

WORK ENERGY

WORK

Work is said to be done whenever a force acts on a body and the body moves through some distance.

 $W = \vec{F} \cdot \vec{S} = FS \cos\theta$ (where θ is the angle between force applied \vec{F} and displacement vector \vec{S} .)

The SI unit of work is joule (J).

Nature of Work Done

If $\theta = 0^\circ$, W = FS *i.e.*, work done is maximum. If $\theta = 90^\circ$, W = 0 *i.e.*, work done is zero.

Work Done by a Variable Force

The work done by a variable force in changing the displacement

from S_1 to S_2 is $W = \int_{S_1}^{\infty} \vec{F} \cdot d\vec{S}$ = Area under the force-displacement graph

ENERGY

It is defined as the ability of a body to do work. It is measured by the amount of work that a body can do. The unit of energy used at the atomic level is electron volt (eV) and SI unit is J.

Kinetic Energy

It is the energy possessed by a body by virtue of its motion. The K.E. of a body of mass *m* moving with speed *v* is

$$K = \frac{1}{2}mv^2 = \frac{p^2}{2n}$$

Potential Energy

It is the energy possessed by a body by virtue of its position (in a field) or configuration (shape or size). For a conservative force in one dimension, the potential energy function U(x) may be defined as

 $F(x) = -\frac{dU(x)}{dx} \text{ or } \Delta U = U_f - U_i = -\int_x^y F(x) dx$

Power

The rate of doing work is called power.

Average Power:

It is defined as the ratio of the small amount of work done W to the time taken t to perform the work.

 $P = \frac{W}{t}$ The SI unit of power is watt (W).

Head-on Collision or One-Dimensional Collision

It is a collision in which the colliding bodies move along the same straight line path before and after the collision.

$$\underbrace{\bigcirc}_{\text{Before collision}}^{m_1} u_2 \underbrace{\bigcirc}_{\text{After collision}}^{m_2} v_2$$

Velocity of approach = Velocity of separation or $u_1 - u_2 = v_2 - v_1$

Also,
$$v_1 = \frac{m_1 - m_2}{m_1 + m_2} \cdot u_1 + \frac{2m_2}{m_1 + m_2} \cdot u_2$$
 and
 $v_2 = \frac{2m_1}{m_1 + m_2} \cdot u_1 + \frac{m_2 - m_1}{m_1 + m_2} \cdot u_2$

Work Energy Theorem

The work done by the net force acting on a body is equal to the change in kinetic energy of the body. W = Change in kinetic energy

$$=\frac{1}{2}mv^2 - \frac{1}{2}mu^2 \Longrightarrow W = \Delta K.E.$$

The work energy theorem may be regarded as the scalar form of Newton's second law of motion. Potential Energy of a Spring

According to Hooke's law, when a spring is stretched through a distance *x*, the restoring force *F* is such that

 $F \propto x$ (where k is the spring constant or F = -kx and its unit is N m⁻¹.) The work done is stored as potential energy U of the spring

$$W = \int_{0}^{1} kx dx = \frac{1}{2} kx^{2} \implies U = \frac{1}{2} kx^{2}$$

COLLISION

A collision between two bodies is said to occur if either they physically collide against each other or the path of the motion of one body is influenced by the other.

Types of Collision

Elastic collision : Both the momentum and kinetic energy of the system remain conserved. -Inelastic collision : Only the momentum of the system is conserved but kinetic energy is not conserved.

Oblique Collision

If the two bodies do not move along the same straight line path before and after the collision, the collision is said to be oblique collision.

IN PHYSICS .

"Work is said to be done by a force acting on a body provided the body is displaced actually in any direction except in a direction perpendicular to the direction of force".

IN OTHER WORDS.

Work is done by a force when the force produces a displacement in the body to which it acts in any direction except perpendicular to the direction of force".

For work to be done. Two conditions must be fulfilled.

- [i] A force must be applied
- [ii] The applied force must be produce a displacement in the body in any direction except \perp^{ar} to the direction of applied force.
 - (a) Suppose you are pushing the wall very hard but the wall does not move. In this case, you are doing zero work on the wall because its displacement is zero. You may feel tired after pressing hard against the wall but from physics' point of view, work done is zero.
- (b) Suppose a man holding bucket of water is walking on a horizontal road. According to the definition of work, the man is doing no work. In this case, the man is applying an upward force \vec{F} equal to the weight of the bucket. The direction of the force \vec{F} he applies is perpendicular to the horizontal motion of the bucket (object). Therefore, there is no component of force \vec{F} in the direction of motion (displacement). Hence work done by man on the bucket is zero.
- Work done by a constant force --- Suppose a force F is applied on a body in such a way that the body suffers a displacement S in the direction of force.

Thus, work done is scalar quantity.

SPECIAL CASE :-- Although workdone is a scalar quantity its value may be positive, negative or even zero. Case I. Positive work :- When $0 < \theta < 90$

Then, $\cos \theta = \text{positive value}$

.'. W = FS Cos θ = positive value

"Workdone by a force is said to be positive if the force has a component in that direction of the displacement".

 \Box **<u>Case</u> II. Zero workdone :-** When $\theta = 90^{\circ}$

displacement." CBSE-PHYSICS

Then, **Cos 90⁰ = 0**

.'. , W = F S Cos θ = Zero

"Workdone by a force is zero in the body is displaces in the direction perpendicular to the direction of the force". \Box Case III. Negative force :- When 90 < $\theta \le 180$

Then $\cos \theta = \text{Negative value}$

.'. $W = F S Cos \theta = Negative$

"Workdone by a force is said to be negative if force has a component in a direction opposite to that of the

Distance

Distance

BSE-PHYSICS

First of all, divide total displacement from X_1 to X_2 (i.e. from A to B) into a no. of infinitesimals displacement (dx). .'. PQ = dxThe interval dx is so small that F_x is consider over that interval. Therefore, small amount of workdone in moving the body from P to Q is $dW = F \times dx = PS \times PQ$ = Area of the strip PQ RS Therefore, total wor kdone in moving the body from A to B $W = \Sigma dW$ $W = \Sigma [F \times dx]$ In calculus, $\int F dx = \frac{1}{2} \int Area of the strip PQRS = A$ W = a of ABCDA x1 Workdone by variable force in numerically equal to the area und placement acis. CONSERVATIVE & NON CONSERVATIVE FORCES Conservative forces ------ "A force is said to be conservative if workdone by or against the force depends only on the initial & final position of the body, and not on the nature of the path followed between the initial and final position". Example – 'Gravitational force' is a conservative force Calculation of amount of workdone against gravity ------ Consider a body (of mass 'm') is displace (or lift) through a height AB = h over different paths from A to B R *Case I ---- The body being raised vertically upwards Force applied = Weight of the body i.e. F = mg

<u>Non conservative forces</u> :- "A force is said to be non conservative if work done by or against the force in moving 5 a body from one position to another, depends on the path followed between these two position. Example – Frictional force.

POWER :- "*flower is defined as the rate at which work is done".*

In other word,

"Power is defined as the time rate of doing work".

i.e., POWER = Work/ Time

When a body takes place lesser time to do a particular work its power is said to be greater & vice verca.
Expression Power = Work / time

or

 $P = W/t = \overrightarrow{F} \cdot \overrightarrow{S} / t$ $\overrightarrow{F} \cdot V \qquad ('.' v = S/t)$

.'. By the defn of dot product

 $P = F v \cos \theta \{ where \theta \text{ is the smaller angle between } F \& V \}$

- Thus, "Power is the scalar product of force F & velocity v."
- If both F and \vec{v} point is the same direction then $\theta = 0$

$P = F v \cos 0 = F v \times 1 = F v$ Instantaneous power:

"Instantaneous power is the power at any given instant".

Example :--- Supppose on agent does an infinitesimally small amount of work done dw in an infinitesimally small time dt. Then, P = dw/dt

But, $dw = F \cdot ds$... $P = F \cdot ds \cdot dt$

Thus, Power of an agent at any instant is equal to the dot product of the force applied and the velocity at that instant. When an agent delivers power at a uniform rate, the average power is equal to the instantaneous power.

• **DIMENSION OF POWER** :-
$$P = W/t = ML^2T^2/T = [ML^2T^3]$$

- Units of power :- Watt (W) (SI). (Absolute unit) P = W/t 1 W = 1 J/1 sec = J/sec
 "Power is said to be 1 watt if one joule of work is done in on second by an agent".
- Units of power :- (i) 1 kilowatt = 10³ watts
 1 kw = 10³ w
 - (ii)1 Megawatt = 10^6 watts 1 Mw = 10^6 .
- <u>Cgs unit</u> 1 watt = 1 j / a 1 W = 10⁷ erg / sec (Absolute unit)
- Practical unit :- Horse power (h.p) : 1 hp = 746 W

Gravitational unit : (i) kgf m/s (SI) "The power of an agent is said to be 1 kgf m/s if it does 1 kgfm of work in 1 sec." (ii) gf cm/s (in cgs)

✤Power is a scalar quantity.

ENERGY :--- "The capacity or ability of the body to do work is called energy". **O** Energy is measured by the total amount of work that a body can do.

" Potential energy is the energy possessed by a body by virtue of its position in a field of force or by its configuration(shape)". Or

" The energy possessed by a body by virtue of its position or configuration is called potential energy".

C B S E - P H Y S I C S _I

Numerical (KE)

Soln

1.) A bullet of mass 20 g is fired from a rifle with a velocity of 800 m /s . After passing through a mud wall 100 cm thick, Velocity drops to 100m/s by the wall neglecting friction due to air .

mass (m) = 20g = 20/1000 kg u = 800 m/s v = 100 m/s work done = change in KE F × S = $\frac{1}{2}$ mu² - $\frac{1}{2}$ mv² F × 100cm = $\frac{1}{2} \times \frac{2}{2} = \frac{1}{1} \times \frac{2}{100}$ [(800)² - (100)²] 100 2 100 F × <u>100</u> m = 6300 100 F = 6300N.

2.) A body of mass 5 kg initially at rest is subjected to a force of 20 N . What is the KE acquired by the at end of 10 sec. Solⁿ m = 5 kg, u = 0, f = 20 N, t = 10 sec.

a = f/m =
$$\frac{20}{5}$$
 = 4 m/s²
Now, v = u + at² = 0 + 4 × 10 = 40 m/s
KE = $\frac{1}{2}$ × 5 × (40)² = 4000joule.

Potential energy of a spring :--

Consider a spring is stretched or compressed from its normal position (say, x = 0) by a small distance x. Then, a **restoring Force** is develop in the spring to bring it to the normal position.

The Restoring force proportional to the displacement 'x' and its direction is always opposite to the displacement (where, K = spring constant or force constant)

"Force constant (or spring constant) is defined as the retarding force per unit displacement of the spring".

• UNIT--- [i] In S.I ---- K = -F/x = N/m; [ii] In cgs----- K = -F/x = dyne/cm**•** DIMENSION---- K = $-F/x = M L T^{-2}/L = M T^{-2}$

Greater the force constant smaller will be the stretch or compression of the spring for a given force. If x = 1 then $F = -u \times 1$ or u = -F

Hence, force constant of a spring is numerically equal to the force required to produces unit displacement in the spring

EXPRESSION for PE of a spring :

The external force is just equal & opposite to the restoring forces

 $\therefore \qquad \stackrel{\bullet}{\mathsf{F}(\mathsf{ext})} = \stackrel{\bullet}{\mathsf{F}}$

 \mathbf{F} (ext) = + Kx [F = - Kx]

Let the body be displaced further through infinitesimally an small distance 'dx', against the restoring force.

wooden block and both move as one body.

 $m_1 + m_2$

C B S E - P H Y S I C S 1

Formula Used 1. W = $\Sigma \mathbf{F}_{i}$ 2. W = $\int \vec{F} \cdot d\vec{s}$ S₁ 3. W = Area under the force-displacement curve between the initial and final positions of the body. Units Used In SI, force f is in newton, distance s in metre and work done W in joule. A 2 kg particle starts at the origin and moves along the positive x-axis. The net force acting on it measured at intervals of 1 m is: Q. 1. 27.9, 28.3, 30.9, 34.0, 34.5, 46.9, 48.2, 50.0, 63.5, 13.6, 12.2, 32.7, 46.6 and 27.0 (in newtons). What is the total work done on the particle in this interval? Sol. As the forces and displacement are in same direction, so $\mathsf{W} = \Sigma \; \mathsf{F}_{i} \; \mathsf{s}_{i} = 27.9 \times 1 + 28.3 \times 1 + 30.9 \times 1 + 34.0 \times 1 + 46.9 \times 1 + 48.2 \times 1 + 50.0 \times 1$ + 63.5 × 1 + 13.6 × 1 + 12.2 × 1 + 46.6 × 1 + 27.0 × 1 = 496.3 J Q. 2. A body moves from point A to B under the action of a force, varying in magnitude as shown in Fig. Obtain the work done. Force is expressed in newton and displacement in metre. 20

6-1

C B

Sol. Work done = Area under F – s curve

$$\begin{split} W_{AB} = W_{23} + W_{34} + W_{45} &= \text{Area under AP} + \text{Area under PQ} + \text{Area under QR} - \text{Area above RB} \\ &= 10 \times 1 + \frac{1}{2} (10 + 15) \times 1 + \frac{1}{2} \times 1 \times 15 - \frac{1}{2} \times 1 \times 15 = 10 + 12.5 = 22.5 \text{ J} \end{split}$$

- Q. 3. A woman pushes a trunk on railway platform which has a rough surface. She supplies a force of 100 N over a distance of 10 m. Thereafter she gets progressively tired and her applied force reduces linearly with distance to 50 N. the total distance by which the trunk has been moved is 20 m. Plot the force applied by the woman and the frictional force, which is 50 N. Calculate the work done by the two forces over 20 m.
- Sol. Plots of force F applied by the woman and the opposing frictional force F are shown in Fig.

Clearly, at x = 20 m, F = 50 N. As the force of friction f [= 50 N] opposes the applied force F, so it has been shown on the negative side of the force axis.

Work done by the force F applied by the woman W_f = Area of rectangle ABCD + Are of trapezium CEID =100 × 10 + ½ (100 + 50) × 10 = 1000 + 750 = 1750 J Work done by the frictional force, W_f = Area of rectangle AGHI = (-50) × 20 = 1000 J

Q. 4.A particle moves along the X-axis from x = 0 to x = 5 m under the influence of a force given by $F = 7 - 2x + 3x^2$. Find the work done in the process.

Sol. Work done in moving the particle from x = 0 to x = 5 m will be

$$W = \int_{0}^{5} Fdx = \int_{0}^{5} (7 - 2x + 3x^{2}) dx$$
$$= \left(7x - \frac{2x^{2}}{2} + \frac{3x^{3}}{3}\right)_{0}^{5} = [7x - x^{2} + x^{3}]_{0}^{5}$$
SE-PHYSICS

= 35 – 25 + 125 = 135 j

Velocity, v = ax^{3/2} Sol. Work done. Acceleration = $\underline{dv} = \underline{3} \operatorname{ax}^{1/2} \underline{dx} = \underline{3} \operatorname{ax}^{1/2} . v$ $W = \int_{0}^{1} F dx = \frac{3}{2} \int_{0}^{1} ma^{2} x^{2} dx = \frac{3}{2} ma^{2} \left(\frac{x^{3}}{3}\right)_{0}^{2}$ dt 2 dt 2 $= 3 ax^{1/2} . ax^{3/2}$ = <u>3</u> a² x² $\frac{3 \times 0.5 \times (5)^2}{2} [2^3 - 0^3] = 50 \text{ J}$ 2 2×3 Force, $F = m \times acceleration = 3 ma^2 x^2$ Examples based on Work done by a Constant Force $\frac{\text{Formula Used}}{1. W = P \cdot s} = Fs \cos \theta$ 2. If a body of mass m is raised through height h, then W = mgh 3. If a body moves up a plane inclined at angle θ with a constant speed, then W = mg sin $\theta \times s$ Units Used In SI, force F is in newton, distance s in metre and work done W in joule. In CGS system, force F is in dyne, distance s in cm and work done W in erg, **Conversion Used** $1 J = 10^7 erg$ A gardener pushes a lawn roller through a distance of 20 m. If he applies a force of 20 kg wt in a direction Q. 1. inclined at 60° to be ground, find the work done by him. Here F = 20 kg wt = 20 \times 9.8 N, s = 20 m, θ = 60° W = Fs cos θ = 20 \times 9.8 \times 20 \times cos 60° Sol. = 20 × 9.8 × 20 × 0.5 = 1960 J Q. 2. A person is holding a bucket by applying a force of 10 N. He moves a horizontal distance of 5 m and then climbs up a vertical distance of 5 m and then climbs up a vertical distance of 10 m. Find the total work done by him. Sol. For horizontal motion, the angle between force and displacement is 90°. $F = 10 \text{ N}, \text{ s} = 5 \text{ m}, \theta = 90^{\circ}$ Here Work done, $W_1 = F_s \cos \theta = 10 \times 5 \times \cos 90^\circ = 0$ For vertical motion the angle between force and displacement is 0°. Here $F = 10 N, s = 10 m, \theta = 0^{\circ}$ Work done, $W_2 = 10 \times 10 \times \cos 0^\circ = 100 \text{ J}$ Total work done = $W_1 + W_2 = 0 + 100 = 100 J$ Q. 3. A cyclist comes to a skidding stop in 10 m. During this process, the force on the cycle due to the road is 200 N and is directly opposed to the motion. (a) How much work does the road do on the cycle? (b) How much work does the cycle do on the road? Sol. Work done on the cycle by the road is the work done by the stopping force of friction on the cycle due to the road.(a) The stopping force and the displacement make an angle of 180° with each other. Thus, work done by the road, or the work done by the stopping $W_r = Fs \cos \theta = 200 \times 10 \times \cos 90^\circ = -2000 J$ force is . It is this negative work that brings the cycle to a halt. (b) From Newton's Third law, an equal and opposite force acts on the road due to the cycle. Its magnitude is 200 N. However, the road undergoes no displacement. Work done by the cycle on the road = zero A body constrained to move along the Z-axis of a co-ordinate system is subject to a constant force $F = -\hat{i} + 2\hat{j} + 3\hat{k}N$, where \hat{i} , \hat{j} , \hat{k} Q. 4. are unit vectors along the X-, Y-, and Z-axis of the system respectively. What is the work done by this force in moving the body a distance of 4 m along the Z-axis. **₽**=-î+2ĵ+3kN Sol. Here, As the body moves a distance of 4 m along Z-axis, so s = 4km $W = \overrightarrow{P} \cdot \overrightarrow{s} = (-\hat{i} + 2\hat{j} + 3k) \cdot (4k)$... $= (-\hat{i} + 2\hat{j} + 3k) . (0\hat{i} + 0\hat{j} + 4k)$ $= -1 \times 0 + 2 \times 0 + 3 \times 4 = 12 \text{ J}$ A force \vec{F} i + 5 j + 7k acts on a particle and displaces it through s = 6 i \neq 9k. Calculate the work done if the Q. 5. force is in newton and displacement in metre. $W = F \cdot S = (\hat{i} + 5\hat{j} + 7k) \cdot (6\hat{i} + 0\hat{j} + 9k) =$ Sol. $1 \times 6 + 5 \times 0 + 7 \times 9 = 69 \text{ J}$ A force $\overrightarrow{P} - K$ (y î + x ĵ), where K is a positive constant, acts on a particle moving in the XY plane. Starting from the origin, the Q. 6. particle is taken along the positive X-axis to a point (a, 0) and then parallel to the y-axis to the point (a, a). Calculate the total work done by the force on the particle. Also, $\overrightarrow{F} = -K(y\hat{i} + x\hat{j})$ Work done, W = F. r = $-K(y\hat{i} + x\hat{j}) \cdot a\hat{j} = -Kax$. Sol. Position vector of point (a, 0), $= a\hat{i} + o\hat{i}$ Position vector of point (a, a) $r_2 = a\hat{i} + a\hat{j}$ Displacement vector, As so $W = -Ka^2$ $r = \overrightarrow{r_2} - \overrightarrow{r_1} = (\overrightarrow{a} + a \hat{j}) - (a \hat{i} + o \hat{j}) = a \hat{j}$ A uniform chain of length 2 m is kept on a table such that as length of 60 cm hangs-freely from the edge of the table. The total mass Q. 7. of the chain is 4 kg. What is the workdone in pulling the entire chain on the table? Take g = 10 ms⁻². Sol. Mass of length 2 m of the chain = 4 kg Mass of length 60 cm or 0.60 m of the chain $4 \times 0.60 = 1.2 \text{ kg}$ 2

 $1.2 \times 10 = 12$ N

As the centre of gravity of the hanging part lies at its mid-point, i.e., 30 cm or 0.30 m below the edge of the table, so the work required in pulling

W = force \times distance = 12 \times 0.30 = 3.6 J

=

Weight of the hanging part of the chain

the hanging part on the table is

CBSE-PHYSICS

Solution:- Work done by a force F to displace the particle through a distance dx is given by dW = F dx(1) \therefore Total work done to displace the particle from x = 0 to x = 4 m can be calculated by interpreting eqn. (1) between these limits i.e.

$$\int dW = \int F \, dx = \int (5 - 3x + 2x^2) \, dx$$
$$= \left[x \right]_{0}^{4} - 3 \left[\frac{x^2}{2} \right]_{0}^{4} + 2 \left[\frac{x^3}{3} \right]_{0}^{4} = 5[4 - 0] - 3 \left[\frac{16}{2} - 0 \right] + 2 \left[\frac{64}{3} - 0 \right]_{0}^{4} = 5[4 - 0] - 3 \left[\frac{16}{2} - 0 \right]_{0}^{4} + 2 \left[\frac{64}{3} - 0 \right]_{0}^{4} = 5[4 - 0] - 3 \left[\frac{16}{2} - 0 \right]_{0}^{4} + 2 \left[\frac{64}{3} - 0 \right]_{0}^{4} = 5[4 - 0] - 3 \left[\frac{16}{2} - 0 \right]_{0}^{4} + 2 \left[\frac{64}{3} - 0 \right]_{0}^{4} = 5[4 - 0] - 3 \left[\frac{16}{2} - 0 \right]_{0}^{4} + 2 \left[\frac{64}{3} - 0 \right]_{0}^{4} = 5[4 - 0] - 3 \left[\frac{16}{2} - 0 \right]_{0}^{4} + 2 \left[\frac{64}{3} - 0 \right]_{0}^{4} = 5[4 - 0] - 3 \left[\frac{16}{2} - 0 \right]_{0}^{4} + 2 \left[\frac{64}{3} - 0 \right]_{0}^{4} = 5[4 - 0] - 3 \left[\frac{16}{2} - 0 \right]_{0}^{4} + 2 \left[\frac{64}{3} - 0 \right]_{0}^{4} = 5[4 - 0] - 3 \left[\frac{16}{2} - 0 \right]_{0}^{4} + 2 \left[\frac{64}{3} - 0 \right]_{0}^{4} = 5[4 - 0] - 3 \left[\frac{16}{2} - 0 \right]_{0}^{4} + 2 \left[\frac{64}{3} - 0 \right]_{0}^{4} = 5[4 - 0] - 3 \left[\frac{16}{2} - 0 \right]_{0}^{4} + 2 \left[\frac{64}{3} - 0 \right]_{0}^{4} = 5[4 - 0] - 3 \left[\frac{16}{2} - 0 \right]_{0}^{4} + 2 \left[\frac{64}{3} - 0 \right]_{0}^{4} = 5[4 - 0] - 3 \left[\frac{16}{2} - 0 \right]_{0}^{4} + 2 \left[\frac{64}{3} - 0 \right]_{0}^{4} = 5[4 - 0] - 3 \left[\frac{16}{2} - 0 \right]_{0}^{4} + 2 \left[\frac{16}{3} - 0 \right]_{0}^{4} = 5[4 - 0] - 3 \left[\frac{16}{3} - 0 \right$$

 $(since F = 5 - 3x + 2x^2)$

= 20 – 24 + 42.67 = **38.67 j**

Since 2001... IT-JEE | NEET | CBSE ACCENTS EDUCATIONAL PROMOTERS Q14. A bus weighing 10,000 kg is moving with a speed of 36 km h⁻¹. How much retarding force is required to 18 Solution: Market m = 10,000 kg

Q14.	A bus weighing 10,000 kg is moving with a speed of 36 km h ⁻¹ . How much retarding force is required to 18
	stop this bus in a distance of 50 m?
Solution	n: - Here, $m = 10,000 \text{ kg}$ $v = 0$ $S = 50 \text{ m}$. $u = 36 \text{ km } \text{h}^{-1} = 36 \times \frac{5}{5} = 10 \text{ m s}^{-1}$ 18
	$F \times S = \frac{1}{2} mv^2 - \frac{1}{2} mu^2$, we get
	$F = \frac{10,000(0 - 100)}{10,000(0 - 100)} = -10,000 N$
	S 2 × 50
	∴ Retarding force = 10,000 N.
	ll tips
	work-energy theorem is not independent of Newton's second law. It may be viewed as scalar form of second law.
	The WE theorem holds in all inertial frames. It can be extended to non-inertial frames provided we include the pseudo force in the calculation of the net force acting on the body under consideration.
	n force and displacement are in same direction, the kinetic energy of the body increases. The increases in K.E. is
EI WITCH	equal to the work done on the body.
☑Wher	n force and displacement are oppositely directed, the kinetic energy of the body decreases. The decrease in K.E.
	is equal to the work done by the body against the retarding force.
When	n a body moves along a circular path with uniform speed, there is no change in its kinetic energy, By WE theorem,
	the work done by the centripetal force is zero.
	n K.E. increases, the work done is positive and when K.E. decreases, the work done is negative.
✓In de	eriving the WE theorem, it has been assumed that the work done by the force is effective only in changing the K.E.
_	of the body. However, the work done on a body may also be stored as the P.E. of the body.
Exam	ples based on K.E. and W.E. theorem
+	Formula Used
•	1. Kinetic energy, $K = \frac{1}{2} mu^2$ 2. According to work-energy theorem, $W = K_f - K_i = \frac{1}{2} mv^2 - \frac{1}{2} mu^2$
	<u>Units Used</u> Work done W, kinetic energies K _i and K _j are all in joule Conversions Used LeV = 1.60×10^{-19} J
Q. 1.	A body of mass 4 kg initially at rest is subject to a force 16 N. What is the kinetic energy acquired by the body
•	at the end of 10 s? [Delhi 2002]
Sol.	Here m = 4 kg, F = 16 N, t = 10 s \therefore v = u + at = 0.4 × 10 = 40 ms ⁻¹
	Acceleration, $a = F = 16 = 4 \text{ ms}^{-2}$ The kinetic energy acquired by the body,
Q. 2.	m 4 $K = \frac{1}{2} mv^2 = \frac{1}{2} \times 4 \times (40)^2 = 3200 J$ A toy rocket of mass 0.1 kg has a small fuel of mass 0.02 kg which it burns out in 3 s. Starting from rest on a horizontal smooth track
Q. 2.	it gets a speed of 20 ms ⁻¹ after the fuel is burnt out. What is the approximate thrust of the rocket? What is the energy content per
-	unit mass of the fuel? (Ignore the small mass variation of the rocket during fuel burning).
	[NCERT]
Sol.	Here $m = 0.1 \text{ kg}$, $u = 0$, $v = 20 \text{ ms}^{-1}$, $t = 3 \text{ s}$ Thrust of the rocket = $ma = m v - u = 0.1 \times 20 - 0 = 2 \text{ N}$ Energy content per unit mass of the fuel Total energy = 20 J = 1000 J kg^{-1}
	Thrust of the rocket = ma = m $\underline{v - u} = 0.1 \times \underline{20 - 0} = \underline{2}$ N t 3 3 Total energy = $\underline{20 J} = 1000 \text{ J kg}^{-1}$ Mass of the fuel 0.02 kg
	Kinetic energy gained by the rocket,
	$K = \frac{1}{2} mv^2 = \frac{1}{2} \times 0.1 \times (20)^2 = 20 J$
Q. 3.	An electron and a proton are detected in a cosmic ray experiment, the first with kinetic energy 10 keV, and the second with 100 keV
	Which is faster, the electron or the proton? Obtain the ratio of their speeds. (Electron mass = 9.11×10^{-31} kg, proton mass = 1.67×10^{-27} kg, $1 \text{ eV} = 1.60 \times 10^{-19}$ J) [NCERT]
Sol.	K.E. of the electron = $\frac{1}{2}$ m _e v ² _e = 10 ke V or v ² _e = 1670 = 183.3
	K.E. of the proton = $\frac{1}{2} m_p v_p^2 = 100 \text{ keV}$ $V_p^2 = 9.11$
	$\therefore \frac{1}{2} \frac{m_e v_e^2}{m_e^2} = \frac{10 \text{ ke V}}{100 \text{ ke V}} = \frac{1}{100 \text{ ke V}} \text{or} \frac{v_e}{100 \text{ ke V}} = 13.53$
	$\frac{1}{2} m_{p} v_{p}^{2} = \frac{100 \text{ ke V}}{10} \text{ for } \frac{100 \text{ ke V}}{10} = \frac{1}{10} \text{ for } \frac{100 \text{ ke V}}{10} = \frac{1}{100 \text{ ke V}} \text{ for } \frac{100 \text{ ke V}}{100 \text{ ke V}} = \frac{1}{100 \text{ ke V}} \text{ for } \frac{100 \text{ ke V}}{100 \text{ ke V}} \text{ for } \frac{100 \text{ ke V}}{100 \text{ ke V}} = \frac{1}{100 \text{ ke V}} \text{ for } \frac{100 \text{ ke V}}{100 k$
	$\frac{9.11 \times 10^{-2} \times v_{e^{-}}}{1.67 \times 10^{-27} \times v_{p_{o}}^{2}} = \frac{1}{10}$
Q. 4.	A bullet weighing 10 g is fired with a velocity of 800 ms ⁻¹ . After passing through a mud wall 1 m thick, its
	velocity decreases to 100 ms ⁻¹ . Find the average resistance offered by the mud wall. [NCERT]
Sol.	Mass of bullet, m = 10 g = 0.01 kg Velocity of bullet before passing through mud wall u = 800 mc ⁻¹
	Velocity of bullet before passing through mud wall, u = 800 ms ⁻¹ Velocity of bullet after passing through mud wall, v = 100 ms ⁻¹ = Decrease in K.E.
	Distance covered by the bullet, $s = 1 \text{ m}$ or $Fs = \frac{1}{2} \text{ m} (u^2 - v^2)$
	Let average resistance offered by the wall = F \therefore F = $\underline{m} (u^2 - v^2) = 0.01 \times (800^2 - 100^2) = 3150$ N
100	2s 2 × 1
Q. 5.	A shot travelling at the rate of 100 ms ⁻¹ is just able to pierce a plank 4 cm thick. What velocity is required to
Sol.	just pierce a plank 9 cm thick?Here $v_1 = 100 \text{ ms}^{-1}$, $s_1 = 4 \text{ cm}$, $v_2 = ? s_2 = 9 \text{ cm}$ or $v_2 = \sqrt{\frac{S_2}{s_1}} = \sqrt{\frac{9}{4}} = \frac{3}{4}$ K.E. lost by the shot = Work done against plank's resistance $v_1 \sqrt{\frac{S_2}{s_1}} = \sqrt{\frac{9}{4}} = \frac{3}{4}$ $v_2 = 3 \times v_1 = \frac{3}{4} \times 100 = 150 \text{ ms}^{-1}$
2011	K.E. lost by the shot = Work done against plank's resistance $v_1 = v_1 = v_1$
	$\therefore \qquad \chi_2 \text{ mv}_1^2 = \text{F} \times \text{s}_1 \text{ and } \qquad \chi_2 \text{ mv}_2^2 = \text{F} \times \text{s}_2. \qquad \qquad \therefore \qquad \text{v}_2 = \underline{3} \times \text{v}_1 = \underline{3} \times 100 = 150 \text{ ms}^{-1}$
	On dividing, $\frac{V_2^2}{2} = \frac{s_2}{2}$
	$\frac{V}{V_{1}^{2}}$ $\frac{V}{S_{1}}$
Q. 6.	In a ballistics demonstration, a police officer fires a bullet of mass 50.0 g with speed 200 ms ⁻¹ on soft plywood of thickness 2.00 cm.
	The bullet emerges with only 10 % of its initial kinetic energy. What is the emergent speed of the bullet?
6-1	
Sol.	Here m = 50.0 g = 0.05 kg, u = 200 ms ⁻¹ Initial K.E. = $\frac{1}{2}$ mu ² = $\frac{1}{2} \times 0.05 \times (200)^2 = 1000$ J
	Final K.E. = 10% of $1000 \text{ J} = \frac{10 \times 1000}{100} = 100 \text{ J}$ Clearly, the speed reduces nearly by 68% and not by 90% by
	$\frac{100}{100} \text{ or } \frac{1}{2} \text{ mv}^2 = 100 \text{ J}$
3 5 5	

E - P H Y S I C S

$$\frac{1}{2}$$
 kx² = mg (h + x)

$$\frac{1}{2} \times 490 \times x^2 = 2 \times 9.8 \times (1 + x)$$

 $12.5 x^2 - x - 1 = 0$ or ...

or

- $x = 1 \pm \sqrt{1 + 4 \times 12.5} = 1 \pm \sqrt{51} = 0.3256 \text{ m}$ 2×12.5
- Two blocks A and B are connected to each other as shown in Fig. The string and spring is massless and pulley frictionless. Block B Q. 10. slides over the horizontal top surface of stationary block C and the block A slides along the
 - vertical side of C both with same uniform speed. The coefficient of friction between the blocks is 0.2 and the spring

constant of spring is 1960 Nm⁻¹. If mass of block A is 2 kg, calculate (i) the mass of block B and (ii) energy stored in spring. [IIT 82] C Various forces acting on the blocks A and B are shown in Fig. Sol. Let mass of block B = m Tension in the string = T For block A: T = 2 g $[\because m = 2 \text{ kg}]$ For block B: $T = f = \mu R = \mu mg = 0.2 \times mg$ $0.2 \times mg = 2g$ m = <u>2</u> = 10 kg f or 0.2 mg Also $\overline{T} = 2g = 2 \times 9.8 = 19.6 \text{ N}.$ Let x be the extension of the spring due to the tension T. Then T = kx С _ = 0.01 m or x = T =19.6 N 1960 Nm⁻¹ k Energy stored in the spring $U = \frac{1}{2} kx^2 = \frac{1}{2} \times 1960 \times (0.01)^2 = 0.098 J$ 2g Conceptual tips..... In the principle of conservation of energy, we include mass into total energy, because mass can be converted into energy. The principle of conservation of energy cannot be proved mathematically, but is an empirical principle. The deductions

made on the basis of this principle are found to be true.

 \checkmark

Examples based on Mass-Energy Equivalence

Formula Used According to Einstein, energy equivalent of mass m is $E = mc^2$, where c = speed of light in free space= 3×10^8 ms⁻¹ Units Used Mass m is in kg and energy E in joule. **Conversions Used** 1. $eV = 1.6 \times 10^{-19} J$ 2. 1 MeV = 10^{6} eV = 1.6×10^{-13} J 3.1 amu= 931 MeV Q. 1. Express: (a) The energy required to break one bond $(10^{-20} J)$ in DNA in eV. (b) The kinetic energy of an air molecule $(10^{-21} J)$ in eV. (c) The daily intake of a human adult (10⁷ J) in kilocalories. (a) 1 eV = 1.6×10^{-19} J (b) 1 eV = 1.6×10^{-19} J Sol. Energy required to break one bond in DNA Kinetic energy of an air molecule = 10^{-20} J = <u>10^{-20}</u> eV = 0.1 eV. $= 10^{-21} \text{ J} = 10^{-21} = 0.01 \text{ eV}.$ 1.6×10^{-19} 1.6×10^{-19} (c) 1 Kcal = 4186 J The average daily human consumption = 10^{-21} J = <u>10</u>⁷ kcal = 2389 k cal \simeq 2400 kcal 4186 How much mass is converted into energy per day in Tarapur nuclear power plant operated at 10⁷ kW? Q. 2. Sol. Power, $P = 10^7 \text{ kW} = 10^{10} \text{ W} = 10^{10} \text{ Js}^{-1}$ $E = mc^2$ As Time, $t = 1 day = 24 \times 60 \times 60 s$... $M = \underline{E} = \underline{864 \times 10^{12}}$ c² Energy produced per day, $(3 \times 10^8)^2$ $E = Pt = 10^{10} \times 24 \times 60 \times 60 = 864 \times 10^{12} \text{ J}$ $= 9.6 \times 10^{-3}$ kg = 9.6 g. Q. 3. If 1000 kg of water is heated from 0° C to 100° C, calculate the increase in the mass of water. Sol. Here $m = 1000 \text{ kg} = 10^6 \text{ g},$ $\theta = 100 - 0 = 100^{\circ} C$ Specific heat of water, s = 1 cal $g^{-1} \circ C^{-1}$

Heat gained by water = ms $\theta \times 10^6 \times 1 \times 100 = 10^8$ cal = 4.2×10^8 J [∵ 1 cal = 4.2 J] 26 $\Delta m = 4.2 \times 10^8 = 4.2 \times 10^8 = 0.466 \times 10^{-8} \text{ kg.}$ Increase in mass, c² $(3 \times 10^8)^2$ Calculate the energy in MeV equivalent to the rest mass of an electron. Given that the rest mass of an Q. 4. electron, $m_0 = 9.1 \times 10^{-31}$ kg, 1 MeV = 1.6×10^{-13} J and speed of light, c = 3×10^8 ms⁻¹ Sol. $E = m_0 c^2 = 9.1 \times 10^{-31} \times (3 \times 10^8)^2$ $= 81.1 \times 10^{-15} = 0.512$ MeV. $= 81.9 \times 10^{-15} \text{ J}$ 1.6×10^{-13} Estimate the amount of energy released in the following nuclear fusion reaction: Q. 5. $_1H^2 + _1H^2 \rightarrow _2He^3 + _0n^1$ Given mass of $_{1}H^{2} = 2.0141$ amu, mass of $_{2}He^{3} = 3.0160$ amu, mass of $_{0}n^{1} \neq 1.0087$ amu and 1 amu = 1.661×10^{-27} kg. Express you answer in units of MeV. $= 0.0035 \times 1.661 \times 10^{-27} \text{ kg}$ Sol. $_1H^2 + _1H^2 \rightarrow _2He^3 + _0n^1$ Total initial mass (1H² + 1H²) = 2.0141 + 2.0141 = 4.0282 amu Energy released Total final mass (2He³ + 0 n¹) = 3.0160 + 1.0087 = 4.0247 amu $= \Delta m \times c^2 = 0.0035 \times 1.661 \times 10^{-27} \times (3 \times 10^8)^2$ $= 5.232 \times 10^{-13} \text{ J} = 5.232 \times 10^{-13} = 3.27 \text{ MeV}$ Decrease in mass, $1.6 imes 10^{-13}$ Δ m = 4.0282 - 4.0247 = 0.0035 amu When slow neutrons are incident on a target containing 32U235, a possible fission reaction is Q. 6. $_{92}U^{235} + _{0}n^{1} \rightarrow _{56}Ba^{141} + _{36}Kr^{92} + 3_{0}n^{1}$ Estimate the amount of energy released using the following data: Given, mass of ${}_{92}U^{235}$ = 235.04 amu, mass of ${}_{0}n^1 \neq 1.0087$ amu, mass of ${}_{56}Ba^{141}$ = 140.91 amu, mass of 36Kr⁹² = 91.926 amu and energy equivalent to 1 amu = 931 MeV [NCERT] $_{92}U^{235} + _{0}n^{1} \rightarrow _{56}Ba^{141} + _{36}Kr^{92} + 3_{0}n^{1}$ Sol. Total initial mass $({}_{92}U^{235} + {}_{0}n^1) = 235.04 + 1.0087 = 236.0487$ amu Total final mass ($_{56}Ba^{141} + {}_{36}Kr^{92} + 3_{0}n^{4}$) = 140.91 + 91.926 + 3 × 1.0087 = 235.8621 amu Decrease in mass, △m = 236.0487 – 235.8621 = 0.1866 amu Energy released = $\Delta m \times 931 = 0.1866 \times 931 = 173.725$ MeV. Examples based on Power Formula Used >> or P = <u>W</u> 2. Also $P = F \cdot v$ 1. Power = Work When $\theta = 0^\circ$, P = Fv Time Units Used Work W is in joule, force F in newton, time t in second, velocity v in ms⁻¹, Power P in watt. Conversions Used 1 Kilowatt = 1000 watt or 1 kW = 1000 W 1 horsepower = 746 watt 1 hp = 746 = 746 W. or A man weighing 60 kg climbs up a staircase carrying a load of 20 kg on his head. The stair case has 20 steps each of height 0.2 m. If Q. 1. he takes 10 s to climb, find his power. Sol. Here m = 60 + 20 = 80 kg, $h = 20 \times 0.2 = 4 \text{ m}$; $g = 9.8 \text{ ms}^{-2}$, t = 10 s $P = W = mgh = 80 \times 9.8 \times 4 = 3136 = 313.6 W.$ t t 10 10 Q. 2. A car of mass 2000 kg is lifted up a distance of 30 m by a crane in 1 min. A second crane does the same job in 2 min. Do the cranes consume the same or different amounts of fuel? What is the power supplied by each crane? Neglect power dissipation against friction. Here m = 2000 kg, s = 30 m, $t_1 = 1 \text{ min} = 60 \text{ s}$, Sol. $t_2 = 2 \min = 120 s$ Work done by each crane, W = Fs = mgs = $2000 \times 9.8 \times 30 = 5.88 \times 10^5$ J As both the cranes do same amount of work, so both consume same amount of fuel. Power supplied by first crane, Power supplied by second crane, $P_1 = W = 5.88 \times 10^5 = 9800 W$ $P_2 = W = 5.88 \times 10^5 = 4900 W$ 120 t_1 60 t₂ Q. 3. A pump on the ground floor of a building can pump up water to fill a tank of volume 30 m³ in 15 min. If the tank is 40 m above the ground, and the efficiency of the pump is 3 %, how much electric power is consumed by the pump? Mass of water = Volume × density Sol. Efficiency = Output Power × 100 As $= 30 \times 1000 = 3 \times 10^4 \text{ kg}$ Input power ... Output power = Work done = mgh Input power = Output power \times 100 Time Efficiency t $= 3 \times 10^4 \times 9.8 \times 40 = 39200 \text{ W}$ = <u>39200</u> × 100 15×60 3 3×30 $= 43.6 \times 10^3 \text{ W} = 43.6 \text{ kW}$ The human heart discharges 75 ml of blood at each beat against a pressure of 0.1 m of Hg. Calculate the power of Q. 4. heart assuming that pulse frequency is 80 beats per minute. Density of Hg = 13.6×10^3 kgm⁻³. Volume of blood discharged per beat, Sol. Time, t = 1 min = 60 s $V = 75 \text{ ml} = 75 \times 10^{-6} \text{ m}^{-3}$ Power = $Work = 80 \times PV$ Pressure, P = 0.1 m of Hg Time t = $0.1 \times 13.6 \times 10^3 \times 9.8$ Nm⁻² [: P = hpg] $= \underline{80 \times 0.1 \times 13.6 \times 10^3 \times 9.8 \times 75 \times 10^{-6}}$ Work done per beat = PV 60 Work done in 80 beats = $80 \times PV$ = 1.33 W. Q. 5. An electric motor is used to left an elector and its load (total mass = 1500 kg) to a height of 20 m. The time taken for the job is 20 s. What is the work done? What is the rate at which work is done? If the efficiency of the motor is 75%, at which rate is the energy supplied to the motor? Sol. Here m = 1500 kg, h = 20 m, n = 75%. t = 20 s As $\eta = Output power$ Work done. Input power <u>75</u> = <u>1.47 × 10</u>⁴ $W = mgh = 1500 \times 9.8 \times 20 = 2.94 \times 10^5 J$ Rate of doing work = $W = 2.94 \times 10^5 = 1.47 \times 10^4 W$ 100 Input power 20 Input power or the rate at which energy is supplied t $= 1.47 \times 10^4 \times 100 = 1.96 \times 10^4$ W. 75

SE-PHYSICS

STUDY CIRCLE ACCENTS EDUCATIONAL PROMOTERS

ACCENTS EDUCATIONAL PROMOTERS

8

8

4 4 4

8

 $m_1 + m_2$

_

 $m_1 + m_2$

 $\underline{m-m}$.v+ $\underline{2m}$ (-v)

m + m m + m 🛦 = v + 0 = vThus the two balls bounce back with equal speeds after the collision Q. 4. A trolley of mass 200 kg moves with a uniform speed of 36 km/h on a frictionless track. A child of mass 20 kg runs on the trolley from one end to the other (10 m away) with a speed of 4 m s⁻¹ relative to a trolley in a direction opposite to the trolley's motion, and jumps out of the trolley. What is the final speed of the trolley? How much has the trolley moved from the time the child begins to run? [NCERT] Sol. The child gives an impulse to the trolley at the start and then runs with a constant relative velocity of 4 ms⁻¹ with respect to the trolley's new velocity. Total initial momentum, $p_i = (m_1 + m_2) u_1$ $p_f = p_i$ = $(20 + 200) \times 36 \times 5 = 2200 \text{ kg ms}^{-1}$ $220 v_2 - 80 = 2200$ 18 $v_2 = 2280 = 10.36 \text{ ms}^{-1}$ Let new velocity of the trolley = v_2 220 Child's velocity relative to the trolley in opposite direction = 4 ms⁻¹Time taken by the child to cover length of the trolley Child actual velocity (relative to ground) = $v_2 - 4$ 10 m = 2.5 s = Total final momentum, $p_f = m_1v_1 + m_2v_2$ 4 ms⁻¹ $= 20 (v_2 - 4) + 200 v_2 = 220 v_2 - 80$ Distance covered by the trolley in 2.5 s By conservation of linear momentum. 10.36 × 2.5 = 25.9 m. = A railway carriage of mass 9000 kg moving with a speed of 36 kmh⁻¹ collides with a stationary carriage of the same Q. 5. mass. After the collision, the carriages get coupled and move together. What is their common speed after collision? What type of collision is this? $m_1 = 9000 \text{ kg}, u_1 = 36 \text{ km}h^{-1} = 10 \text{ ms}^{-1}$ Here $= \frac{1}{2} m_1 u_1^2 + \frac{1}{2} m_2 u_2^2$ Sol. $m_2 = 9000 \text{ kg}, u_2 = 0, v_1 = v_2 = v = ?$ $= \frac{1}{2} \times 9000 \times 10 \times 10 + 0$ = 450000 J By conservation of momentum, Total K.E. after collision = $\frac{1}{2}$ (m₁ + m₂) v² $m_1 u_1 + m_2 u_2 = (m_1 + m_2) v$ 9000 × 10 + 0 = (9000 + 9000) v = $\frac{1}{2} \times 2 \times 9000 \times 5^2$ $v = 90000 = 5 \text{ ms}^{-1}$ = 225000 J or 18000 Thus total K.E. after collision < Total K.E. before collision. Hence, the collision is inelastic.

Q. 6.What percentage of kinetic energy of a moving particle is transferred to a stationary particle, when moving particle
strikes with a stationary particle of mass (i) 9 times in mass (ii) equal in mass and (iii) $1/19^{th}$ of its mass?Sol.For the moving particle, $m_1 = m$ (say), initial vel. = u_1
For the stationary particle, $m_2 = xm$ (say), initial vel. = $u_2 = 0$ K.E. of the stationary particle after collision,
 $K_2 = \frac{1}{2}m_2 v_2^2 = \frac{1}{2} . mx . 4u_1^2$

As $v_2 = \underline{2m_1}_{m_1 + m_2}$, $u_1 + \underline{m_2 - m_1}_{m_1 + m_2}$, u_2 $\vdots v_2 = \underline{2m}_{m + xm}$, $u_1 + 0 = \underline{2u_1}_{1 + x}$ K.E. of the moving particle before collision, $K_1 = \frac{1}{2} m_1 u_1^2 = \frac{1}{2} mu_1^2$ $(1 + x)^2$ $= \underline{4x}_{1 + x}^2$, $\frac{100}{(1 + x^2)} = \underline{4x}_{1 + x}^2$, K_1 $= \underline{4x}_{1 + x}^2$, $\frac{100}{(1 + x^2)} = \underline{4x}_{1 + x}^2$, K_1 $= \underline{4x}_{1 + x}^2$, $\frac{100}{K_1} = \underline{4x}_{1 + x}^2$

 $(1 + 1/19)^2$

C B S E - P H Y S I C S

<u>2m</u>.v+<u>m-m</u>.(-v)

m + m

m + m

The kinetic energy of a particle is given by $K = \frac{p^2}{2m}$ \therefore As momentum is conserved in the absence of an external force, so

222

or $m_{Rn} K_{Rn} = m_{\alpha} K_{\alpha}$

m_{Rn}

or $K_{Rn} = \underline{m_{\alpha} K_{\alpha}} = = \underline{4.003 \times 4.8} = 0.0866 \text{ MeV}.$

 $p = \sqrt{2mK}$

mK = constant

Q. 16. The nucleus Fe⁵⁷ emits a γ -ray of energy 14.4 keV. If the mass of the nucleus is 56.935 amu, calculate the recoil energy of the nucleus. Take 1 amu = 1.66×10^{-27} kg. 32 The nuclear decay may be represented as follows: Sol. Fe⁵⁷ Fe⁵⁷ + \rightarrow hv $(\gamma$ -ray photon) Exited state Ground state According to de-Broglie hypothesis, momentum of a photon of energy E is $p = \underline{E} = \underline{14.4 \text{ keV}} = \underline{14.4 \times 1.6 \times 10^{-16} \text{ J}}{\text{c}} = 7.68 \times 10^{-24} \text{ kg ms}^{-1}$ By conservation of momentum, the momentum of daughter nucleus, p = momentum of γ -ray photon = 7.68 \times 10⁻²⁴ kg ms⁻¹ The recoil energy of the nucleus will be $K = \underline{p^2} = \underline{(7.68 \times 10^{-24})^2}$ $2m ~~ 2 \times 56.935 \times 1.66 \times 10^{-27}$ $= 0.312 \times 10^{-21} \text{ J}$ = 0.312 \times 10⁻²¹ keV $= 1.95 \times 10^{-6}$ keV. $1.6 imes 10^{-16}$... End. FRSIV

