [Linear Pair Axiom]
$\because \quad$ Ray RP stands on line ST
$\therefore \quad \angle P R Q+\angle P R T=180^{\circ}$
... (2) [Linear Pair Axiom]
From (1) and (2), we obtain

$$
\angle \mathrm{PQS}+\angle \mathrm{PQR}=\angle \mathrm{PRQ}+\angle \mathrm{PRT}
$$

$\Rightarrow \quad \angle P Q S=\angle P R T \quad[\because \angle P Q R=\angle P R Q$ [Given]
Q. 4. In figure, if $\mathbf{x + y}=\mathbf{w}+\mathbf{z}$, then prove that $A O B$ is a line.

Sol. $x+y=w+z$
$\therefore \quad$ The sum of all the angles round a point is equal to 360°
$\therefore \quad x+y+w+z=360^{\circ}$
$\Rightarrow \quad x+y+x+y=360^{\circ}$
$\Rightarrow \quad 2(x+y)=360^{\circ}$
$\Rightarrow \quad x+y=\underline{360^{\circ}}$
$\Rightarrow \quad x+y=180^{\circ}$
$\therefore \quad A O B$ is a line.
[If the sum of two adjacent angles is 180°, then the non-common arms of the angles form a line]
Q. 5. In the figure, $P O Q$ is a line. Ray $O R$ is perpendicular to line $P Q . O S$ is another ray living between rays $O P$ and $O R$.

Prove that: $\quad \angle R O S=1 / 2(\angle Q O S-\angle P O S)$
Sol.

$$
\begin{align*}
\therefore \quad & \angle \mathrm{QOR}=\angle \mathrm{POR}=90^{\circ} \tag{1}\\
& \angle P O S=\angle \mathrm{QOR}+\angle \mathrm{ROS} \tag{2}\\
& \angle P O S=\angle P O R-\angle R O S \tag{3}
\end{align*}
$$

From (2) and (3),

$$
\begin{array}{ll}
\therefore & \angle Q O S-\angle P O S=(\angle Q O R-\angle P O R)+2 \angle R O S=2 \angle R O S \\
=> & \angle R O S=1 / 2(\angle Q O S-\angle P O S)
\end{array}
$$

Q. 6. It is given that $\angle X Y Z=64^{\circ}$ and $X Y$ is produced to point P. Draw a figure from the given information. If ray $Y Q$ bisects $\angle Z Y P$, find $\angle X Y Q$ and reflex $\angle Q Y P$.
Sol. $\quad \because \quad$ Ray $Y Z$ stands on line $P X$
$\therefore \quad \angle X Y Z+\angle Z Y P=180^{\circ}$
[Linear Pair Axiom]

$\left[\because \angle X Y Z=64^{\circ}\right.$ (Given) $]$
$=>\quad \angle Z Y P=180^{\circ}-64^{\circ}$
$=>\quad \angle Z Y P=116^{\circ}$
$\because \quad$ Ray YQ bisects $\angle Z Y P$
$\therefore \quad \angle P Y Q=\angle Z Y Q=1 / 2 \angle Z Y P=1 / 2\left(116^{\circ}\right)$
[Using (1)]
$\therefore \quad$ Reflex $\angle Q Y P=360^{\circ}-58^{\circ}=302^{\circ}$
[\because The sum of all the angles round a point is equal to 360°]
Again, $\angle X Y Q=\angle X Y Z+\angle Z Y O$
$=64^{\circ}+58^{\circ} \quad\left[\because \angle X Y Z=64^{\circ}\right.$ (Given) and $\angle Z Y Q=58^{\circ}$ [From (2)]
$=122^{\circ}$
Q. 7. In figure, find the values of x and y and then show that $A B|\mid C D$.

Sol.

From (1) and (2), we conclude that

$$
x=y
$$

But these are alternate interior angles and they are equal.
So, we can say that $A B \| C D$.
Q. 8. In figure, if $A B\|C D, C D\| E F$ and $y: z=3: 7$, find x.

Sol. $\quad \because \quad A B|\mid C D$
And $\quad C D \| E F$
$\therefore \quad \mathrm{AB} \| \mathrm{EF}$
$\therefore \quad \mathrm{x}=\mathrm{z}$
$x+y=180^{\circ}$
[Lines parallel to the same line are parallel to each other
... (1) [Alternate Interior Angles]
... (2) [Consecutive interior angles on the same side of the transversal GH to parallel lines $A B$ and $C D \quad]$
From (1) and (2),
$z+y=180^{\circ}$
$y: z=3: 7$

Sum of the ratios $=3+7=10$

$$
\begin{array}{ll}
\therefore & y=\frac{3}{10} \times 180^{\circ}=54^{\circ} \quad \text { and } \quad z=\frac{7}{10} \times 180^{\circ}=126^{\circ} \\
\therefore & x=z=126^{\circ}
\end{array}
$$

Q. 9. In figure, if $A B \| C D, E F \perp C D$ and $\angle G E D=126^{\circ}$, find $\angle A G E, \angle G E F$ and $\angle F G E$.

Sol. (i) $\angle A G E=\angle G E D=126^{\circ}$
(ii) $\angle G E D=126^{\circ}$
[Alternate Interior Angles]
$\Rightarrow \quad \angle G E F+\angle F E D=126^{\circ}$
$\Rightarrow \quad \angle \mathrm{GEF}+90^{\circ}=126^{\circ}$
$\left[\because \mathrm{EF} \perp \mathrm{CD} \quad \therefore \quad \angle \mathrm{FED}=90^{\circ}\right]$
$\Rightarrow \quad \angle \mathrm{GEF}=126^{\circ}-90^{\circ}=36^{\circ}$
(iii) $\angle \mathrm{GEC}+\angle \mathrm{GEF}+\angle \mathrm{FED}=180^{\circ}$
$\Rightarrow \quad \angle \mathrm{GEC}+36^{\circ}+90^{\circ}=180^{\circ}$
$\Rightarrow \quad \angle G E C=180^{\circ}-126^{\circ}=54^{\circ}$
Now, $\angle \mathrm{FGE}=\angle \mathrm{GEC}=54^{\circ} \quad$ [Alternate Interior Angles]
Q. 10. In figure, if $P Q \| S T, \angle P Q R=110^{\circ}$ and $\angle R S T=130^{\circ}$, find $\angle Q R S$.
[Hint: Draw a line parallel to ST through point R.]

Sol. Construction: Draw a line RU parallel to ST through point R.

$$
\begin{array}{ccc}
& \angle R S T+\angle S R U=180^{\circ} & \text { [Sum of the consecutive interior angles on the same side of the } \\
\text { transversal is } 180^{\circ} \text {] } \\
= & 130^{\circ}+\angle S R U=180^{\circ} \\
\Rightarrow & \angle S R U=180^{\circ}-130^{\circ}=50^{\circ} & \ldots(1) \tag{1}\\
\Rightarrow & \angle Q R S+\angle S R U=110^{\circ} & \\
\Rightarrow & \angle Q R S+50^{\circ}=110^{\circ} & \text { [Alternate Interior Angles] } \\
\Rightarrow & \angle Q R S=110^{\circ}-50^{\circ}=60^{\circ} & \text { [Using (1)] }
\end{array}
$$

Q. 11. In figure, if $A B \| C D, \angle A P Q=50^{\circ}$ and $\angle P R D=127^{\circ}$, find x and y.

Sol. $x=\angle A P Q=50^{\circ}$
[Alternate Interior Angles]
$Y=\angle P R D=127^{\circ}$
[Alternate Interior Angles]
Q. 12. In figure, $P Q$ and $R S$ are two mirrors placed parallel to each other. An incident ray $A B$ strikes the mirror $P Q$ at B, the reflected ray reflected ray moves along the path $B C$ and strikes the mirror RS at C and again reflects back along CD. Prove that $A B$ || CD.

In figure, m and n are two plane mirrors parallel to each other. Prove that incident ray CA is parallel to reflected ray $B D$.
[Hint: Draw perpendicular (normals) at A and B to the two plane mirrors. Recall that angle of incidence is equal to angle of reflection.]

Sol. Construction: Draw ray $\mathrm{BL} \perp \mathrm{PQ}$ and ray $\mathrm{CM} \perp \mathrm{RS}$.

Proof: : $\quad \mathrm{BL} \perp \mathrm{PQ}, \mathrm{CM} \perp \mathrm{RS}$ and $\mathrm{PQ} \perp \mathrm{RS}$
$\therefore \quad \mathrm{BL} \| \mathrm{CM}$
$\angle L B C=\angle M C B$
... (1) [Alternate Interior Angles]
$\angle A B L=\angle L B C$
\ldots... (2) [\because Angle of incidence $=$ Angle of reflection $]$
$\angle M C B=\angle M C D$
... (3) [\because Angle of incidence $=$ Angle of reflection]
From (1), (2) and (3), we get $\angle A B L=\angle M C D$
Adding (1) and (4), we get
$\angle L B C+\angle A B L=\angle M C B+\angle M C D$
=> $\quad \angle A B C=\angle B C D$
But these are alternate interior angles and they are equal.
So, AB || CD
Q. 13. In figure, sides $Q P$ and $R Q$ of $\triangle P Q R$ are produced to points S and T respectively. If $\angle S P R=135^{\circ}$ and $\angle P Q T=110^{\circ}$, find $\angle P R Q$.

Sol. $\quad \because \quad$ TR is a line
$\therefore \quad \angle P Q T+\angle B Q R=180^{\circ}$
$\Rightarrow \quad 110^{\circ}+\angle P Q R=180^{\circ}$
$\Rightarrow \quad \angle P Q R=180^{\circ}-110^{\circ}=70^{\circ}$
$\because \quad$ QS is a line
$\therefore \quad \angle \mathrm{SPR}+\angle \mathrm{QPR}=180^{\circ}$
$\Rightarrow \quad 135^{\circ}+\angle Q P R=180^{\circ}$
$\Rightarrow \quad \angle Q P R=180^{\circ}-135^{\circ}=45^{\circ}$

$$
\begin{array}{ll}
& \angle P Q R+\angle Q P R+\angle P R Q=180^{\circ} \\
=> & 70^{\circ}+45^{\circ}+\angle P R Q=180^{\circ} \\
=> & 115^{\circ}+\angle P R Q=185^{\circ} \\
=> & \angle P R Q=180^{\circ}-115^{\circ}=65^{\circ}
\end{array}
$$

Q. 14. In figure, $\angle X=62^{\circ}, \angle X Y Z=54^{\circ}$. If $Y O$ and $Z O$ are the bisectors of $\angle X Y Z$ and $\angle X Z Y$ respectively of $\triangle X Y Z$, find $\angle O Z Y$ and $\angle Y O Z$.

Sol. In $\triangle X Y Z$,

$$
\begin{array}{ll}
& \angle X Y Z+\angle Y Z X+\angle Z X Y=180^{\circ} \\
=> & 54^{\circ}+\angle Y Z X+62^{\circ}=180^{\circ} \\
=> & 116^{\circ}+\angle Y Z X=180^{\circ} \\
=> & \angle Y Z X=180^{\circ}=116^{\circ}=64^{\circ} \\
\because & Y O \text { is the bisector of } X Y Z \\
\therefore & \angle X Y O=\angle O Y Z=1 / 2 \angle X Y Z=1 / 2\left(54^{\circ}\right)=27^{\circ} \tag{2}\\
\because & Z O \text { is the bisector of } \angle Y Z X \\
\therefore & \angle X Z O=\angle O Z Y=1 / 2 \angle Y Z X=1 / 2\left(64^{\circ}\right)=32^{\circ} \\
\text { In } \triangle O Y Z, \\
& \angle O Y Z+\angle O Z Y+\angle Y O Z=180^{\circ} \\
= & 27^{\circ}+32^{\circ}+\angle Y O Z=180^{\circ} \\
\Rightarrow & 59^{\circ}+\angle Y O Z=180^{\circ} \\
\Rightarrow & \angle Y O Z=180^{\circ}-59^{\circ}=121^{\circ}
\end{array}
$$

[\because The sum of all the angles of a triangle is 180°]
[\because The sum of all the angles of a triangle is 180°]
[Using (1) \& (2)]

... (3) [Using (1)]
[\because The sum of all the angles of a triangle is 180°]
[Using (2) and (3)]
Q. 15. In figure, if $A B \| D E, \angle B A C=35^{\circ}$ and $\angle C D E=35^{\circ}$, find $\angle D C E$.

Sol. $\angle D E C=\angle B A C=35^{\circ}$
... (1) [Alternate Interior Angles]
$\angle C D E=53^{\circ}$
... (2) [Given]
$\ln \triangle \mathrm{CDE}$,
$\angle C D E+\angle D E C+\angle D C E=180^{\circ}$
$\Rightarrow \quad 53^{\circ}+35^{\circ}+\angle D C E=180^{\circ} \quad$ [Using (1) and (2)]
$\Rightarrow \quad 88^{\circ}+\angle D C E=180^{\circ}$
$\Rightarrow \quad \angle D C E=180^{\circ}-88^{\circ}=92^{\circ}$
Q. 16. In figure, if lines $P Q$ and $R S$ intersect at point T, such that $\angle P R T=40^{\circ}, \angle R P T=95^{\circ}$ and $\angle T S Q=75^{\circ}$, find $\angle S Q T$.

Sol. In $\triangle \mathrm{PRT}$,

$$
\begin{array}{lll}
& \angle P T R+\angle P R T+\angle R P T=180^{\circ} & \\
=> & \angle P T R+40^{\circ}+95^{\circ}=180^{\circ} \\
=> & \angle P T R+135^{\circ}=180^{\circ} \\
=> & \angle P T R=45^{\circ} & \\
=> & \angle Q T S=\angle P T R=45^{\circ} & \\
\text { In } \triangle T S Q & & \\
= & \angle Q T S+\angle T S Q+\angle S Q T=180^{\circ} & {\left[\because \text { The sum of all the angles of a triangle is } 180^{\circ}\right]} \\
= & 45^{\circ}+75^{\circ}+\angle S Q T=180^{\circ} \\
\Rightarrow & 120^{\circ}+\angle S Q T=180^{\circ} & \\
\Rightarrow & \angle S Q T=180^{\circ}-120^{\circ}=60^{\circ} &
\end{array}
$$

Q. 17. In figure, if $P Q \perp P S, P Q \| S R, \angle S Q R=28^{\circ}$ and $\angle Q R T=65^{\circ}$, then find the values of x and y.

Sol.

Q. 18. In figure, the side $Q R$ of $\triangle P Q R$ is produced to a point S. If the bisectors of $\angle P Q R$ and $\angle P R S$ meet at point T, then prove that $\angle Q T R=1 / 2 \angle Q P R$.

Sol. $\quad \because \quad \angle T R S$ is an exterior angle of $\triangle T Q R$
$\therefore \quad \angle T R S=\angle T Q R+\angle Q T R$
$\because \quad$ PRS is an exterior angle of $\triangle P Q R$
$\therefore \quad \angle P R S=\angle P Q R+\angle Q P R$
$\Rightarrow \quad 2 \angle T R S=2 \angle T Q R+\angle Q P R$
$\Rightarrow \quad 2(\angle T R S-\angle T Q R)=\angle Q P R$
... (1) [\because The exterior angle is equal to sum of the two interior opposite angles]
... (2) [\because The exterior angle is equal to the sum of the two interior opposite angles]
[$\because \mathrm{QT}$ is the bisector of $\angle \mathrm{PQR}$ and RT is the bisector of $\angle \mathrm{PRS}$]

From (3) and (4), we obtain

$$
2 \angle Q T R=\angle Q P R
$$

$\Rightarrow \quad \angle Q T R=1 / 2 \angle Q P R$

