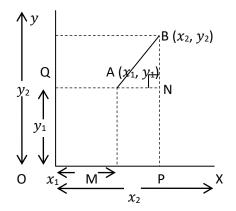
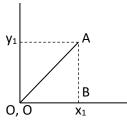


2ND FLOOR, SATKOUDI COMPLEX, THANA CHOWK, RAMGARH - 829122-JH

CBSE-MATHEMATICS CO-ORDINATE GEOMETRY

CO-ORDINATE GEOMETRY


2


CONCEPTS

- 1. If the coordinates of a point is its perpendicular distance from y axis.
- 2. If is evident from the above discussion that:
 - (i) The abscissa of a point is its perpendicular distance from y axis.
 - (ii) The ordinate of a point is its perpendicular distance from x axis.
 - (iii) The abscissa of every point situated on the right side of y axis is positive and the abscissa of every point situated on the left side of y-axis is negative.
 - (iv) The ordinate of every point situated above x-axis is positive and that of every point below x-axis is negative.
 - (v) The abscissa of every point on y-axis is zero.
 - (vi) The ordinate of every point on *x*-axis is zero.
 - (vii) Coordinates of the origin are O(0, 0).

Distance Formula:

<u>Given</u>: A (x, y) and B (x, y) be the co-ordinate <u>To prove</u>: $\sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}$ <u>Proof</u>: Let the co-ordinate of point A be (x, y) and co-ordinate of point B be $(x_2 y_2)$. Also, AN = QN = QA = OP - MP (\because QN = OP and QA = OM) = $x_2 - x_1$ And BN = BP - NP = YO - OQ (\because YO = BP and NP = OQ) = $y_2 - y_1$ Now, In rt. \triangle BAN

Corollary: Distance of a point from the origin

 $AB = \sqrt{(y_2 - y_1)^2 + (x_2 - x_1)^2}$

 $AB = \sqrt{(BN)^2 + AN^2}$

 $AB = \sqrt{x_1^2 + y_1^2}$

 $AB^2 = BN^2 + AN^2$ (By Pythagoras theorem)

	7ips n' technique	
	For on Isosceles triangle	\rightarrow Prove that at least two sides are equal.
	For on equilateral triangle	\rightarrow Prove that all the three sides are equal.
	■ For a right Δ	\rightarrow The sum of square of two sides is equal to square of third side.
	For a square	\rightarrow Prove that the four sides and the diagonal are equal.
	For a rectangle	\rightarrow Prove that the opp. pair of sides and two diagonals are equal.
	For a rhombus	\rightarrow Prove that all the adjacent sides are equal.
	 For a parallelogram For collinear point 	 → Prove that opp. sides are equal & parallel. → Prove that the sum of distance between two-point pair is equal to the third pair of point.
(C B S E - M A T H E M A T I	

Hence proved.

CBSE-MATHEMATICS CO-ORDINATE GEOMETRY

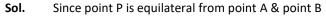
1.	(a) (5 <i>,</i> 3);	of the following quadr (b) (-2, 4);	(c) (-4, -7);	(d) (8,		
Sol.	a) (5, 3)	ince abscissaie 5 gr	reater than zero (o) and or	dinate i.e., 3 greater than zero (0).	
		5, 3) lies on 1 st co-ordi				
	b) (2, 4)		nuce.			
		ince, abscissa i.e., -2 is	s not greater than	zero, (o),	, and ordinate i.e., 4 is greater than zero (0).	
		-2, 4) lies on 2 nd co-ord	-	, , , ,,	, , , , , , , , , , , , , , , , , , , ,	
	c) (-4, -7)					
				zero (o) ai	and ordinate i.e., -7 also is not greater than zero	o (0)
	🕂 point (-4, 7) lies on 3 rd co-ord	linate			
	d) (8, -3)					
		_		0) and ord	dinate i.e., -3 is not greater than zero (0)	
	Therefore	, point (8, -3) lies on 4	ⁱⁿ co-ordinate.			
2.	Find the d	listance between the	point: -			
	A. A	A (2, 3)		В.	A (-3, -4)	
	B	3 (-1, 7)			В (3, 0)	
	C. A	A (5, -12)		D.	A (0, 0)	
		3 (9, -9)			B (-5, 12)	
		P (7, 13)		F.	A(x+y, x-y)	
		Q (10, 9)			B $(x - y, -x - y)$	
		$(at_1^2, 2at); B(at_2^2, 2at)$	t2)			
Sol.		A (2, 3)				
		8 (-1, 7) Here, x1 = 2, x2 = -1 and	$1_{12} - 3_{12} - 7_{12}$			
	N	Magnitude of AB = AB	$ = \sqrt{(x_2 - x_1)^2 + (y_1)^2}$	$(2 - v_1)^2$		
			$=(-1-2)^2+(-1-2)^$	$(7-3)^2$		
			$=\sqrt{(-3)^2+(4)^2}$,		
			$=\sqrt{9+16}=\sqrt{2}$	25 = 5 unit	its	
		A (-3, -4)				
		3 (3, 0)				
	F	lere, $x_1 = -3$, $x_2 = 3$ and	$y_1 = -4, y_2 = 0$			
	N	Magnitude of AB = AB	$ = \sqrt{(x_2 - x_1)^2 + (y_1)^2}$	$(2 - y_1)^2$	112	
			$= \sqrt{[(3 - (-3)]^2]} = \sqrt{(3 + 3)^2 + ((3 + 3)^2)^2} = \sqrt{(3 + 3)^2 + ((3 + 3)^2)^2} = \sqrt{(3 + 3)^2} = (3 + 3)^$	$\frac{+[0-(-4))}{2}$	·)] ²	
			$=\sqrt{(3+3)^2} + ((1+3)^2)$	$(-1)^{-1} + 4)^{-1}$	$\frac{1}{16} = \sqrt{52} = 2\sqrt{13}$ units	
	C) A	A (5, -12)	- (0) + (4) -	- V 50+1	$10 - \sqrt{52} - 2\sqrt{15}$ units	
	-	8 (9, -9)				
	F	Here $r_1 = 5$ $r_2 = 9$ and	$v_1 = -12, v_2 = -9$			
	N	Aagnitude of AB = AB	$=(x_2-x_1)^2+(y_1)^2+(y_2-x_2)^2+(y_1-x_2)^2+(y_2-x_2)^2+(y_1-x_2)^2+(y_2-$	$(y_2 - y_1)^2$		
			$=(9-5)^2+[($	-9 - (-12))] ²	
			$=\sqrt{(4)^2+(-9+)^2}$	$12)^2 = \sqrt{4}$	$(4)^2 + (3)^2$	
			$=\sqrt{(6)^2+(4)^2}=$	= √36 + 16	6 = 52 = 2√13 units	
		A (0, 0)				
		3 (-5, 12)				
	. r	Here, $x_1 = 0$, $x_2 = -5$ and	$y_1 = 0, y_2 = 12$			
	∴ N	Magnitude of AB = AB	$ = \sqrt{(x_2^2 + y_2^2)}$ $= \sqrt{(x_2^2 + y_2^2)}$	2		
		Aagnitude of AB = AB	$=\sqrt{(-5)^{-7}+(12)^{-7}}$ = $\sqrt{25+144}$ =	/ √169 = 11	13 units	
		° (7, 13)	- , 23 · 144 -	, 100 - 1.		
	•	Q (10, 9)				
		HEMATICS				

Here, $x_1 = 7$, $x_2 = 10$ and $y_1 = 13$, $y_2 = 9$ Magnitude of PQ = $|PQ| = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}$ $=\sqrt{(10-7)^2+(9-13)^2}$ $=\sqrt{(3)^2 + (-4)^2} = \sqrt{9 + 16} = \sqrt{25} = 5$ units F) A(x + y, x - y)B (x - y, -x - y)Here, $x_1 = x + y$, $x_2 = x - y$ and $y_1 = x - y$, $y_2 = -x - y$ Magnitude of AB = $|AB| = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}$:. $=\sqrt{[(x-y)-(x+y)]^2+[(-x-y)-(x-y)]}$ $= \sqrt{\frac{(x - y)^{2} + (-x - y)^{2} + (-x - y) - x + y)^{2}}{(x - y - x - y)^{2} + (-x - y) - x + y)^{2}}}$ = $\sqrt{\frac{(-2y)^{2} + (-2x)^{2}}{(x^{2} + y^{2})}} = \sqrt{4(x^{2} + y^{2})} = 2\sqrt{x^{2} + y^{2}}$ units G) A $(at_1^2, 2at)$; B $(at_2^2, 2at_2)$ Here, $x_1 = at_1^2$, $x_2 = at_2^2$ and $y_1 = 2at$, $y_2 = 2at_2$ Magnitude of AB = $|AB| = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}$:. $= \sqrt{\frac{(at^2 - at^2)^2 + (2at^2 - 2at^1)^2}{(at^2 - 2at^2)^2 + 4a^2(t_2 - t_1)^2}}$ $= \sqrt{a^2 \left[(t_2^2 - t_1^2)^2 + 4 (t_2 - t_1)^2 \right]}$ $= \sqrt{a^2 \left[\{ (t_2 + t_1) (t_2 - t_1) \}^2 + 4 (t_2 - t_1)^2 \right]}$ $= \sqrt{a^2 (t_2 - t_1)^2 [(t_2 + t_1)^2 + 4]}$ $= a (t_2 - t_1) \sqrt{(t_2 + t_2)^2 + 4 \text{ units}}$ 3. Find the distance of point P (7, -7) from the origin. $=\sqrt{x_1^2+y_1^2}$ Magnitude of PO |PO| Sol. $= \sqrt{(7)^2 + (-7)^2} = \sqrt{49 + 49}$ $=\sqrt{98}$ $=7\sqrt{2}$ units. 4. A (7, 0), B (0, -24) and 0(0, 0) are the vertices of the triangle. Calculate the length of the hypotenuse of Δ ABC. Sol. Here, $x_1 = 7$, $x_2 = 0$ and $y_1 = 0$, $y_2 = -24$ x' (0, 0 Magnitude of AB = $|AB| = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}$ $=\sqrt{(0-7)^2+(24-0)^2}$ $=\sqrt{(-7)^2 + (-24)^2}$ = \sqrt{49} + 576 = 625 = 25 units (0, -24)5. Find the distance of the point A (6, -6) from the origin. Magnitude of AB = $|AB| = \sqrt{x_1^2 + y_1^2}$ Sol. $=\sqrt{(6)^2 + (-6)^2}$ $=\sqrt{36+36} = \sqrt{72} = 6\sqrt{2}$ units 6. Find the distance between the point A ($a \sin \alpha$, $a \cos \alpha$) and B ($a \cos \alpha$, $-a \sin \alpha$). Sol. Here, $x_1 = a \sin \alpha$, $x_2 = a \cos \alpha$ and $y_1 = a \cos \alpha$, $y_2 = -a \sin \alpha$ Magnitude of AB = $|AB| = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}$ $=\sqrt{(a \cos \alpha - a \sin \alpha)^2 + (-a \sin \alpha - a \cos \alpha)^2}$ $= \sqrt{a^2 (\cos \alpha - \sin \alpha)^2 + (-a^2) (\sin \alpha + \cos \alpha)^2}$ $= \sqrt{a^2 [\cos^2 A + \sin^2 \alpha - 2 \cos \alpha + \sin \alpha + \sin^2 \alpha + \cos^2 \alpha + 2 \cos \alpha + \sin \alpha]}$ $= a \sqrt{2} (\cos^2 A + \sin^2 \alpha)$ $= a \sqrt{2}$ units 7. A distance between A (1, 3) and B (x, 7) is 5 unit. Calculate the possible values of x. Sol. A (1, 3) and B (x, 7) are the point such that AB = 5 units. Magnitude of AB = $|AB| = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}$ 5 = $\sqrt{(x-1)^2 + (7-3)^2}$ C B S E - M A T H E M A T I C S

(7, 0) x

- $(5)^2 = x^2 + 1 2x + 16$ => $25 - 16 - 1 = x^2 - 2x$ => $8 = x^2 - 2x$ => $x^2 - 2x - 8 = 0$ => $x^2 - 4x + 2x - 8 = 0$ => => (x-4) + 2(x-4) = 0(x+2)(x-4) = 0=> Either, or, x + 2 = 0x - 4 = 0*x* = -2 x = 4
- 8. A is the point of Y axis whose ordinate is 5 and B is the point whose co-ordinate is (-3, 1). Calculate the length of AB.

Sol. Here, $x_1 = 0$, $x_2 = -3$; $y_1 = 5$, $y_2 = 1$ Magnitude of AB = $|AB| = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}$ $= \sqrt{(-3)^2 + (1 - 5)^2}$ $= \sqrt{(-3)^2 + (-4)^2}$ $= \sqrt{(9)} + (16)$ $= \sqrt{25}$ $= \sqrt{5}$ units


9. Find the value of x for which the distance between the points P (3, -5) and Q (x, 2) is $\sqrt{58}$ units.

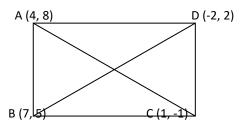
Sol. Here,
$$x_1 = 3$$
, $x_2 = x$; $y_1 = -5$, $y_2 = 2$
Magnitude of PQ = $|PQ| = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}$
 $\sqrt{58} = \sqrt{(x - 3)^2 + [(2 - (-5)]^2]}$
 $(\sqrt{58})^2 = x^2 + 9 - 6x + 49$
 $58 - 49 - 9 = x^2 - 6x$
 $0 = x^2 - 6x$
 $0 = x^2 - 6x$
 $x^2 - 6x = 0$
 $x (x - 6) = 0$
 $(x - 6) = 0$
 $x = 6$

- 10. A point 'A' is at the distance of $\sqrt{10}$ units from the point B (4, 3). Find the co-ordinate of point 'A' If its ordinate is twice the abscissa.
- **Sol.** Let the abscissa of point A be *x*

And the ordinate of point B be
$$2x$$

Here, $x_1 = x$, $x_2 = 4$; $y_1 = 2x$, $y_2 = 3$
Magnitude of AB = $|AB| = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}$
 $\sqrt{10} = \sqrt{(4 - x)^2 + (3 - 2x)^2}$
 $(\sqrt{10})^2 = 16 + x^2 - 8x + 9 + 4x^2 + 12x$
 $10 - 16 - 9 = x^2 - 8x + 4x^2 - 12x$
 $-15 = 5x^2 - 20x$
 $5x^2 - 20x + 15 = 0$
 $5x^2 - 15x - 5x + 15 = 0$
 $5x(x - 3) - 5x + 15 = 0$
 $(5x - 5)(x - 3) = 0$
Either, $5x - 5 = 0$
 $5x = 5$
 $x = 1$
 $x = 3$
 $x = 3$

11. A point P (2, -1) is equidistant from the point A (α , -7) and B (-3, α). Find the value of α .



Magnitude of PA = Magnitude of PB *:*.. => $\sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2} = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}$ $\frac{\sqrt{(\alpha-2)^2 + (-7-1)^2} = \sqrt{(-3-2)^2 + (\alpha+1)^2}}{\sqrt{\alpha^2 + 4 - 4\alpha + 64} = \sqrt{25 + \alpha^2 + 1} + 2\alpha}$ => => $\sqrt{\alpha^2 - 4\alpha + 68} = \sqrt{2 + 2\alpha + 26}$ => $\alpha^2 - 4\alpha + 68 = \alpha^2 + 2\alpha + 26$ => $4\alpha + 2\alpha + 26 - 68 = 0$ => $6\alpha - 42 = 0$ => α = 74 => Value of α = 7 :. Show that the point (α, α) ; $(-\alpha, \alpha)$ and $(-\alpha\sqrt{3}, \alpha\sqrt{3})$ are the vertices of an equilateral Δ . 12. Let, the vertices of Δ of point P (α , α), Q (- α , - α) and R (- $\alpha\sqrt{3}$, $\alpha\sqrt{3}$) Sol. Magnitude of PQ = $|PQ| = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}$ *.*.. $=\sqrt{(-\alpha-\alpha)^2+(-\alpha-\alpha)^2}$ $= \sqrt{(-2x)^2 + (-2x)^2} = \sqrt{4\alpha^2 + 4\alpha^2} = 8\alpha^2 = 2\alpha\sqrt{2} \text{ units} \dots \text{ (i)}$ Magnitude of QR = $|QR| = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}$:. Ρ(α, α) $=\sqrt{(-x\sqrt{3}+\alpha)^2+(\alpha\sqrt{3}+\alpha)^2}$ $= \sqrt{3\alpha^2 + \alpha^2 - 2 \times \alpha\sqrt{3} + \alpha^2 + 2 \times \alpha\sqrt{3}}$ $=\sqrt{8 \alpha^2} = 2\alpha\sqrt{2}$ units ... (ii) Magnitude of RP = $|RP| = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}$ or $=\sqrt{(\alpha + \alpha\sqrt{3})^2 + (\alpha - \alpha\sqrt{3})^2}$ R $= \sqrt{\alpha^2 + 3\alpha^2 + 2 \times \sqrt{3\alpha^2 + \alpha^2 + 3\alpha^2 - 2 \times \sqrt{3\alpha^2}}}$ $(-\alpha\sqrt{3}, \alpha\sqrt{3})$ (-α, -α) $=\sqrt{8} \alpha^2 = 2\alpha\sqrt{2}$ units ... (iii) From (i), (ii) and (iii) PQ = QR = RP:. Δ PQR is an equilateral Δ . 13. Prove that point A (1, -3); B (-3, 0) and C (4, 1) are the vertices of the isosceles of Δ also find the area of Δ . Sol. Let the vertices of Δ of point A (1, -3); B (-3, 0) and C (4, 1) Magnitude of AB = $|AB| = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}$ ÷ AN(1, -3) $=\sqrt{(-3-1)^2+(0+3)^2}$ $=\sqrt{(-4)^2+(3)^2}$ =√16+4 $=\sqrt{25}$ = 5 units ... (i) £ (4, 1) B(-B, 0)Magnitude of AC = $|AC| = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}$ $=\sqrt{(1-4)^2+(-3-1)^2}$ $=\sqrt{(-3)^2+(-4)^2}$ $=\sqrt{9+16}=\sqrt{25}=5$ units ... (ii) From (i) & (ii) AB = ACi.e., ΔABC its two sides are equal (A) Magnitude of BC = $|BC| = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}$ Now. $=\sqrt{(-3-4)^2+(0-1)^2}$ $=\sqrt{(-7)^2+(-1)^2}$ $=\sqrt{49+1} = \sqrt{50} = 5\sqrt{2}$ units Now, $BC^2 = AB^2 + AC^2$ [By Pythagoras theorem] $(5\sqrt{2})^2 = (5)^2 + (5)^2$ 50 = 50i.e., the sum of square of two equal sides is equal to the square of hypotenuse ... (B) From (A) and (B) ΔABC is rt. Angle isosceles Δ Area of isosceles of $\Delta = \frac{1}{2} \times base \times altitude = \frac{1}{2} \times 5 \times 5 = \frac{25}{2} \text{ units}^2$ Now.

14. Sol.	Show that the point (4, 8); (7, 5); (Let the vertices of a quad' of point \therefore Magnitude of AB = $ AB $ =	A (4, 8), B (7, 5), C (1, -1) and D (-2, 2)
	∴ Magnitude of AB = AB =	
	Magnitude of CD = CD =	$ \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2} $ $ = \sqrt{(-2 - 1)^2 + (2 + 1)^2} $ $ = \sqrt{(-3)^2 + (3)^2} $
	From (i) and (ii) AB = AC	$=\sqrt{9} + 9 = \sqrt{18}$ units (ii)
	Now, Magnitude of BC = BC =	$ \frac{\sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}}{= \sqrt{(1 - 7)^2 + (-1 - 5)^2}} = \sqrt{(-6)^2 + (6)^2} = \sqrt{36 + 36} = \sqrt{72} \text{ units } \dots \text{ (iii)} $
	Also	
	Magnitude of AD = AD =	$ \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2} $ $ = \sqrt{(4 + 2)^2 + (8 - 2)^2} $ $ = \sqrt{(6)^2 + (6)^2} $ $ = \sqrt{36 + 36} = \sqrt{72} \text{ units } \dots \text{ (iv)} $
	From (iii) and (iv) BC = AD	(B) and BC = AD
	Magnitude of AC = AC =	$ \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2} $ $ = \sqrt{(1 - 4)^2 + (-1 - 8)^2} $ $ = \sqrt{(-3)^2 + (-9)^2} $ $ = \sqrt{9 + 81} = \sqrt{90 \text{ units}} \qquad \dots \text{ (v)} $
	Magnitude of BD = BD =	$\frac{-\sqrt{9+81}-\sqrt{90} \text{ units}}{\sqrt{(x_2-x_1)^2+(y_2-y_1)^2}} = \sqrt{(-2-7)^2+(2-5)^2} = \sqrt{(-9)^2+(-3)^2} = \sqrt{81+9} = \sqrt{90} \text{ units} \qquad \dots \text{ (vi)}$
	From (v) & (vi)	AC = BD
	i.e., its diagonal is also equal	(D)
	From (C) & (D)	hence proved.
15.	Show that the point (0, -1); (-2, 3);	(6, 7) and (8, 3) are the vertices of rectangle.
Sol.	Let the vertices of a point A (0, 1),	B (-2, 3), C (6, 7) and D (8, 3)
	Magnitude of AB = AB =	$\sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}$
		$\sqrt{(12-0)^2 + (2+4)^2}$

e. Find the area of the rectangle.

Magnitude of AB =
$$|AB| = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}$$

 $= \sqrt{(-2 - 0)^2 + (3 + 1)^2}$
 $= \sqrt{(-2)^2 + (4)^2}$
 $= \sqrt{4 + 16} = \sqrt{20} = 2\sqrt{5}$ units ... (i)
Magnitude of CD = $|CD| = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}$
 $= \sqrt{(8 - 6)^2 + (3 - 7)^2}$
 $= \sqrt{(8 - 6)^2 + (3 - 7)^2}$
 $= \sqrt{(2)^2 + (-4)^2}$
 $= \sqrt{4 + 16} = \sqrt{20} = 2\sqrt{5}$ units ... (ii)
From (i) and (ii)
AB = CD ... (A)
Also, Magnitude of BC = $|BC| = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}$
 $= \sqrt{(6 + 2)^2 + (7 - 3)^2}$
 $= \sqrt{(8)^2 + (4)^2}$
 $= \sqrt{64 + 16} = \sqrt{80} = 4\sqrt{5}$ units ... (iii)

CBSE-MATHEMATICS

 $= \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}$ = $\sqrt{(0 - 8)^2 + (-1 - 3)^2}$ = $\sqrt{(-8)^2 + (-4)^2}$ Magnitude of DA = DA $=\sqrt{64} + 16 = \sqrt{80} = \sqrt{5}$ units ... (iv) From (iii) and (iv) $BC = AD \dots (B)$ i.e., From (A) and (B) AB = CD and BC = AD □ ABCD its opp. sides are equal i.e., ... (C) Now, Magnitude of AC = $|AC| = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2} = \sqrt{(6 - 0)^2 + (7 + 1)^2}$ $=\sqrt{(6)^2+(8)^2}$ $=\sqrt{36+64}=100=10$ units ... (v) Magnitude of BD = $|BD| = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}$ $=\sqrt{(8+2)^2+(3-3)^2}$ $=\sqrt{(10)^2+(0)^2}$ $=\sqrt{100} = 10$ units ... (vi) From (v) & (vi) BD = ACi.e., its diagonal are also equal ... (D) From (C) and (D) ABCD is a rectangle Hence proved. Now. Area of rectangle = $l \times b$ $4\sqrt{5} \times 2\sqrt{5}$ = 8 × 5 = 40 units Area of rectangle = 40 units i.e. Show that the points A(5, 6); B(1, 5); C(2, 1) and D(6, 2) are the vertices of quad' ABCD. Let, the vertices of quad^r ABCD be A (5, 6), B (1, 5); C (2, 1) and D (6, 2) Magnitude of AB = $|AB| = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}$ A (5, 6) D(6,2) $=\sqrt{(1-5)^2+(5-6)^2}$ $=\sqrt{(-4)^2+(-1)^2}$ $=\sqrt{16+1} = \sqrt{17}$ units ... (i) Magnitude of CD = $|CD| = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}$ = $\sqrt{(2 - 1)^2 + (1 - 5)^2}$ $=\sqrt{(1)^2+(-4)^2}$ $=\sqrt{1+16} = \sqrt{17}$ units ... (iii) Magnitude of DA = $|DA| = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}$ $=\sqrt{(5-6)^2+(6-2)^2}$ B(1,5) C(2,1) $=\sqrt{(-1)^2+(4)^2}$ $=\sqrt{1+16} = \sqrt{17}$ units ... (iv) From (i), (ii), (iii) and (iv) AB = BC = CD = DAits all sides are equal ... (A) i.e., Magnitude of AC = $|AC| = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}$ Now, $= \sqrt{(2-5)^2 + (1-6)^2}$ $= \sqrt{(-3)^2 + (-5)^2}$ $=\sqrt{9+25}=\sqrt{34}$ units ... (v) Magnitude of BD = $|BD| = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}$ $=\sqrt{(6-1)^2+(2-5)^2}$ $=\sqrt{(5)^2+(-3)^2} = \sqrt{25+9} = \sqrt{34}$ units ... (vi) Diagonal AC = Diagonal BD From (v) & (vi) ... (B)

CBSE-MATHEMATICS

16.

Sol.

ACCENTS EDUCATIONAL PROMOTERS

From (A) & (B)	All sides of ABCD are equal & their diagonals are also				
			Proved			
17		hat (-3, 2); (-5, -5); (2, -3) and (4, 4) are the vertices of a				
Sol.	Let the	vertices of quad ^r ABCD of point A (-3, 2) BC (-5, -5), 6(2,	-3), D (4, 4)			
		Magnitude of AB = $ AB = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}$ = $\sqrt{(-5 + 3)^2 + (-5 - 2)^2}$				
		$=\sqrt{(-5+3)^2+(-5-2)^2}$				
		$=\sqrt{(-2)^2+(-7)^2}$				
		$=\sqrt{4+49} = \sqrt{53}$ units	(i)			
		Magnitude of BC = $ BC = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}$ = $\sqrt{(2 + 5)^2 + (-3 + 5)^2}$				
		$=\sqrt{(2+5)^2+(-3+5)^2}$				
		$= \sqrt{(7)^2 + (2)^2}$ = $\sqrt{49 + 4} = \sqrt{53}$ units	<i></i>	A (- 3,	2)	
		$= \sqrt{49 + 4} = \sqrt{53}$ units	(ii)		\	
		Magnitude of CD = $ CD = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}$ = $\sqrt{(4 - 2)^2 + (4 + 3)^2}$ = $\sqrt{(2)^2 + (7)^2}$ = $\sqrt{4 + 49} = \sqrt{53}$ units			\backslash	
		$=\sqrt{(4-2)^2+(4+3)^2}$				
		$=\sqrt{(2)^2 + (7)^2}$	/)	В (-5, -5)	>D (4, 4)	
		$= \sqrt{4 + 49} = \sqrt{53}$ units	(iii)	\backslash		
		Magnitude of DA = $ DA = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}$ = $\sqrt{(-3 - 4)^2 + (2 - 4)^2}$ = $\sqrt{(-7)^2 + (-2)^2}$		\backslash		
		$= \sqrt{(-3-4)^2 + (2-4)^2}$		\vee	C(2, 2)	
		$= \sqrt{(-7)^{-} + (-2)^{-}}$ = $\sqrt{49 + 4} = \sqrt{53}$ units	(iv)		C (2, 3)	
	Erom (i	i), (ii), (iii) and (iv) $AB = BC = CD = DA$	(IV)			
	i.e.,	its all sides of \Box ABCD are equal.				
	∴.	\square ABCD is a rhombus.				
18.		; (-1, 1); (-1, -2) and (I, m) are the vertices of the square	Find / m and l	ength of the diagonal		
Sol.		vertices of ABCD of a point A (-4, -1), B (-1, -1), C, (-1, -2				
5611	Let the	Magnitude of AC = $ AC = \sqrt{(x_2 - x_1)^2 + (y_2 - y_3)^2}$		A (-4, -1)	D (<i>l,</i> m)	
		Magnitude of AC = $ AC = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}$ = $\sqrt{(-1 + 4)^2 + (-2 + 1)^2}$ = $\sqrt{(3)^2 + (-1)^2}$		$\overline{\mathbf{N}}$		
		$=\sqrt{(3)^2 + (-1)^2}$				
		$=\sqrt{9+1} = \sqrt{10}$ units				
		Magnitude of BD = $ BD = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}$ $\sqrt{10} = \sqrt{(l+1)^2 + (m+1)^2}$ $\sqrt{10} = \sqrt{l^2 + 1 + 2l} + m^2 + l + 2m$				
		$\sqrt{10}$ = $\sqrt{l^2 + 1 + 2l} + m^2 + l + 2m$				
		$10-2 = l^2 + m^2 + 2l + 2m$	(i)			
	Now,					
		AB = CD		B (-1, -1)	C (-1, -2)	
		Magnitude of AB = Magnitude of CD				
		$\frac{\sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}}{\sqrt{(-1 + 4)^2 + (-1 + 1)^2}} = \frac{\sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}}{\sqrt{(l + 1)^2 + (m + 2)^2}}$				
		$\sqrt{(-1+4)^2 + (-1+1)^2}$ $\sqrt{(l+1)^2 + (m+2)^2}$				
		$(+3)^2 + (0)^2 = (l+1)^2 + (m+2)^2$				
		9 = l^2 + 1 + 2 l + m ² + 4 + 4m				
		$9 - 5 = l^2 + m^2 + 4m + 2l$	<i>(</i>)			
	C I I	$4 = l^2 + m^2 + 4m + 2l$	(ii)			
	Subtrac	Subtracting eq. (ii) from (i) $8 - 4 = \lambda^2 + pr^2 + 2\lambda + 2m - \lambda^2 - pr^2 - 4m - 2\lambda$				
			$I - \mathbf{Z}l$			
		4 = -2m m = -2				
	Dutting	m = -2 g the value of m in eq. (ii)				
	Futting	$4 = l^{2} + (-2)^{2} + 4 \times -2 + 2l$				
		$A = l^{2} + A - 8 + 2l$				
		$\gamma_{T} - i = \gamma_{T} - 0 + 2i$				

CBSE-MATHEMATICS

CO-ORDINATE GEOMETRY

C

CBSE-MATHEMATICS CO-ORDINATE GEOMETRY

$$\begin{cases} s = l^{2} + 2l = \Rightarrow l^{2} + 2l - 8 = 0 \\ l^{2} + 4l - 2l - 8 = 0 \Rightarrow l(l + 4) - 2(l + 4) = 0 \\ (l - 2)(l + 4)(l + 4) = 0 \\ (l - 2)(l + 4)(l + 4) = 0 \\ (l - 2)(l + 4)(l +$$

 $\sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2} = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}$ => $\sqrt{(x_2+4)^2+(y-1)^2} = \sqrt{(x-2)^2+(y+3)^2}$ => $x^{2} + 16 + 8x + y^{2} + 1 - 2y = x^{2} + 4 + 4x + y^{2} + 9 + 6y$ => 8x + 4x - 2y - 6y = 13 - 17=> $12x - 8y = -4 \implies 4(3x - 2y) = -4$ => => 3x - 2y + 1 = 0=> 3x - 2y + 1 ... (i) Putting the value of x in equation (i) $3 \times (2 - y) - 2y = -1$ $=> \neq 5x = \neq 7 => y = 7/5$ 6 - 3y - 2y = -1x = 2 - 7/5= 3/5 :. (-2, 2); (x, 8); (6, x) are three concyclic points whose centre is (2, 5). Find all possible value of x and y. 22. Let, B (x, 8), A (-2, 2) and C (6, y) are three concyclic point and P (2, 5) be the centre. Sol. PA = PB = PC[radii of the same circle] :. From 1st and 2nd term $\sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2} = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}$ => $\sqrt{(-2-2)^2 + (2-5)^2} = \sqrt{(x-2)^2 + (8-5)^2}$ => $\sqrt{(-4)^2 + (-3)^2} = \sqrt{x^2 + 4 - 4x + (3)^2}$ => A (-2, 2) $16 + \mathscr{D} = x^2 - 4x + \mathscr{D} + 4$ => $x^2 - 4x + 4 - 16 = 0$ $= x^2 - 4x - 12 = 0$ => => $x^2 - 6x + 2x - 12 = 0$ P (2, 5) x(x-6) + 2(x-6) = 0=> (x-6)(x+2) = 0=> (6, y) Either, x = 6В (х, or *x* = -2 From 1st and last term 10 $\sqrt{(-2-2)^2 + (2-5)^2} = \sqrt{(6-2)^2 + (y-5)^2}$ => $\sqrt{(-4)^2 + (-3)^2} = \sqrt{(4)^2 + y^2 + 25 - 10y}$ => $16 + 9 = 16 - y^2 + 25 - 10y =>$ $y^2 - 10y + 25 - 9 = 0 =>$ $y^2 - 10y + 16 = 0$ => $y^2 - 8y - 2y + 16 = 0$ y(y-8) - 2(y-8) = 0 =>(y-8)(y-2) = 0=> => Either, y = 8or y = 223. Find the co-ordinate of the circumcentre of a Δ whose vertices are (4, 6); (0, 4); (6, 2) Also, find its circumradius. Let, A (4, 6); B (0, 4); C(6, 2) be the vertices of given Δ and P (x, y) be the circumcentre of Δ ABC. Sol. PA = PB = PCFrom 1st & last term A (4, 6) Magnitude of PA = Magnitude of PB $\sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2} = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}$ => $\sqrt{(x-4)^2 + (y-6)^2} = \sqrt{(x-0)^2 + (y-4)^2}$ => $x^{2} + \frac{1}{6} - 8x + \frac{1}{2} + 36 - 12y = \frac{1}{2} + \frac{1}{2} + 16 - 8y$ => 8x + 12y - 8y = 36=> v) 4(2x + y) = 36=> 2x + y = 9=> ... (i) From 2nd & last term C (6, y) Magnitude of PB = Magnitude of PC B (0, 4) $\sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2} = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}$ => $\sqrt{(x-0)^2 + (y-4)^2} = \sqrt{(x-6)^2 + (y-2)^2}$ => $x^{2} + y^{2} + 16 - 8y = x^{2} + 36 - 12x + y^{2} + 4 - 4y$ => 12x - 8y + 4y = 36 + 4 - 16=> => 12x - 4y = 243x - y = 6=> ... (ii) Adding eq. (i) and (ii) 2x + y + 3x - y = 155x = 15'=> x = 3CBSE-MATHEMATICS

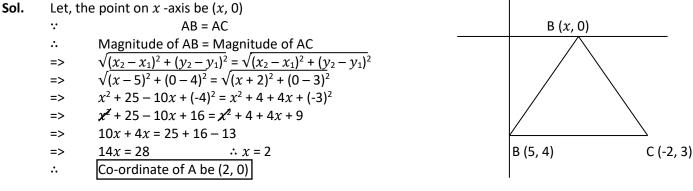
Putting x = 3 in eq (ii) $3 \times 3 - y = 6$ => -v = 6 - 9Ay = A3=> y = 3 \therefore circumcentre of Δ (3, 3) Now, Radius PA = PB = PC = Magnitude of PA $\sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2} = \sqrt{(4 - 3)^2 + (6 - 3)^2}$ = $\sqrt{(1)^2 + (3)^2} = \sqrt{1 + 9} = \sqrt{10}$ units. = 24. Find the co-ordinate of the centre of circle passing through the point (2, 1); (5, 8); (2, -9) also, find the radius. Let A (2, 1); B (5, 8); C (2, -9) be the point of a circle and P (x, y) be the centre. Sol. PA = PB = PC[Radii of same circle) From (i) & last term Magnitude of PA = Magnitude of PB $\sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2} = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}$ => $\sqrt{(x-2)^2 + (y-1)^2} = \sqrt{(x-5)^2 + (y-8)^2}$ => $x^{2} + 4 - 4x + x^{2} + 1 - 2y = x^{2} + 25 - 10x + x^{2} + 64 + 16y$ => -4 + 10x - 2y - 16y = 25 + 64 - 5A(2,1) => 6x - 18y = 84=> $\mathscr{K}(x-3y) = \mathscr{K}414$ => x - 3y = 14=> => x = 14 + 3vP (x, y) From 2nd & last term Magnitude of PB = Magnitude of PC $\sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2} = \sqrt{(x_2 - x_1)^2} + (y_2 - y_1)^2$ => $\sqrt{(x-5)^2 + (y+8)^2} = \sqrt{(x-2)^2 + (y+9)^2}$ B (5, -8) C (2, -9) => $x^{2} + 25 - 10x + y^{2} + 64 + 16y = x^{2} + 4 - 4x + x^{2} + 81 + 18y$ => 10x - 4x - 16y + 18y = 25 + 64 - 85=> => 6x + 2y = 4=> 2(2x + y) = 43x + y = 2=> ... (ii) Putting the value of x in eq (ii) $3 \times (14 + 3y) + y = 2$ 42 + 9y + y = 210y = 2 - 42=> => => 10y = -40Y = -4=> => Putting y = -4 in eq (i) 3x - 4 = 2Centre of circle = (2, -4)=> 3x = 6x = 2 :. => => Now, Radius = PA = PB = PC11 Magnitude of PA = $\sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}$ = $\sqrt{(2 - 2)^2 + (1 + 4)^2}$ $=\sqrt{(0)^2+(5)^2}=\sqrt{25}$ = 5 units 25. If two vertices of an equilateral Δ be (0, 0) and (3, $\sqrt{3}$). Find the third vertex. Here, A (3, $\sqrt{3}$), O (o, o) be the vertices of an equilateral Δ Sol. Let, B(x, y) be the third vertex. $O_{0}(0, 0)$:. Magnitude of OA = Magnitude of OB $\sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2} = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}$ => $\sqrt{(3-0)^2 + (\sqrt{3}-0)^2} = \sqrt{(x-0)^2 + (y-0)^2}$ => $\sqrt{9+3} = \sqrt{x^2 + y^2}$ => => $x^2 + y^2 = 12$... (i) Now, A (3. √3) Magnitude of OB = Magnitude of AB B(x, y) $\sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2} = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}$ => $\sqrt{(x-0)^2 + (y-0)^2} = \sqrt{(3-x)^2 + (\sqrt{3}-y)^2}$ => $x^{2} + y^{2} = 9 + x^{2} - 6x + 3 + y^{2} + 2\sqrt{3}y$ => $6x + 2\sqrt{3}y = 12$ => $2(3x + \sqrt{3}y) = 12'$ =>

 $3x + \sqrt{3}y = 6$ => $\sqrt{3}y = 6 - 3$ => ... (ii) => y = 6 - 3x√3 Putting x = 3 in eq. (ii) Putting y = 6 - 3x in eq. (i) √3 $y = 6 - 3x/\sqrt{3}$ $x^{2} + (6 - 3x/\sqrt{3})^{2} = 12$ $= 6 - 3 \times 3 / \sqrt{3}$ => $x^{2} + 36 + 9x^{2} - 36x/3 = 12$ $= 6 - 9/\sqrt{3}$ => $3x^2 + 36 + 9x^2 - 36x = 36$ $= -3/\sqrt{3}$ => $12x^2 - 36x = 0$ => 12x(x-3) = 0= x - 3 = 0 \therefore 'x = 3 \therefore Third vertices be (3, - $\sqrt{3}$)... => 26. Find the co-ordinate of the circum-centre of Δ ABC with vertices at A (3, 0); B (-1, -6) and C (4, -1). Find the circum radius. Sol. Let, A (3, 0); B (-1, -6) and C (4, -1) are the vertices of a \triangle ABC and P (x, y) be the centre. PA = PB = PCA (3, 0) From 1st & 2nd term Magnitude of PA = Magnitude of PB $\sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2} = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}$ => $\sqrt{(x-3)^2 + (y-0)^2} = \sqrt{(x+1)^2 + (y+6)^2}$ => $x^{2} + 9 - 6x + y^{2} = x^{2} + 1 + 2x + y^{2} + 36 + 12y$ P(xL => y) 6x + 2x + 12y = 9 - 36 - 1=> 8x + 12y = -28=> => $\mathscr{A}(2x + 3y) = -2/87$ 2x + 3y = -7B (-1, -6) C(4,-1) => ... (i) Now. Magnitude of PB = Magnitude of PC $\sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2} = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}$ => $\sqrt{(x+1)^2 + (y+6)^2} = \sqrt{(x-3)^2 + (y-0)^2}$ => $x^{2} + x + 2x + y^{2} + 36 + 12y = x^{2} + 16 - 8x + x^{2} + x + 2y$ => 2x + 8x + 12y - 2y = -36 + 16=> 10x + 10y = -20=> 10(x + y) = -20x + y = -2=> => x = -2 - y=> ... (ii) Putting y = -3 in eq. (ii) Putting x in eq (i) x = -2 + 3 = +1=> 2(-2-y) + 3y = -7=> -4 - 2y + 3y = -7 \therefore circumcentre = (1, -3) y = -7 + 4=> y = -3=> Now, Radius = PA = PB = PC = Magnitude of PA $\sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2} = \sqrt{(y_2 - 3)^2 + (-5/2 - 0)^2}$ => $\sqrt{(+1+3)^2 + (-3-0)^2}$ => $\sqrt{(4)^2 + (-3)^2}$ $=> \sqrt{6} + 9 = 5$ units =>

27. Find co-ordinate of the centre of the circle passing through the point (1, 2); (3, 4) and (5, -6). Also find the radius of this circle.

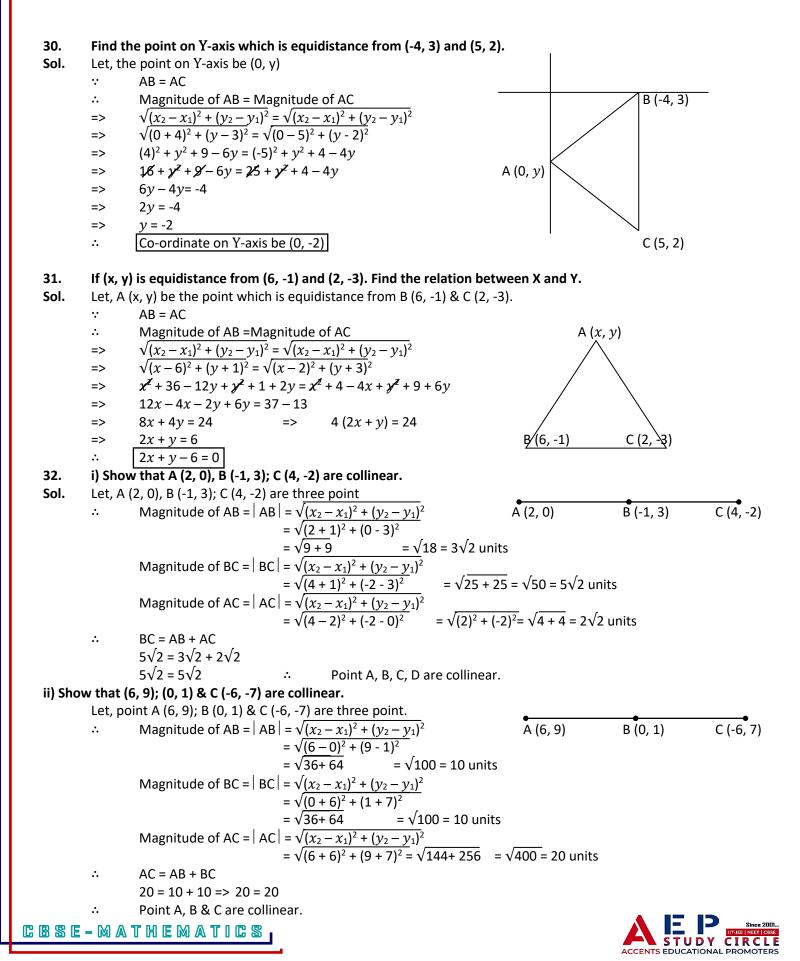
Sol. Let, A (1, 2); B (3, 4) and C (5, -6) be the vertices of circle and P (x, y) be the centre.

C B S E - M A T H E M A T I C S _I


PA = PB = PC[Radii of some circle] From 1st & 2nd term A(1,2) Magnitude of PA = Magnitude of PB $\sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2} = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}$ => $\sqrt{(x-1)^2 + (y-2)^2} = \sqrt{(-3+x)^2 + (y+4)^2}$ => $x^{2} + 1 - 2x + y^{2} + 4 - 4y = x^{2} + 9 - 6x + y^{2} + 16 + 8y$ P(x, y)=> -2x + 6x - 4y - 8y = 25 - 5 => 4x - 4y = 20=> 4(x - 3y) = 20Ć (5, -6) => B (3, x - 3y = 5... (i) => Now, $\sqrt{(x-3)^2 + (y+4)^2} = \sqrt{(x-5)^2 + (y+6)^2}$ => $x^{2} + 9 - 6x + y^{2} + 16 + 8y = x^{2} + 25 - 10x + y^{2} + 36 + 12y$ => 4x + 10x + 8y - 12y = 61 - 25 =>/ 4x - 4y = 36 => 4(x - y) = 36=> x - y = 9... (ii) => Subtracting eq. (i) from (ii) Putting y = 2 in eq. (ii) $\chi - y - \chi + 3y = 9 - 5$ x - 2 = 9=> 2y = 4x = 9 + 2=> y = 2x = 11=> \therefore Co-ordinate of P = (11, 2) Radius circle = PA = PB = PC Now, Magnitude of PA = $\sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}$ = $\sqrt{(11 - 1)^2 + (2 - 2)^2}$ = $\sqrt{(10)^2 + (0)^2}$ = $\sqrt{100}$ = 10 units ...

28. Find the co-ordinate of point whose abscissa is 10 and which is at the distance of 10 units from (2, -3).

Sol.


Let the point be (10, y) and other point be (2, -3). Also, AB = 10 units $\therefore \quad \text{Magnitude of AB} = | AB | = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}$ $10 = \sqrt{(2 - 10)^2 + (-3 - y)^2} \Rightarrow \quad 100 = (-8)^2 + (-3 - y)^2$ $100 = 64 + 9 + y^2 + 6y \Rightarrow y^2 + 6y = 100 - 73$ $\Rightarrow y^2 + 6y - 27 \Rightarrow y^2 + 9y - 3y - 17 = 0 \Rightarrow (y + 9) - 3(y + 9) = 0$ (y - 3)(y + 9) = 0Either, y - 3 = 0 $\therefore \quad y = 3$ y = -9

29. Find the point on x – axis which is equidistance from (5, 4); (-2, 3).

(iii)Show that (-1, -1); (+2, +3) & (8, 11) are collinear. Let, A (-1, -1); B (+2, +3) & C (8, 11) Magnitude of AB = $|AB| = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}$ $=\sqrt{(2+1)^2+(3+1)^2}$ $=\sqrt{(3)^2 + (4)^2} = \sqrt{9 + 16} = \sqrt{25} = 5$ units Magnitude of BC = $|BC| = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}$ $=\sqrt{(8-2)^2+(11-3)^2}$ $=\sqrt{(6)^2 + (8)^2} = \sqrt{36 + 64} = \sqrt{100} = 10$ units Magnitude of AC = $|AC| = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}$ $=\sqrt{(11+1)^2+(8+1)^2}$ $=\sqrt{12^2+9^2} = \sqrt{144+81} = \sqrt{225} = 15$ units :. AC = AB + BC15 = 5 + 10 = 15Point AB & C are collinear. ... (iv) Show that (1, 1); (-2, 7) & (3, -3) are collinear. Let, A (1, 1); B (-2, 7) & C (3, -3) are three points. Magnitude of AB = $|AB| = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}$ B (-2, 7) A (1, 1) ... C (3, -3) $=\sqrt{(1+2)^2+(1-7)^2}$ $=\sqrt{(3)^2 + (-6)^2}$ $=\sqrt{9+36} = \sqrt{45} = 3\sqrt{5}$ units Magnitude of BC = $|BC| = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2} = \sqrt{(3 + 2)^2 + (-3 - 7)^2}$ $=\sqrt{(5)^2 + (-10)^2}$ $=\sqrt{25+100}=\sqrt{125}=5\sqrt{5}$ units Magnitude of AC = $|AC| = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}$ $=\sqrt{(3-1)^2 + (-3-1)^2}$ $=\sqrt{(2)^2 + (-4)^2}$ $=\sqrt{4+16} = \sqrt{20} = 2\sqrt{5}$ units *:*. BC = AB + AC $5\sqrt{5} = 3\sqrt{5} + 2\sqrt{5}$ $5\sqrt{5} = 5\sqrt{5}$ ∴ Point A, B & C are collinear. (v) Show that (2, 0); (11, 6) & (-4, -4) are collinear. Let, A (2, 0); B (11, 6) & C (-4, -4) are three points. Magnitude of AB = $|AB| = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}$ B (11, 6) A (2, 0) C (-4, -4) $=\sqrt{(11-2)^2+(6-0)^2}$ $=\sqrt{(9)^2+(6)^2}=\sqrt{81+36}=\sqrt{117}=3\sqrt{13}$ Magnitude of BC = $|BC| = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}$:. $=\sqrt{(-4-11)^2+(-4-6)^2}=\sqrt{(-15)^2+(-10)^2}$ $=\sqrt{225+100}=\sqrt{325}=5\sqrt{13}$ Magnitude of AC = $|AC| = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}$... $=\sqrt{(-4-2)^2+(-4-0)^2}$ $=\sqrt{(-6)^2+(-4)^2}$ $=\sqrt{36+16} = \sqrt{52} = 2\sqrt{13}$ units Point A, B & C are collinear. (vi) Show that (1, 0); (3, 5) and (6, 3) are collinear. Let, A (1, 0); B (3, 5) and C (6, 9) are three points. Magnitude of AB = $|AB| = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}$... $=\sqrt{(2)^2+(5)^2}$ $=\sqrt{4}+25=\sqrt{29}$ $=\sqrt{(3-1)^2}+(5-0)^2$ Magnitude of BC = $|BC| = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}$... $=\sqrt{(3)^2 + (4)^2} = \sqrt{9 + 16} = \sqrt{25} = 5$ units $=\sqrt{(6-3)^2+(9-5)^2}$:. Magnitude of AC = $|AC| = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}$ $=\sqrt{(5)^2+(9)^2}$ $=\sqrt{25+81}=\sqrt{106}$ $=\sqrt{(6-1)^2+(9-0)^2}$ Point A, B & C are not collinear. :. CBSE-MATHEMATICS

CBSE-MATHEMATICS CO-ORDINATE GEOMETRY

33. If two vertices of square are (5, 4) and (-1, 6). Find the co-ordinate ordinate of remaining vertices. Sol. Let, the co-ordinate of vertices of \Box ABCD be A (5, 4); C (-1, 6) Also, let, the vertices of B = (x, y) & D(x, y)A (5.4) D(x, y)Magnitude of BC = Magnitude of AB $\sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2} = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}$ => $\sqrt{(x+1)^2 + (y-6)^2} = \sqrt{(x-5)^2 + (y-4)^2}$ => $\sqrt{x^2 + 1 + 2x + y^2 + 36 - 12y} = \sqrt{x^2 + 25 - 10x + y^2 + 16 - 8y}$ => $x^{2} + 37 + y^{2} - 12y + 2x = x^{2} + y^{2} + 41 - 10x - 8y$ => 10x + 2x - 12y + 8y = 41 - 37=> 12x - 4y = 4=> 3x - y = 1<u>C (-1, 6)</u> => $B(\overline{x,y})$ => v = 3x - 1Now, $AC^2 = AB^2 + BC^2$ [By Pythagoras theorem] $(5+1)^2 + (4-6)^2 = (x-5)^2 + (y-4)^2 + (x+1)^2 + (y-6)^2$ => $36 + 4 = x^2 + 25 - 10x + y^2 + 16 - 8y + x^2 + 1 + 2x + y^2 + 36 - 12y$ => $4 = 2x^2 + 2y^2 - 8x - 20y + 42$ => $-38 = 2x^{2} + 2(3x - 1)^{2} - 8x - 20(3x - 1)$ => $-38 = 2x^{2} + 2[9x^{2} + 1 - 6x] - 8x - 60x + 20$ => => $-58 = 2x^{2} + 18x^{2} + 2 - 12x - 8x - 60x$ $-60 = 20x^2 - 80x$ => $-603 = 20(x^2 - 4x) =>$ $-3 = x^2 - 4x$ => $x^2 - 4x + 3 = 0 =>$ $x^2 - 3x - x + 3 = 0$ => (x-3)(x-1) = 0=> Either, or. x - 3 = 0*x* = 3 x - 1 = 0=> If *x* = 3 :. y = 3 - 1 = 2x = 1:. y = 9 - 1 = 8 \therefore Co-ordinate of B = (3, 8) or (1, 2)

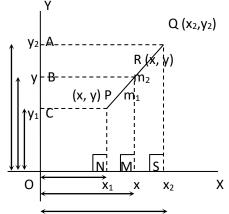
INTERNAL DIVISIONS: A point R between P and Q on line PQ is said to divide PQ internally in the ratio of $m_1 = m_2$ if

$\frac{PR}{RQ} = \frac{m_1}{m_2}$

FORMULA FOR INTERNAL DIVISION:

To find co-ordinates of R this divides internally the straight line joining the given point in a given point in a given ratio.

Let P (x_1, y_1) and Q (x_2, y_2) be the given points. Also let R (x, y) divides internally PQ in the ratio of $m_1 : m_2$. We draw PN, RM and QS are \perp ar on the same line OX.


∴ They are parallel to each other.

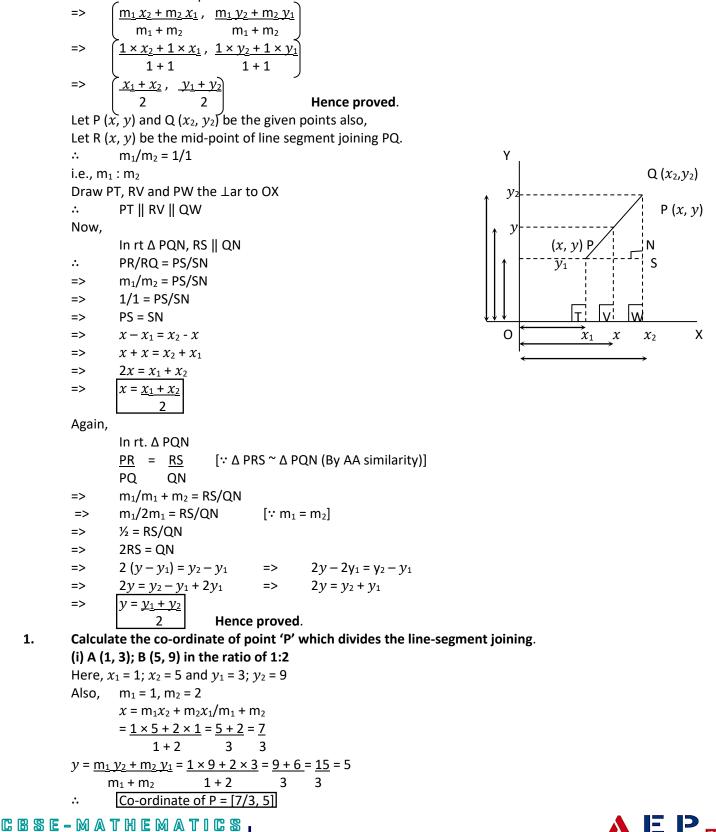
Now, PN || RM || QS and PQ and NS are the transversal.

$$\therefore \quad \frac{PR}{RQ} = \frac{NM}{MS} \\ => \quad m_1/m_2 = OM - ON/OS - ON \\ => \quad m_1/m_2 = x - x_1/x_2 - x \\ => \quad m_1 x_2 = m_1 x = m_2 x - m_2 x_1 \\ => \quad m_2 x + m_1 x = m_1 x_2 + m_2 x_1 \\ => \quad x (m_2 + m_1) = m_1 x_2 + m_2 x_1 \\ => \quad x = \frac{m_1 x_2 + m_2 x_1}{m_1 + m_2}$$

||ly, we can prove that $y = \underline{m_1 y_2} + \underline{m_2 y_1}$

CBSE-MATHEMATICS, $m_1 + m_2$

CBSE-MATHEMATICS CO-ORDINATE GEOMETRY


Mid-Point Formula:

:.

1.

Corollary: Show that the mid – point M of a line segment with end point P(x, y), Q (x_2 , y_2) are $(x_1 + x_2, y_1 + y_2)$

Let, M be the midpoint of the line-segment joining P (x, y) and Q (x_2 , y_2). Here, M divides PQ in the ratio of 1:1 Co – ordinate of mid-point M are..

(ii) A (-4, 6); B (3, -5) in the ratio of 3:2 Here $x_1 = -4$; $x_2 = 5$ and $y_1 = 6$; $y_2 = -5$ Co-ordinate of P = $m_1 x_2 + m_2 x_1$, $m_1 y_2 + m_2 y_1$ $m_1 + m_2$ $m_1 + m_2$ $\underline{3 \times 3 + 2 \times -4}, \quad \underline{3 \times -5 + 2 \times 6}$ 3 + 2 3 + 2 <u>9 + -8</u> , <u>-15 + 12</u> = 5 5 [1/5, -3/5] = Co-ordinate of P = [1/5, -3/5]:. (iii) A (0, 3); B (4, -1) in the ratio of 1:2 Here, $x_1 = 0$; $x_2 = 4$ and $y_1 = 3$; $y_2 = -1$ $x = m_1 x_2 + m_2 x_1$ $m_1 + m_2$ $= \underline{1 \times 4} + \underline{2 \times 0}$ 1 + 2= 4 + 0 = 43 3 $y = m_1 y_2 + m_2 y_1$ $m_1 + m_2$ $= 1 \times -1 + 2 \times 3$ 1+2 = <u>-1 + 6</u> = +<u>5</u> 3 3 Co-ordinate of P = [4/2, 5/3] :. (iv) A (1, -3); B (-5, 9) in the ratio of 2:15 Here, $x_1 = 1$; $x_2 = -5$ and $y_1 = -3$; $y_2 = 9$ Co-ordinate of P = $m_1 x_2 + m_2 x_1$, $m_1 y_2 + m_2 y_1$ m₁ + m₂ $m_1 + m_2$ $2 \times -5 + 15 \times 1$, $2 \times 9 + 15 \times -3$ = 2 + 15 2 + 15<u>-10 + 15</u> , <u>18 - 45</u> = 17 17 [5/17, 27/17] Co-ordinate of P = [5/17, 27/17] ...

(v) A (5, -2); B (1, 6) in the ratio of 3:1

Here, $x_1 = 5$; $x_2 = 9$ and $y_1 = -2$; $y_2 = 6$

Co-ordinate of P =
$$\underbrace{\begin{array}{c} m_1 x_2 + m_2 x_1 \\ m_1 + m_2 \\ 3 \times 9 + 1 \times 5 \\ 3 + 1 \\ \end{array}}_{= \left(\begin{array}{c} 27 + 5 \\ 4 \\ \end{array}, \begin{array}{c} \frac{18 - 2}{4} \\ 18 \\ \end{array} \right)}$$

= $\underbrace{\begin{array}{c} 27 + 5 \\ 18 - 2 \\ 4 \\ \end{array}}_{= \left(\begin{array}{c} 32/4, 16/4 \right] \\ = \\ 8, 4 \\ \end{array}}$
∴ $\underbrace{\begin{array}{c} \text{Co-ordinate of P = [8, 4]} \end{array}}$

Since 2001... STUDY CIRCLE ACCENTS EDUCATIONAL PROMOTERS

(vii) A (2, 1); B (5, 8) in the ratio of 1:2

Here, $x_1 = 2$; $x_2 = 5$ and $y_1 = 1$; $y_2 = 8$ also, $m_1 = 1$; $m_2 = 2$ Co-ordinate of P = $\underline{m_1 x_2 + m_2 x_1}, \ \underline{m_1 y_2 + m_2 y_1}$ $m_1 + m_2$ $m_1 + m_2$ = $\underline{1 \times 5 + 2 \times 2}, \quad \underline{1 \times 8 + 2 \times 1}$ 2 + 1 2 + 1 (5+4, 8-2)= 3 3 [9/3, 10/3] = [3, 10/3] = Co-ordinate of P = [3, 10/4]:.

2. Let A (-3, -4) and B (6, 5) be two given points in a plane. Find the co-ordinate of the point which divides AB in the ratio of 5:4.

Sol. Here
$$x_1 = 3$$
; $x_2 = 6$ and $y_1 = -4$; $y_2 = 5$ and also, $m_1 = 5$; $m_2 = 4$
Co-ordinate of $Z = \begin{pmatrix} m_1 x_2 + m_2 x_1, & m_1 y_2 + m_2 y_1 \\ m_1 + m_2 & m_1 + m_2 \end{pmatrix}$

$$= \begin{pmatrix} 5 \times 6 + 4 \times -3 \\ 5 + 4 & 5 + 4 \end{pmatrix}$$

$$= \begin{pmatrix} 30 - 12 \\ 9 & 9 \end{pmatrix}$$

$$= [18/9, 9/9]$$

$$= [2, 1]$$

$$\therefore \quad Co-ordinate of Z = [2, 1]$$

3. Let P (3, -4) and Q (-2, 6) be two given point in a plane. Find the co-ordinate of the point which divides PQ in the ratio of 7:3.

Sol. Here,
$$x_1 = 3$$
; $x_2 = -2$ and $y_1 = -4$; $y_2 = 6$
Also, $m_1 = 7$; $m_2 = 3$
Co-ordinate of N = $\begin{pmatrix} m_1 x_2 + m_2 x_1, & m_1 y_2 + m_2 y_1 \\ m_1 + m_2, & m_1 + m_2 \end{pmatrix}$
 $= \begin{pmatrix} 7x - 2 + 3x - 3, & 7x + 6 + 3x - 4 \\ 7 + 3 & 7 + 3 \end{pmatrix}$
 $= \begin{pmatrix} -14 + 9, & 42 - 12 \\ 10 & 10 \end{pmatrix}$
 $= [1/2, 3]$
 \therefore [Co-ordinate of N = $[-1/2, 3]$]
4. In what ratio is the line-segment joining (2, -3); (5, 6) divides by x - axis.
Sol. Let, x-axis divided P(2, -3) and B (5, 6) in ratio K:1
By section formula,
Co-ordinate of Z = $\begin{pmatrix} m_3 x_2 + m_2 x_1, & m_3 y_2 + m_2 y_1 \\ m_1 + m_2 & m_1 + m_2 \end{pmatrix}$
 $= \begin{pmatrix} 5K + 2, & 6K - 3 \\ 7 + 3 & 7 + 3 \end{pmatrix}$
Since Z lies on x-axis
 $\therefore & \frac{6K - 3 = 0 \\ K + 1 \\ \Rightarrow & 6K - 3 = 0 \\ \Rightarrow & 6K = 3 \qquad \Rightarrow \qquad K = \frac{1}{2}$ \therefore Required ratio = $[\frac{1}{2}, 1] = (1:2)$

CBSE-MATHEMATICS

CBSE-MATHEMATICS CO-ORDINATE GEOMETRY

5. In what ratio is the line joining (2, -4) and (-3, 6) divided by y-axis. Sol. Let y- axis divides A (2, -4) and (-3, 6) in ratio K:1 A (2, -4) Z (0,) B (-3, 6) By section formula, Co-ordinate of Z = $\begin{pmatrix} \underline{m_1 x_2 + m_2 x_1}, & \underline{m_1 y_2 + m_2 y_1} \\ m_1 + m_2 & m_1 + m_2 \end{pmatrix}$ = $\begin{pmatrix} -3K + 2, & 6K - 4 \\ K + 1 & K + 1 \end{pmatrix}$ Since Z lies on y-axis :. -3K + 2 = 0 K + 1 -3K + 2 = 0=> 3K = 2 => K = 2/3=> Required ratio = [2/3, 1] = (2:3) ... 6. In what ratio is the line-segment joining A (6, 3); B (-2, -5) divided by x-axis. A (6, 3) Z (0,) B (-2, -5) Sol. Let x-axis divides A (6, 3) & B (-2, -5) in ratio K:1 By section formula, Co-ordinate of Z = $\begin{pmatrix} \underline{m_1 x_2 + m_2 x_1}, & \underline{m_1 y_2 + m_2 y_1} \\ m_1 + m_2 & m_1 + m_2 \end{pmatrix}$ = $\begin{pmatrix} -2K + 6, & -5K - 3 \\ K + 1 & K + 1 \end{pmatrix}$ Since Z lies on x-axis -5K + 3 = 0:. K + 1 -5K + 3 = 0=> => 5K = 3 5K = 3/5=> Required ratio = [3/5, 1] = (3:5):. 7. Find the ratio in which y-axis divides the joining of A (-4, 10); B (7, -1). A (-4, 10) Z (0,) B (7, -1) Sol. Let y-axis divides A (-4, 10); B (7, -1) in ratio K:1 By section formula, Co-ordinate of Z = $\begin{pmatrix} \underline{m_1 x_2 + m_2 x_1}, & \underline{m_1 y_2 + m_2 y_1} \\ m_1 + m_2 & m_1 + m_2 \end{pmatrix}$ = $\begin{pmatrix} \underline{7K - 4}, & -\underline{K - 10} \\ K + 1 & K + 1 \end{pmatrix}$ Since Z lies on y-axis <u>7K - 3</u> = 0 :. K + 1 7K - 4 = 0=> 7K = 4 => => K = 4/7:. Required ratio = [4/7, 1] = (4:7)In what ratio does the point (1, a) divides the join of (-1, 4) and (4, -1). Also find the value of a. 8. A (-4, 10) Z (0,) B (7, -1) Sol. Let x-axis divides P (4, -1) & Q (4, -1) in ratio K:1 Co-ordinate of Z = $\underline{m_1 x_2 + m_2 x_1}$, $\underline{m_1 y_2 + m_2 y_1}$ $m_1 + m_2$ $m_1 + m_2$ $= \left(\underbrace{\frac{4K-1}{K+1}}_{K+1}, -\frac{K+4}{K+1} \right)^{111}$:. <u>7K - 3</u> = 1 K + 1 CBSE-MATHEMATICS

4K - 1 = K + 1 3K = 2 => K = 2/3 => => Putting K = 2/3-K + 4 = a K + 1 $\frac{2/3 + 4}{2/3 + 1} = a => 2/3 + 4 = 2/3 a + a$ $\frac{2}{3 + 1} => -2 + 12/3 = 2a + 3a/3$ $=> 2 \frac{10}{3} = \frac{5}{3} a/3$ <u>-2/3 + 4</u> = a =>a = 2 In what ratio does the point (a, 6) divides the join of (-4, 3) & (2, 8) also find the value of a. 9. Sol. Let x-axis divides P (-4, 3) & Q (2, 8) in ratio K:1 Co-ordinate of Z = $(\underline{m_1 x_2 + m_2 x_1}, \underline{m_1 y_2 + m_2 y_1})$ $m_1 + m_2$ $m_1 + m_2$ $= \left(\frac{2K - 4}{K + 1}, \frac{8K + 3}{K + 1}\right)$ (-4, <u>3)</u> Z (a, 6) (2, 8) P K:1 Q 8K + 3 = 6:. K + 1 8K + 3 = 6K + 6 2K = 3 K = 3/2=> => => Putting K = 3/22K - 4 = a K + 1 $2 \times 3/2 - 4 = a \implies 6/2 - 4/3 + 2/2 = a$ 3/2 + 1 <u>6 – 8</u> = a 2/<u>5</u> 2 => <u>2/2</u> = a => 5/2 -2 = 5a => a = -2/5=> 10. In what ratio the join of (4, 3) and (2, -6) divided by x-axis also find the co-ordinate of point of intersection. Sol. Let x-axis divide P (4, 3) and Q (2, -6) in ratio K:1 P (4, 3) Z (,0) Q (2, -6) By section formula, Co-ordinate of Z = $\begin{pmatrix} \underline{m_1 x_2 + m_2 x_1}, & \underline{m_1 y_2 + m_2 y_1} \\ m_1 + m_2 & m_1 + m_2 \end{pmatrix}$ = $\begin{pmatrix} \underline{2K + 4}, & \underline{-6K + 3} \\ K + 1 & K + 1 \end{pmatrix}$

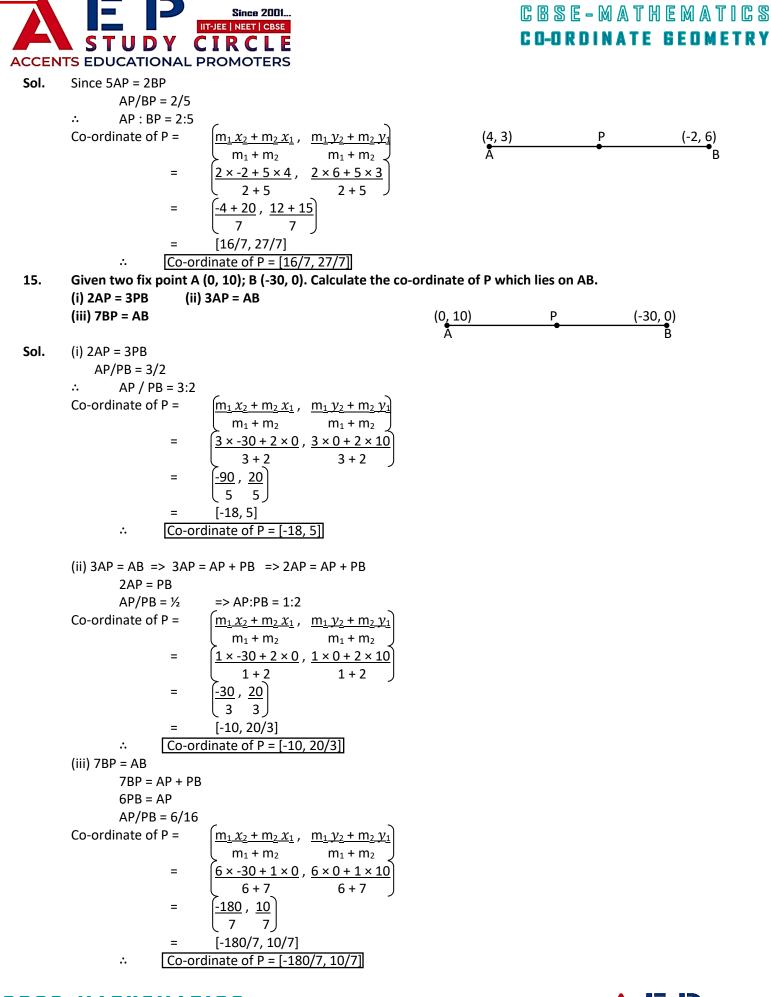
Since Z lies on x-axis

- :. -6K + 3 = 0K + 1 -6K + 3 = 0=> => $K = \frac{1}{2}$:. Required ratio = $[\frac{1}{2}; 1] = (1:2)$ Co-ordinate of Z = (2K + 4, 0):. (K+1) $= \left[\frac{2 \times \frac{1}{2} + 4}{\frac{1}{2} + 1} \right]$ $= \left[\frac{5 \times 2}{2}, 0 \right]$ 1+2= [10/3, 0]
- 11. Find the ratio in which the join of (-4, 6) and (3, 0) divided by y-axis. Also find the co-ordinate of the point of the intersection.
- Sol. Let y-axis divides P(-4, 6) & Q (3, 0) in ratio K:1

12.

Sol.

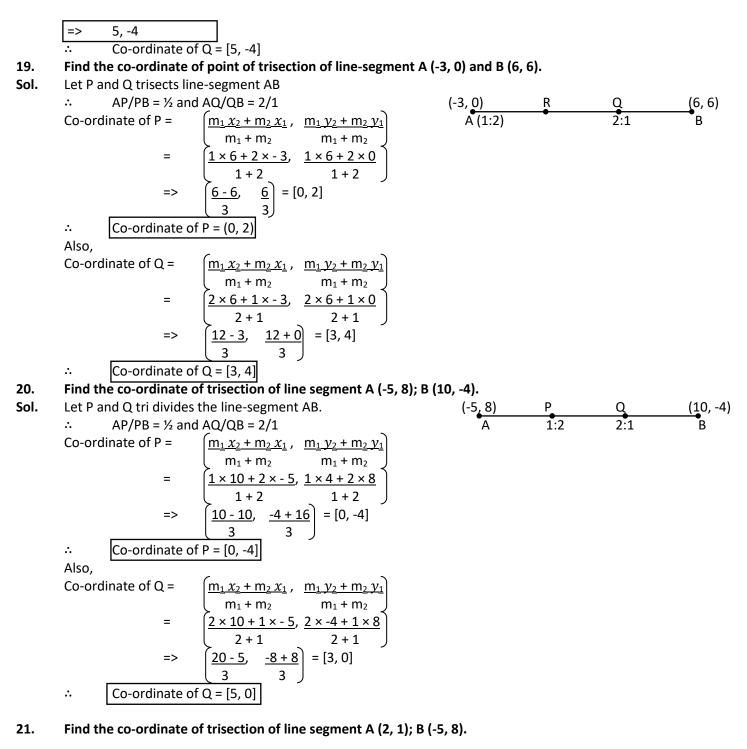
13.


Sol.

14.

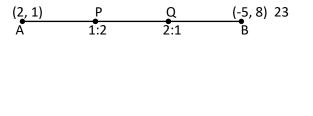
Co-ordinate of Z = $\underline{m_1 x_2 + m_2 x_1}$, $\underline{m_1 y_2 + m_2 y_1}$ $m_1 + m_2$ $m_1 + m_2$ $= \left(\frac{3K-4}{2}, \frac{K\times0+6}{2} \right)$ (K+1 K+1) Since Z lies on x-axis <u>3K - 4</u> = 0 :. K + 1 3K - 4 = 0 => 3K = 4 => K = 4/3=> :. Required ratio = [4/3, 1]= (4:3) Co-ordinate of Z = $\left[0, \frac{0+6}{2}\right]$:. L K + 1∕ $= \begin{bmatrix} 0, & \underline{6} \\ 4/3 + 1 \end{bmatrix}$ $= \begin{bmatrix} 0, & \underline{6} \\ 4 + 3/3 \end{bmatrix}$ = [0, 18/7]In what ratio does the point $(\frac{1}{2}, 6)$ divides the line joining (3, 5) and (-7, 9). Let P (3, 5) & Q (-7, 9) divides into K:1 Co-ordinate of Z = $(m_1 x_2 + m_2 x_1, m_1 y_2 + m_2 y_1)$ $m_1 + m_2$ $m_1 + m_2$ Z (<u>1</u>/2, 6) Q (-7,9) P(3, 5) $\left(-7K+3, 9K+5\right)$ = (K+1 K+1 => -7K + 3 = ½ K + 1 => (-7K + 3)2 = K + 1 <u>9K + 5</u> = 6 => -14 K + 6 = K + 1 K + 1 => 15 K = 5 9K + 5 = 6K + 6=> K = 1/3 3K = 1 K = 1/3 \therefore Required ratio = [1/3:1] = [1:3] Find the ratio in which P (a, 1) divides the join of (-4, 4) and (6, -1) and hence, find the value of a. Let divides the line segment N (-4, 4) and Q (6, -1) in ratio K:1 Co-ordinate of P = $(m_1 x_2 + m_2 x_1)$, $m_1 y_2 + m_2 y_1$ P (a, 1) A (-4, 4) K:1 Q (6, -1) $m_1 + m_2$ $m_1 + m_2$ = (6K - 4), -K + 4K+1 K+1 = -K + 4 = 1K + 1 => -K + 4 = K + 1 => 2K = 3 => K = 3/2 Putting K = 3/26K – 4 = a => 6K – 4 = a K + a =>**3** 🕉 × 3/2 – 4 = a × 3/2 + a K + 1 => 9 – 4 = 3a + 2a / 2 => 5 = 5a/2=>a = 2P is a point on line-segment A (4, $\overline{3}$) and B (-2, 6) such that 5AP = 2BP. Find co-ordinate of P.

CBSE-MATHEMATICS



CBSE-MATHEMATICS CO-ORDINATE GEOMETRY

16. A (2, 5); B (-1, 2); C (5, 8) are the co-ordinate of the vertices of \triangle ABC. Point P & Q lies on AB & AC such that AP/BP = AQ/QC = 1/21. Calculate the co-ordinate of P & Q A (2, 5) 2. Show that PQ = 1/3 BC(1, 2) (i) $x = \underline{m_1 x_2 + m_2 x_1} = \underline{-1 + 4} = 1$ (1:2)Ρ $m_1 + m_2$ 3 Q $y = \underline{m_1 y_2} + \underline{m_2 y_1} = \underline{2 + 10} = \underline{12} = 4$ (1 (3, 6) 3 $m_1 + m_2$ 3 Co-ordinate of Q = $\underline{m_1 x_2 + m_2 x_1}, \ \underline{m_1 y_2 + m_2 y_1}$ B (-1, 2) C (5, 8) $m_1 + m_2$ $m_1 + m_2$ 5+4, 8+10= 3 3 <u>9,18</u> 3 3 [3, 6] Co-ordinate of Q = [3, 6] :. BC = $\sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}$ = $\sqrt{(5 + 1)^2} + (8 - 2)^2$ = $\sqrt{36 + 36}$ (ii) By distance formula. $PQ = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}$ $=\sqrt{(3-1)^2+(6-4)^2}$ $=\sqrt{4+4}$ $= 6\sqrt{2}$ $= 2\sqrt{2}$ L.H.S. = PQ = $2\sqrt{2}$ R.H.S. = 1/3 BC $= 1/3 \times 6\sqrt{2} = 2\sqrt{2}$ L.H.S. = R.H.S. Hence proved 17. Find the co-ordinate of mid-point of line-joining (-5, 4) & (7, 8). (7, 8) Sol. Mid-point of AB = $x = x_1 + x_2$ (-5*,*4) 2 => <u>-5 + 7</u> = 2/2 = 1 And $y = \underline{y_1 + y_2} = \underline{4 + 8} = \underline{12} = 6$ 2 2 2 2 Co-ordinate of mid-point of AB = (1,6)*.*. 18. Find the co-ordinate of point of tri-section of line segment joining (3, 2); (6, -7). Let P and Q trisect line-segment AB. Sol. $AP/PB = \frac{1}{2}$:. also, AQ/QB = 2/1Co-ordinate of P = $\underline{m_1 x_2 + m_2 x_1}, \ \underline{m_1 y_2 + m_2 y_1}$ $m_1 + m_2$ m1 + m2 1 × 6 + 2 <u>× 3</u>, $1 \times -7 + 2 \times 2$ = 1+2 1+2 6 + 6, -7 + 4 => = [12/3, -3/3] 3 3 4, -1 => Co-ordinate of P = [4, -1]... Co-ordinate of Q = $\underline{m_1 x_2 + m_2 x_1}$, $\underline{m_1 y_2 + m_2 y_1}$ $m_1 + m_2$ $m_1 + m_2$ $2 \times 6 + 1 \times 3$, $2 \times -7 + 1 \times 2$ 2 + 1 2 + 1 = [15/3, -12/3] <u>12 + 3</u>, <u>-14 +</u> =>


Sol. Let P and Q trisect the line segment AB.

$$\therefore \quad AP/PB = \frac{1}{2} \quad and AQ/QB = \frac{2}{1}$$
Co-ordinate of P =
$$\begin{pmatrix} \underline{m_1 x_2 + m_2 x_1}, & \underline{m_1 y_2 + m_2 y_1} \\ m_1 + m_2 & m_1 + m_2 \end{pmatrix}$$

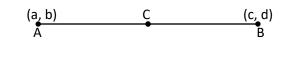
$$= \begin{pmatrix} \underline{1 \times -5 + 2 \times 2}, & \underline{1 \times 8 + 2 \times 1} \\ 1 + 2 & 1 + 2 \end{pmatrix}$$

$$= > \quad \begin{pmatrix} \underline{-5 + 4}, & \underline{8 + 2} \\ 3 & 3 \end{pmatrix}$$

$$\therefore \quad Co-ordinate of P = [-1/3, 10/3]$$
C B S E = M A T H E M A T I C S

CBSE-MATHEMATICS CO-ORDINATE GEOMETRY

22. 'C' divides A (a, b) and B (c, d) in the ratio of 3:2. Find the co-ordinates of C.


Sol. Here, $x_1 = a$, $x_2 = C$ and $y_1 = b$ & $y_2 = d$ $m_1 = 3$ and $m_2 = 2$ Co-ordinate of C = $\begin{pmatrix} \underline{m_1 x_2 + m_2 x_1}, & \underline{m_1 y_2 + m_2 y_1} \\ m_1 + m_2 & m_1 + m_2 \end{pmatrix}$ = $\begin{pmatrix} \underline{3 \times c + 2 \times a}, & \underline{3 \times d + 2 \times b} \\ 3 + 2 & 3 + 2 \end{pmatrix}$ => $\begin{pmatrix} \underline{3c + 2a}, & \underline{3d + 2b} \\ 5 & 5 \end{pmatrix}$

> $= \sqrt{(-3-1)^2 + (4-1)^2}$ = (-4)² + (3)² = 5 units

Co-ordinates of $C = \beta c + 2a$, 3d + 2b

5

5

- 23. A (-3, 4) ; B (3, -1) and C (-2, 4) are the vertices of Δ ABC. Find the length of line segment AP where 'P' lies on BC such that BP/PC = 2/3.
- Sol. Since, BP/PC = 2/3 A (-3, 4) BP : PC = 2 : 3... Co-ordinate of P = $\underline{m_1 x_2 + m_2 x_1}, \ \underline{m_1 y_2 + m_2 y_1}$ $m_1 + m_2$ $m_1 + m_2$ $\underline{2 \times -2 + 3 \times 3}, \quad \underline{2 \times 4 + 3 \times -1}$ = 2 + 3 2 + 3 -4+9, 8-3 = [1, 1] => B (3, -1) P(1,1) C(-2,4) Length of AP = $\sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}$

Hence, Co-ordinate of
$$P = [1, 1]$$
 And Length of $AP = 4$ units.
If the co-ordinate of mid-point of side of A Δ be (3, -2), (-3, 1) and (4, -3). Find the co-ordinates of its vertex.

Sol. Let A (3, -2); B (-3, 1) and C (4, -3) be the co-ordinate of the vertices of Δ ABC. Also, let (3, -2); Q (-3, 1) & (4, -3) be the mid-point of AB, BC & AC respectively.

$$\therefore \quad 3 = \frac{x_1 + x_2}{2} \implies x_1 + x_2 = 6 \quad ... (i) [By Mid-point]$$

$$-2 = \underline{y_1 + y_2}$$
 => $y_1 + y_2 = -4$... (ii) [By mid-point theorem]

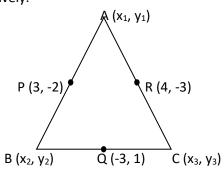
And,

24.

...

 $\begin{array}{ll} -3 = \underbrace{x_2 + x_3}_2 & => x_2 + x_3 = -6 & \dots \mbox{(iii) [By mid-point theorem]} \\ 1 = \underbrace{y_2 + y_3}_2 & => y_2 + y_3 = 2 & \dots \mbox{(iv) [same reason]} \end{array}$

Also,


$$4 = \frac{x_1 + x_3}{2} \implies x_1 + x_3 = 8 \dots (v) [,,,,]$$

And
$$-3 = y_1 + y_3 = -6$$
 ... (vi) [,, ,,]

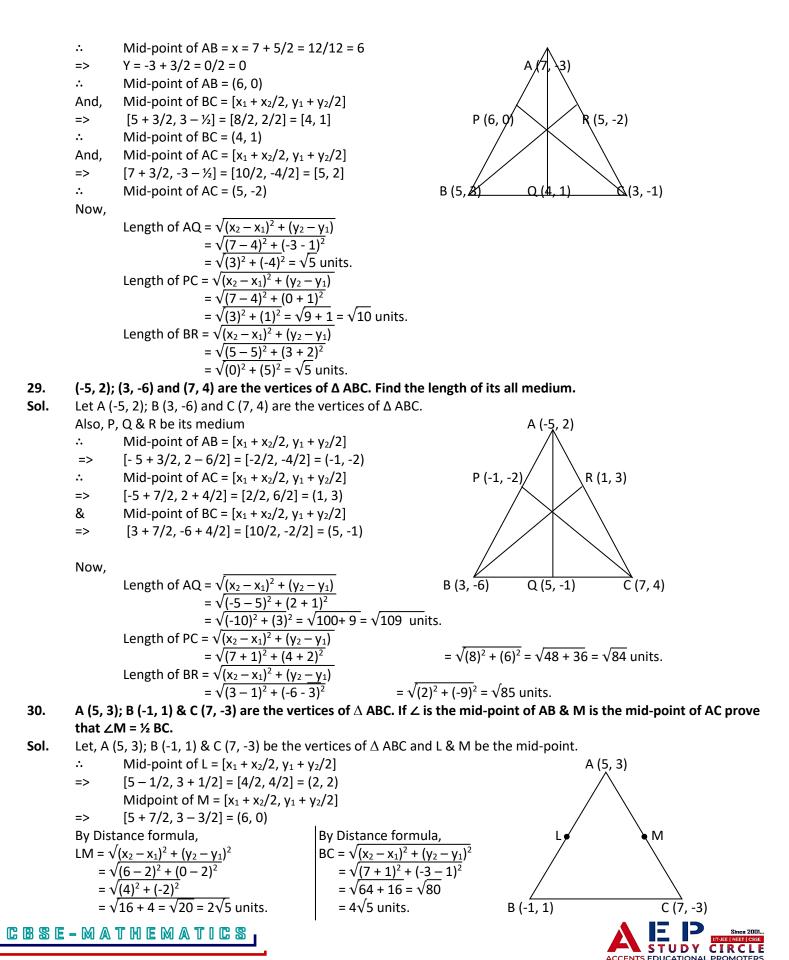
2 Adding eq (i), (iii) & (v) \therefore $x_1 + x_2 + x_2 + x_3 + x_1 + x_3 = 6 - 6 + 8$ => $2(x_1 + x_2 + x_3) = 8$ => $x_1 + x_2 + x_3 = 4$ [Proved above] Since $x_1 + x_2 = 6$ $6 + x_3 = 4$:. => $x_3 = -2$ [Proved above] also, $x_2 + x_3 = -6$ $-6 + x_1 = 4$ = > x₁ = 10 *.*.. [Proved above] And. $x_1 + x_3 = 8$

 $x_2 = -4$

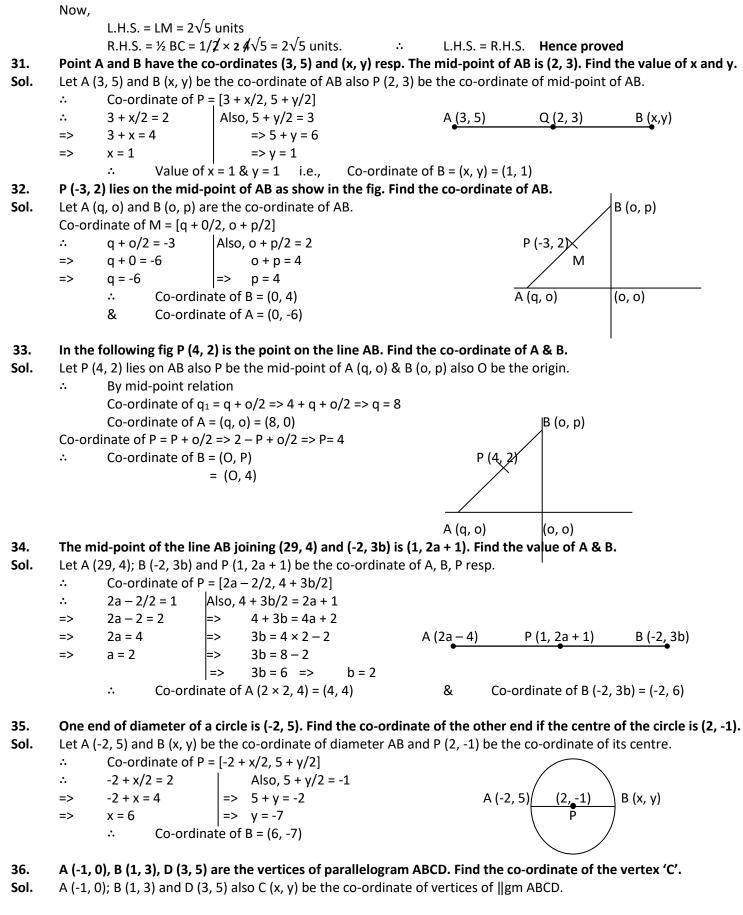
=>

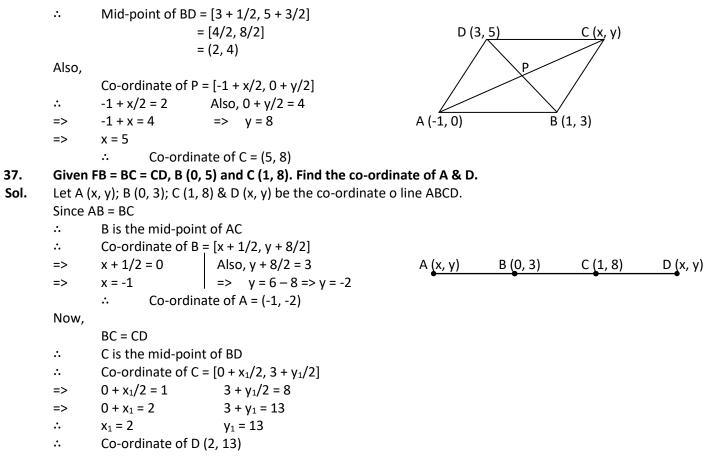
CBSE-MATHEMATICS

...


 $8 + x_2 = 4$

Now, adding eq (ii), (iv) & (vi) $y_1 + y_2 + y_2 + y_3 + y_1 + y_3 = -4 + 2 - 6$ $2(y_1 + y_2 + y_3) = -8$ *.*.. => => $y_1 + y_2 + y_3 = -8$ $-4 + y_3 = -4$ Since, $y_1 + y_2 = -4$... y₃ = -0 $2 + y_1 = -4$ Also, $y_2 + y_3 = 2$... $y_1 = -6$ And, $y_1 + y_3 = 6$ [Proved above] :. $-6 + y_2 = -4$ $v_2 = +2$ *.*.. Co-ordinate of A = (10, -6)Co-ordinate of B = (-4, 2)Co-ordinate of C = (-2, 0)25. The co-ordinates of one end point of a diameter of a circle are (3, 5). If the co-ordinate of the centre is (6, 6), Find the co-ordinate of the other end of the diameter. Let A (3, 5) be the co-ordinate of one end of circle and (6, 6) be the co-ordinate of the centre of circle and also B (x, y)Sol. be the co-ordinate of the centre. :. 6 = 3 + x[By Mid-point theorem] 3 + x = 122 => => x = 9 Also, 6 = 5 + y2 5 + y = 12=> => y = 7 Co-ordinate of other end of circle = (9, 7) A (3, 5) B (x, y) :. 0 The co-ordinate of one point of a diameter of a circle are (4, -1). And the co-ordinate of the centre is (1, -3). Find the 26. co-ordinate of the other end of the diameter. Let, A (4, -1) and B (x, y) and B (x, y) be the co-ordinate of the end of the diameter of a circle. Sol. Also, O(1, -3) be the co-ordinate of its centre. [By mid-point theorem] 1 = 4 + x... 2 4 + x = 2=> x = -2 A(4,1) B (x, y) => (1, -3) [By mid-point theorem] And -3 = <u>-1 + y</u> 2 Co-ordinate of the other end of diameter = (-2, -5)-6 = -1 + v=> y = -5 ∴ => Three vertices of a parallelogram taken in order are (1, -2); (3, -6) & (5, 10). Find the co-ordinate of fourth vertices. 27. Let A (1, -2); B (3, -6), C (5, 10) & D (x, y) be the vertices of ||gm ABCD. Sol. Also, AC & BD are two diagonals. ∴ They bisect each other. A(1,2) D(x, y)i.e., N is the mid-point of AC & BD *.*.. Co-ordinate of N = (1 + 5, -2 + 10)2 L 2 = [6/2, 8/2] = (3, 4)B (3, 6) C (5, 10) Also, Co-ordinator of N = (3 + x, 6 + y)2 2 ... 3 + x = 3and, 6 + y/2 = 46 + y = 82 => 3 + x = 6v = 2=> ... Co-ordinate of fourth vertex i.e, D = (3, 2)x = 3 *.*.. => 28. Find the length of the medium of Δ ABC whose vertices are A (7, -3); B (5, 3); C (3, 1). Sol. Let A (7, -3); B (5, 3) & C (3, -1) be the co-ordinate of vertices of \triangle ABC





CBSE-MATHEMATICS CO-ORDINATE GEOMETRY

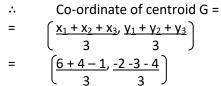
- 38. P (4, 2); q (-1, 5) are the vertices of ||gm PQRS. And (-3, 2) are the co-ordinate of point of intersection of its diagonal. Find the co-ordinate of R & S.
- Let P (4, 2); q (-1, 5), R (x, y) & S (x, y_1) be the co-ordinate of ||PQRS. Sol. 27 S (x, y) R (x, y) Also, A (-3, 2) be the co-ordinate of point of intersection of its diagonal. Co-ordinate of A = [4 + x/2, 2 + y/2]:. :. 4 + x/2 = -3Also, 5 + y/2 = 2(-3, 2) 4 + x = -65 + y = 4=> => => x = -2 => y = -1
 - P (4, 2) Q (-1, 5)

CENTROID

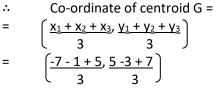
Sol. Let A (-3, 0); B (5, -2) & C (-8, 5) be the co-ordinate of its vertices of \triangle ABC.

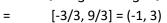
Co-ordinate of S = (-5, -1)

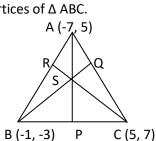
:.	Co-ordinate of centroid G =	A (-3, 0)
=	$\left(x_1 + x_2 + x_3, y_1 + y_2 + y_3 \right)$	
	$\begin{bmatrix} - & - & - & - \\ 3 & 3 \end{bmatrix}$	RZ ZQ
=	$\left(\frac{-3+5-8}{0}, \frac{0-2+5}{0} \right)$	G
	$\begin{bmatrix} 3 & 3 \end{bmatrix}$	
=	[-6/3, 3/3] = (-2, 1)	
		B (5, -2) P C (-8, 5)



...


Sol. Let A (6, -2); B (4, -3) & (-1, -4) be the co-ordinate of its vertices of \triangle ABC.




- $\begin{pmatrix} 3 & 3 \end{pmatrix}$
- = [9/3, -9/3] = (3, -3)

3. Find the co-ordinate of centroid of \triangle ABC whose vertices are A (-7, 5); B (-1, -3) & (5, 7).

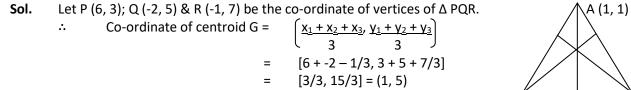
Sol. Let A (-7, 5); B (-1, -3) & (5, 7) be the co-ordinate of its vertices of \triangle ABC.

C(-1, -4)

A (6, -2)

B (4, -3)

4. If G (-2, 1) is the centroid of \triangle ABC and two of its vertices are A (-1, 6) & B (-5, 2). Find the 3rd vertices of \triangle .

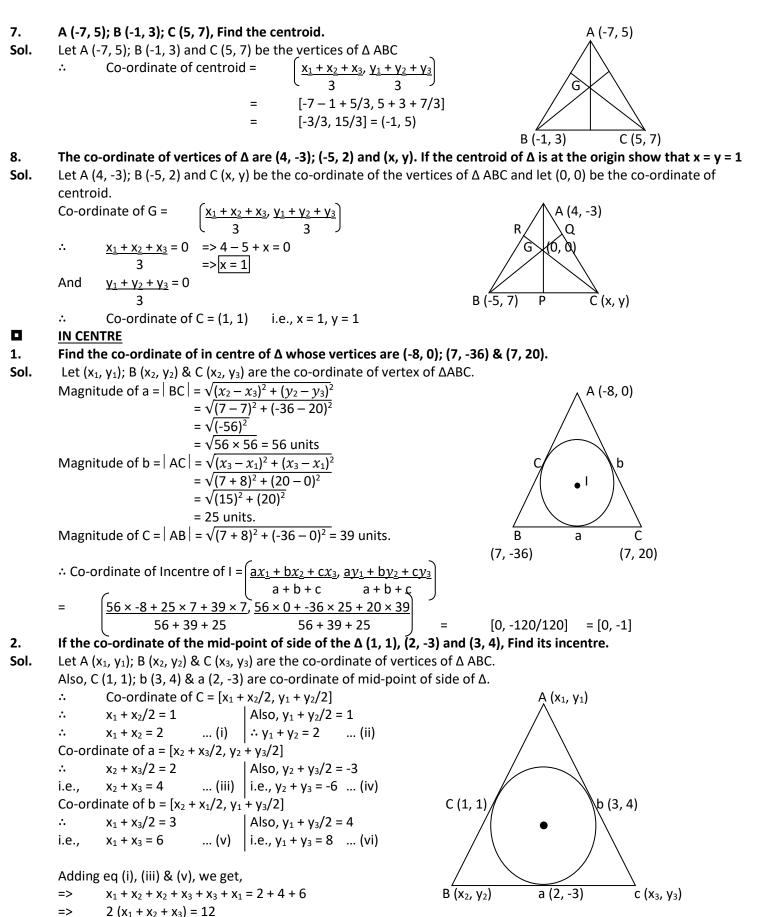

Sol. Let A (-1, 6); B (-5, 2) & C (x, y) be the co-ordinate of vertices of \triangle ABC also G (-2, 1) be its centroid.

5. Two vertices of Δ are (-5, 4) & (3, 7). If its centroid is (1,-2), Find 3rd vertex.

Sol. Let A (-5, 4); B (3, 7) & C (x, y) be the co-ordinate of vertices of Δ ABC. Also, G (1, -2) be its centroid

$$\begin{array}{c|ccc} \therefore & \text{Co-ordinate of its centroid} = & \left(\frac{x_1 + x_2 + x_3}{3}, \frac{y_1 + y_2 + y_3}{3} \right) \\ \therefore & -5 + 3 + x/3 = 1 & => 4 + 7 + y/3 = -2 & \text{A} (-5, 4) \\ => & -2 + x = 3 & => 11 + y = -6 & => y = -17 & & & \\ \Rightarrow & x = 5 & => y = -17 & & & & & \\ \therefore & \text{Co-ordinate of C} = (-5, -17) & & & & & & \\ B & (3, 7) & & & & & & \\ \end{array}$$

6. P (6, 3); Q (-2, 5), R (-1, 7), Find centroid.


C (3, -4)

B (2.-3)

CBSE-MATHEMATICS

CBSE-MATHEMATICS CO-ORDINATE GEOMETRY

2.

=> $x_1 + x_2 + x_3 = 6$ But $x_2 + x_3 = 4$ [from (iii)] Also, $x_1 + x_2 = 2$ [from (i)] $x_3 + 2 = 6$:. x1 + 4 = 6i.e., $x_3 = 4$ i.e., x₁ = 2 And, $x_3 + x_1 = 6$ [from (v)] ... $x_2 = 6 - 6$ i.e., $x_2 = 0$ Now, adding eq (ii), (iv) & (vi), we get $y_1 + y_2 + y_3 + y_1 + y_2 + y_3 = 2 - 6 + 8$ => => $2(y_1 + y_2 + y_3) = 4$ $y_1 + y_2 + y_3 = 2$ => But, y1 + y2 = 2[from (ii)] Also, $y_2 + y_3 = -6$ [from (iv)] i.e., $y_3 = 0$ i.e., y₁ = 8 [from (vi)] And, $y_3 + y_1 = 8$ $y_2 + 8 = 2$ $y_2 = -6$ $=\sqrt{(10-4)^2 + (-6-0)^2} = \sqrt{16+36} = \sqrt{52} = 2\sqrt{13}$ units Magnitude of a = $|BC| = \sqrt{(x_2 - x_3)^2 + (y_2 - y_3)^2}$ Magnitude of b = $|AC| = \sqrt{(x_3 - x_1)^2 + (y_3 - y_1)^2}$ $=\sqrt{(4-2)^2+(0-8)^2}=\sqrt{(2)^2+(-8)^2}=\sqrt{4+64}=\sqrt{68}=2\sqrt{17}$ units Magnitude of c = $|AB| = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2} = \sqrt{(0 - 2)^2 + (-6 - 8)^2}$ $=\sqrt{(-2)^2+(-14)^2}$ $=\sqrt{4+196} = \sqrt{200} = 10\sqrt{2}$ units Co-ordinate of Incentre of I = $(ax_1 + bx_2 + cx_3, ay_1 + by_2 + cy_3)$:. a + b + c a + b + c $\frac{2\sqrt{3} \times 2 + 2\sqrt{17} \times 0 + 10\sqrt{2} \times 4}{2\sqrt{3} \times 8 + 2\sqrt{17} \times -6 + 10\sqrt{2} \times 6}$ = $2\sqrt{3} + 2\sqrt{17} + 10\sqrt{2}$ $2\sqrt{3} + 2\sqrt{17} + 10\sqrt{2}$ $4\sqrt{13} + 40\sqrt{2}$, $16\sqrt{13} - 12\sqrt{17}$ = $2\sqrt{3} + 2\sqrt{17} + 10\sqrt{2}$ $2\sqrt{3} + 2\sqrt{17} + 10\sqrt{2}$ $2\sqrt{13} + 20\sqrt{2}$, $8\sqrt{13} - 6\sqrt{17}$ = $\sqrt{13} + \sqrt{17} + 5\sqrt{2}$ $13 + \sqrt{17} + 5\sqrt{2}$ PROBLEM BASED ON CONDITION OF COLLINEARITY OF THREE POINT 1. Show that the points (-1, 1); (5, 7) & (8, 10) are collinear. Sol. Let A (-1, 1); B (5, 7) & C (8, 10) are given point. Here, $x_1 = -1$ Also, $y_1 = 1$ $x_2 = 5$ $y_2 = 7$ & $x_3 = 8$ $y_3 = 10$ $x_1(y_2 - y_3) + x_2(y_3 - y_1) + x_3(y_1 - y_2) = -1(7 - 10) + 5(10 - 1) + 8(1 - 7)$ *.*.. = -1 (7 − 10) + 5 (10 − 1) + 8 (1 − 7)=-1 × -3 + 5 × 9 + 8 × -6 = 3 + 45 - 48 = 48 - 48 = 0 *.*.. $x_1(y_2 + y_3) + x_2(y_3 - y_1) + x_3(y_1 - y_2) = 0$ point A (-1, 1); B (5, 7) & C (8, 10) are collinear. i.e., [Hence proved] Show that the point A (a, b + c); B (b, c + a) & C (c, a + b) are collinear. Sol. Let A (a, b + c); B (b, c + a) & C (c, a + b) are given point. Here, $x_1 = a$ Also, $y_1 = b + c$ $x_2 = b$ $y_2 = c + a$ & $x_3 = c$ $y_3 = a + b$ *.*.. $x_1(y_2 - y_3) + x_2(y_3 - y_1) + x_3(y_1 - y_2)$ a (c + a - a - b) + b (a + b - b - c) + c (b + c - c - a)=> a(c-b) + b(a-c) + c(b-a)=> ac - ab + ba - bc + bc - ac=> = 0 *.*.. $x_1(y_2 + y_3) + x_2(y_3 - y_1) + x_3(y_1 - y_2) = 0$ given point are collinear. i.e., [Hence proved] CBSE-MATHEMATICS. DY CIRCLE

3. Show that the point (-5, 1); (5, 5) & (10, 7) are collinear. Sol. Let A (-5, 1); B (5, 5) & C (10, 7) are given point. Here, $x_1 = -5$ Also, $y_1 = 1$ y₃ = 7 $x_2 = 5$ y₂ = 5 & $x_3 = 10$ $x_1(y_2 - y_3) + x_2(y_3 - y_1) + x_3(y_1 - y_2) = -5(5 - 7) + 5(7 - 1) + 10(1 - 5)$... $= -5 \times -2 + 5 \times 6 + 10 \times -4$ = 10 + 30 - 40 = 0... $x_1(y_2 + y_3) + x_2(y_3 - y_1) + x_3(y_1 - y_2) = 0$ [Hence proved] given point are collinear. i.e., 4. For what value of x are the point of (-3, 12); (7, 6) & (x, 9) collinear? Sol. Let A (-3, 12); B (7, 6) & C (x, 9) are the collinear point. Here, $x_1 = -3$ Also, $v_1 = 12$ $x_2 = 7$ $v_2 = 6$ y₃ = 9 & $\mathbf{x}_3 = \mathbf{x}$:. $x_1(y_2 - y_3) + x_2(y_3 - y_1) + x_3(y_1 - y_2) = 0$ -3(6-9) + 7(9-12) + x(12-6) = 0=> $-3 \times -3 + 7 \times -3 + x \times 6 = 0$ 9 - 21 + 6x = 0=> => 6x = 12 => :. x = 2 *.*.. The value of x be 2. 5. For what value of y are the point (1, 4); (3, y); (-3, 16) collinear. Sol. $x_1 (y_2 - y_3) + x_2 (y_3 - y_1) + x_3 (y_1 - y_2) = 0$:. 1(y-16) + 3(16-4) + (-3)(4-y) = 0 => y - 16 + 36 - 12 + 3y = 0=> 4v = -8 : y = -2 => Find the ar. Of Δ whose vertices are:-6. (10, -6)(2, 5) & (1, 3)i) Sol. Let A (10, -6); B (2, 5) & C (1, 3) are vertices of Δ A (10, -6) Here. $x_1 = 10$ Also, $y_1 = -6$ x₂ = 2 $y_2 = 5$ & y₃ = 3 x₃ = 1 :. Area of \triangle ABC = $\frac{1}{2} [x_1 (y_2 - y_3) + x_2 (y_3 - y_1) + x_3 (y_1 - y_2)]$ = $\frac{1}{2}$ [10 (5 - 3) + 2 (3 + 6) + 1 (-6 - 5)] B (2, 5) <u>C</u>(1, 3) $\frac{1}{2}$ [20 + 18 - 11] = $\frac{1}{2} \times 27$ = 13.5 sq. unit. = ii) (4, 4); (3, -16) & (3, -2) Sol. Let A (4, 4); B (3, -16) & C (3, -2) are vertices of Δ A (4, 4) Here, $x_1 = 4$ Also, $y_1 = 4$ $x_2 = 3$ $y_2 = 16$ & $x_3 = 3$ $y_3 = -2$... Area of \triangle ABC = $\frac{1}{2} [x_1 (y_2 - y_3) + x_2 (y_3 - y_1) + x_3 (y_1 - y_2)]$ = $\frac{1}{2}$ [4 (-16 + 2) + 3 (-2 - 4) + 3 (4 + 16)] 1/2 [4 × (-14) + 3 (-6) + 3 × 20] = $\frac{1}{2}$ [-56 - 18 + 60] = $\frac{1}{2}$ × -14 = -7 sq. unit. B (3, -16) C (3, -2) 7. If the vertices of Δ are (1, K); (4, -3); (-9, 7) & its area is 15 sq. unit. Find the value of 'K'. Sol. Let A (1, K); B (4, -3) & C (-9, 7) are vertices of Δ Here, also Area of Δ = 15 sq. units. A (1, K) & Also, $y_1 = K$ $x_1 = 1$ $x_2 = 47$ $y_2 = -3$ $x_3 = -9$ $y_3 = 7$:. Area of $\Delta = \frac{1}{2} [x_1 (y_2 - y_3) + x_2 (y_3 - y_1) + x_3 (y_1 - y_2)]$ => $15 = \frac{1}{2} [1 (-3 - 7) + 4 (7 + K) + (-9) (K + 3)]$ $15 = \frac{1}{2} [-10 + 28 - 4K - 9K - 27]$ B (4.-3) Ĉ (-9. 7) => $15 = \frac{1}{2} \times -9 - 13$ K =>

13K = -30 - 9=> K = -39/13 = -3 ∴ K = -3 => If the point (x, y); (-5, 7) & (-4, $\overline{5}$) are collinear then shown that 2x + y + 3 = 0. 8. Sol. Let A (x, y); B (-5, 7) & C (-4, 5) are the collinear point. Here, $x_1 = x$ and, y1 = y x₂ = -5 y₂ = 7 $x_3 = -4$ y₃ = 5 Since given point be collinear. :. $x_1(y_2 - y_3) + x_2(y_3 - y_1) + x_3(y_1 - y_2) = 0$ x(7-5) + (-5)(5-y) + (-4)(y-7) = 0=> 2x - 25 + 5y - 4y + 28 = 0=>

=> 2x + y + 3 = 0

[Hence proved]

