

YOUR GATEWAY TO EXCELLENCE IN IIT-JEE, NEET AND CBSE EXAMS

BIOLOGY

NEET

MORPHOLOGY

OF FLOWERING PLANTS

MORPHOLOGY OF FLOWERING PLANTS

CONTACT US:

01

THE ROOT, REGIONS OF THE ROOT, MODIFICATIONS OF ROOT AND THE STEM

Morphology

- 'Morph' means 'shape' or 'form' and 'logy' means 'study of something'.
- Morphology is the science that deals with the study of external form and structure.

- Phytomorphology refers to the study of external form and structure of plants.
 - Flower: Reproductive part of plant
 - Leaf: Attached to the stem, performs photosynthesis
 - Fruit: Matured ovary, protects the seeds
 - Stem: Bears branches, leaves, flowers, and fruits, supports the plant
 - Root: Absorbs water and minerals from the soil

Did you know?

A *Ficus* tree in Transvaal (S. Africa) has roots going 400 ft underground!

Root System

 Root is the part of a plant that grows below the surface of soil. It develops from the radicle of the seed.

Radicle in a seed

Regions of a typical root

Region of meristematic activity

- The region is present in the growing tip of the root.
- · It consists of cells that continuously divide.
- · It is protected by the root cap.

Region of elongation

- It has cells that rapidly elongate and enlarge.
- These cells increase the length of the roots.

Regions of a typical root

Region of maturation

- As the cells in the region of elongation become older, they differentiate and become mature.
- The cells are pushed upwards by the newly forming meristematic tissues.
- · Some of these cells form root hairs, which absorb water and minerals from the soil.

Root cap

- It is a terminal, thimble-like (cap-like) structure.
- · It is multicellular.
- · It secretes mucilage for lubrication.
- It protects the tender apex of the roots.

Types of roots

Types of roots

Tap roots

Direct elongation of radicle

The primary root bears several lateral roots of several orders which are known as secondary and tertiary roots.

Dicots have tap roots. Examples: Peas, mustard

Fibrous roots

Originate from base of stem

Absence of primary root (Primary root is short-lived) and is replaced by a large number of roots. Roots are fibrous and highly branched.

Monocots have fibrous roots.

Examples: Maize, wheat

Adventitious roots

Arise from parts of plant other than radicle

Can be nodal roots, stem roots, crown roots, junction roots

Present in some monocots (Example - orchids) and dicots (Example - *Ficus*).

Functions of roots

- Absorption of water and minerals from soil
- Providing anchorage to plant parts
- · Storage of reserved food materials
- Synthesis of plant growth regulators. Plant growth regulators are chemicals that an modify plant growth by influencing stem and root elongation, flowering, fruit formation, etc.

Root modifications

Roots in some plants are modified into different shapes and structures to perform functions other than absorption and conduction of water and minerals.

Tap roots

• Tap roots are direct elongation of the radicle. Lateral roots appear from tap roots.

→ For storage of food

Tap (primary) roots become fleshy and swollen due to stored food, while secondary roots remain thin and stem is usually reduced.

· Conical in shape

- ·Fleshy taproots resemble a cone.
- They are thickest towards the base and gradually tapering towards the apex.
- ·Secondary roots are found throughout.
- ·Example: Carrot

Fusiform

- ·They are spindle-shaped.
- •They are thicker in the middle and narrow towards both the apex and at the base.
- ·Fine secondary roots arise from the apical part.
- ·Example: Radish

Napiform

- •They are almost spherical-shaped and wider at the top, and narrow at the tip.
- .They are very thick at the base.
- .They become thin towards the apex.
- .Example: Turnip

Tuberous

- They are thickened tap roots that do not have any definite form.
- Example: Four o'clock plant

Four o'clock plant

Carrot

Radish

Turnip

Tuberous Roots

For respiration - Pneumatophores

- •They are found in plants growing in the mangroves, swamps, and salt lakes that are deficient in oxygen.
- ·Such plants are known as halophytes.

- •They possess horizontal cable roots that give rise to vertically upward (negatively geotropic) aerial roots at short intervals.
- •These roots are known as pneumatophores (respiratory roots). They bear pores are known as pneumatothodes (lenticels).
- ·Example: Rhizophora and mangroves.

Respiratory roots (Pneumatophores)

Adventitious roots: These are roots that arise from parts of the plant other than radicle. These adventitious roots are modified to perform functions such as:

Storage of reserved food

Sweet potato

- Anchorage
 - Stilt roots
 - •Roots arise obliquely from lower nodes of the stem.
 - ·Examples: Sugarcane, maize, bajra, sorghum

Maize stilt roots

- Prop roots
 - They are thick, pillar-like roots.
 - The roots arise from branches of the plant and grow downward towards soil, thereby functioning as supporting stems for the plant.
 - In the beginning, these roots appear as hanging, hygroscopic structures that are red in a moistened state.
 - Example: Banyan tree

Banyan tree

Did you know?

Epiphytic roots grow on surfaces of other plants. They are green, photosynthetic, and absorb water from surroundings.

Examples: Taeniophyllum, velamen of orchids

Taeniophyllum

- *Taeniophyllum* is an epiphyte with roots that can photosynthesise and obtain water from surroundings.
- Orchids have velamen, which is a spongy tissue made of multiple epidermis that cover the roots. These aerial roots can photosynthesise and absorb moisture and CO₂.

Shoot System

- Shoot refers to the ascending part of the plant axis that bears branches, leaves, flowers, and fruits.
- Shoot system is generally found above the ground but can be modified underground in some plants.
- Shoot develops from the plumule of the seed.

Plumule of seed

Parts of a typical stem

- Stem is green and slender when young. It becomes thick, woody, and dark brown later.
 Stem comprises of the following parts:
 - Nodes: The region where leaves are borne.
 - Internodes: The region of stem in between two nodes.
 - Bud: It is an undeveloped shoot found in the axil of a leaf or at the tip of a stem.

Functions of shoot system

- Support: Bears other parts of the plant such as flowers, fruits, and leaves
- · Conduction: Transports water, minerals, and products of photosynthesis
- Storage: Few plants can store reserved food in the stem. Example: Potato
- Vegetative propagation: Few plants can propagate from stem cuttings. Examples: Rose, hibiscus

Underground stem modifications

These stem modifications help plants in vegetative propagation, storage of food, and perennial survival.

· Rhizome

- ·Rhizome is a prostrate, fleshy, dorsiventral, and horizontal underground stem.
- Nodes and internodes in it are covered by scaly leaves.
- Axillary buds and roots are at nodes. Examples: Banana, ginger, turmeric, etc.

Tuber

- Tuber is swollen, prostrate, fleshy, dorsiventral, and horizontal.
- olt is oval and has spirally arranged depressions known as eyes, through which new plants can arise.
- Examples: Potato, dahlia

Corm

- olt is thick, swollen, and usually unbranched.
- It can be spherical or sub-spherical and vertically growing.
- olt bears many buds in axils of scale leaves that develop into daughter corms.
- Examples: Amorphophallus (zaminkand), Colocasia (arbi)

Bulb

- olt is a reduced discoid stem with fleshy scales enclosing an apical bud.
- olt appears roughly spherical or pyriform in outline.
- Adventitious roots are present at the base of the disc.
- Examples: Onion, garlic, tulip

Ginger Rhizome

Old potato tuber A new potato plant planted in soil growing from bud Another new plant growing from second

Potato Tuber Node Inter node Scale leaf Corm Daughter Adventitious corm Colocasia Corm

root

Runner

- It is a narrow, green, horizontal or prostrate branch that arises from the base of the shoot known as crown.
- It spreads in different directions.
- Each runner has one or more internodes.
- Roots develop at the lower side and leaves from the upper side of the node.
- Example: Strawberry, grass

Stolon

- It is an elongated, horizontal lateral branch developing from the base of the main axis.
- olt grows like an arch and then touches the ground.
- It gives rise to new shoots and adventitious roots.
- Example: Mint

Offset

- olt has lateral branches with short internodes.
- Each node bears a rosette of leaves and a tuft of adventitious roots.
- It is a runner of aquatic plants.
- Examples: Pistia, Eichhornia

Sucker

- It comes out upward giving rise to leafy shoots.
- It is known as an underground runner.
- Examples: *Chrysanthemum*, pineapple, banana

Strawberry

Grass

Mint

Pistia

Eicchornia

Crown

Fruit

Stem

Sucker

Banana

Pineapple

Tendrils

- Axillary bud modifies to form green, thread-like sensitive structures with adhesive glands for fixation.
- They are found in plants with weak stems.
- Examples: Gourds (cucumber, pumpkins, watermelon) and grapevines

Stem tendril (Axillary) Leaf Weak stem Cucurbits

Thorns

- They are stiff, pointed structures produced by modification of axillary bud.
- They provide protection against grazing animals.
- Examples: Citrus, Bougainvillea

Lemon

Phylloclade

- ∘ It is a flat, fleshy, and green leaf-like structure.
- It carries out photosynthesis.
- The leaves are modified into spines.
- Examples: Thick, fleshy, and succulent in Opuntia,
 Cylindrical in Euphorbia, Casuarina

Summary Sheet

- Morphology is the science that deals with the study of external form and structure.
- Regions of a typical root are: root cap, region of meristematic activity, region of elongation, and region of maturation.

• Shoot refers to part of the plant axis that bears branches, leaves, flowers, and fruits.

- Stem mainly comprises of nodes, internodes, and axillary buds.
 - Functions of stem include support, conduction of nutrients, water and minerals, vegetative propagation, and storage of food.
- · Modifications of stem

LEAF, VENATION, TYPES OF LEAVES, MODIFICATIONS OF LEAVES, INFLORESCENCE

Key Takeaways

- Origin of leaves in plant body
- Phyllotaxy

- Parts of typical leaf
- Modification of leaves
- Types of leaves
- Arrangement of flowers

Prerequisites

Parts of a flowering plant

Origin of leaves in plant body

The embryo of the seed consists of the shoot apical meristem (SAM), root apical meristem (RAM) and the cotyledons.

• As the shoot grows, the shoot apical meristematic region gets shifted to a position slightly above the region from where the first set of leaves emerge.

Leaves

- The **leaf** has a flat structure and it arises from the node of a stem.
- A bud, known as the axillary bud, arises from the axil. It later develops into the leaf, shoot, branch, or flower.

A typical leaf has three main parts:

Leaf base (hypopodium)

• Leaf base is the point where the leaf is attached to the stem.

Leaf base modifications

Figure 1

Figure 2

Figure 3

- The leaf base may bear two **lateral leaf-like structures** on **either side** of the leaf base which are known as **stipules** (figure 1).
- In **monocots** (grasses), the leaf base extends to form a **sheath**. It may cover the stem fully or partially (figure 2).
- In some **leguminous plants**, the leaf base may become swollen. This swollen leaf base is known as the **pulvinus** (figure 3).

Petiole (Mesopodium)

- Petiole is the stalk that attaches the leaf to the stem.
- It helps hold the leaf blade to light.
- Long, thin, and flexible petioles help leaf blades flutter in the wind. This brings fresh air to the leaf surface.
- · Petioles are often referred to as stalks.

Lamina/leaf blade

· Leaf blade is the expanded green part of the leaf.

Midrib - The middle prominent part

Veins - Lateral veins arise from the midrib

Veinlets - Network of veins arising from the lateral veins

- Margin is the outer edge of the leaf and the leaf apex is tip of the leaf.
- Leaf lamina may be of various shapes based on differences in the apex and margins.

Veins and Venation

- Veins provide **rigidity to the leaf blade**. They also act as **channels of transport** for water, minerals, and food material.
- Venation is the arrangement of veins and veinlets in the leaf lamina.
- Irrespective of the venation, veins have xylem and phloem.
 - → Xylem conducts water and minerals
 - → Phloem conducts food

Types of leaves

· Based on the leaf blade, leaves can be classified as:

- Incisions of the lamina do not touch the midrib in simple leaves.
- A bud, known as the axillary or lateral bud is present in the axil of the petiole.
- Incisions of the lamina reach up to the midrib, breaking it into a number of **leaflets**.
- Axillary bud is present in the axil of the petiole of compound leaves but not in the axil of leaflets.

Arrangement of leaves - Phyllotaxy

Types of phyllotaxy

• The pattern of arrangement of leaves on the stem or branch is known as phyllotaxy.

(a) Alternate

- Every leaf arises from a single node.
- E.g., Hibiscus, sunflower, mustard.

(b) Opposite

- · The leaves are opposite to each other.
- · At every node, two leaves arise.
- Opposite phyllotaxy can be further divided as:

(c) Whorled

• In this arrangement, more than two leaves arise from a single node. E.g., Alstonia.

Modifications of leaves

- · Leaves are modified for a desired function.
- There are five types of modifications:

Carnivorous leaves

- · Leaf lamina is modified to trap insects.
- **Insectivorous plants** are **photoautotrophic** (organisms that can synthesize their own food using light and inorganic chemicals)
- However, they grow in soil which lacks nitrogen. To fulfill the requirement of nitrogen, they trap insects.

Pitcher plant (Leaf lamina is modified into a pitcher)

Venus flytrap

Spines

- The leaves are transformed into spines to minimize water loss by reducing surface area for transpiration.
- For example, cacti have swollen stems and leaves are modified to spines.
- Spines also provide protection against predators.

Cactus

Storage leaves

- · Some leaves are modified to store food.
- Garlic and onion are edible leaves. The outer leaves are dry scale leaves.

Tendrils

- The leaves are modified into tender, coiled structures which provide support and help in climbing. E.g., pea plant
- In some plants, the axillary bud is modified into tendrils. E.g., cucumber.
- In some plants, the leaf tip is modified into tendrils. E.g., glory lily.
- The tendrils respond to touch and twine around objects.

Phyllode (modified leaf stalk)

- Photosynthetic modified petioles are known as phyllodes.
 E.g., Acacia
- The petiole expands, turns green and performs photosynthesis.
 the leaf petiole expands. It turns green and performs photosynthesis.
- The phyllodes are short-lived.

Flower - modified shoot

- The **flower** is a **modified shoot**. The SAM is modified to form the floral meristem.
 - → Shoot tip transforms into flowers.
 - → The apex produces different kinds of floral appendages laterally at successive nodes instead of leaves.
 - → Internodes do not elongate.
 - → Axis gets condensed.
 - → The stalk which bears flowers is known as **peduncle**.
 - → The stalk of a single flower is known as a **pedicel**.

The floral appendages include the following structures:

Arrangement of flowers

- Flowers may be present in the following manner:
 - → At the shoot apex
 - → Arranged along the stem
- The arrangement of flowers on the floral axis is known as **inflorescence**.

Racemose inflorescence

- · Growth of the floral axis is indefinite.
- Flowers are arranged in acropetal order (flowers develop from the base to the apex).
- · Older flowers lie at base and the younger flowers at the top. E.g., gulmohar.

(a) Simple raceme

- The floral axis is unbranched.
- Many pedicellate flowers (flowers which have a stalk) are produced.
- E.g., Crotalaria

(b) Corymb

- The flowers have stalks of varying lengths.
- All flowers are at the same height.
- E.g., candytuft

(c) Umbel

- In this type of inflorescence, the peduncle is condensed.
- The flowers are clustered at the apex. E.g., onion

(d) Head/capitulum

- The peduncle is condensed to form flattened discs known as receptacles.
- Many flowers are closely arranged on the receptacle.
- · E.g., sunflower

Cymose inflorescence

- Flowers develop from the apex to the base.
 This is known as basipetal succession.
- The older flowers lie at the apex and the younger flowers lie below it.
- Growth of the floral axis is definite and terminates into a flower.

Solitary cyme

Monochasial cyme

Dichasial cyme

(a) Solitary cyme

- A single flower is produced. It can be at the axillary (arising from the leaf axils) or terminal (at the tip of the stem or branch) position.
- E.g., Terminal: *Datura* Axillary: *Hibiscus*

Datura

Hibiscus

(b) Monochasial cyme

Only one branch emerges at a time.
 The branch terminates with a flower.

(c) Dichasial cyme

- Like monochasial cyme, in dichasial cyme the peduncle terminates with flowers.
- However, two lateral branches are produced (which also terminate with flowers). E.g., jasmine

FLOWER, PARTS OF A FLOWER - CALYX, COROLLA, ANDROECIUM, GYNOECIUM, FLORAL FORMULA AND FLORAL DIAGRAM

Key Takeaways

- Inflorescence
- Flower and its parts
- Classification of flowers
- Floral diagrams

Prerequisites

- Parts of flowering plants
- Root system
- Shoot system

Flower

- It is the reproductive organ of angiosperms.
- It facilitates **sexual reproduction** in flowering plants.

Typical flowering plant

Pedicel

It is the stalk of a plant that connects the flower to the stem of the plant.

Parts of the flower

A typical flower consists of the following parts:

Each part of a flower can be represented by certain symbols.

Bracts

Bracts are green, leaf-like structures present at the base of the pedicel.

 Spathe: Bracts of some flowers are modified into colourful and bright structures. Their function is to attract pollinators.
 E.g., Anthurium

Whorls of flowers

• Whorl is a term used for the **arrangement of sepals, petals, stamens, or carpels**, which radiate from a common point surrounding the stem or stalk.

Flower (Based on the number of appendages)

Trimerous 3 units

Number of units of whorls is 3 or a multiple of 3.

E.g., monocot flowers like lily

Tetramerous 4 units

Number of units of whorls is 4 or a multiple of 4.

E.g., dicot flowers like *Primrose*

Pentamerous 5 units

Number of units of whorls is 5 or a multiple of 5.

E.g., Crassula ovata

Calyx

- · It is the outermost whorl of the flower.
- It is the collective term for sepals.
- · Its characteristic features are:
 - · It is green in colour.
 - It has a leaf-like appearance.

- Function: It protects the flower in the bud stage.
- Symbol: It is represented by K.

Flowers (Based on calyx)

Gamosepalous Sepals united

E.g., *Primrose* - 5 sepals are fused together and are represented as $K_{(5)}$.

Polysepalous Sepals free

E.g., Rose - 5 sepals are free and are represented as K_5 .

Corolla

- It is a collective name for petals.
- Function: It attracts pollinators.
- Symbol: It is represented by C.
- Shape: It may vary from species to species. It can be tubular, bell-shaped, funnel-shaped, or wheel-shaped.

Tubular

Bell-shaped

Funnel-shaped

Classification of flowers based on corolla

Perianth

- When calyx and corolla are not distinct from each other and are united they are termed as tepals.
- Collective term for tepals is **perianth**.
- Occurrence: It is commonly found in monocots.
- Symbol: It is represented by P.

Aestivation

- It is the arrangement of sepals and petals with respect to other members of the same whorl.
- Types of aestivation

Valvate

Arrangement where sepals or petals in a whorl touch one other at the margin.

E.g., Calotropis

Twisted

Arrangement where one margin of the appendage (sepals or petals) overlaps that of the next one.

E.g., China rose (*Hibiscus*), lady's finger flower, cotton flower

Imbricate

Arrangement where margins of sepals or petals overlap one another but not in any particular direction.

E.g., Gulmohar, Cassia

Vexillary (Papilionaceous)

Arrangement where the largest petal (standard) overlaps the two lateral (wings) that in turn overlap the two smallest anterior petals (keel/carina).

E.g., Pea flower, bean flower

Symmetry in flowers

• **Symmetric flowers:** These are the flowers that can be cut into equal halves on either sides of a plane of division.

Symmetry

Actinomorphic

Flowers that can be cut in any plane to get equal halves.

Symbol - ⊕.

E.g., Mustard flower, Datura, chilli flower

Zygomorphic

Flowers that can be cut in only one plane to get equal halves.

Symbol - %.

E.g., Gulmohar, *Cassia*, pea flower, bean flower

Orchid

Asymmetric

Flowers that can not be divided into equal halves.

Symbol - (4).

E.g., Canna

Canna

Androecium

- · Stamens are collectively termed as androecium.
- Function: It is involved in sexual reproduction.
- Symbol: It is represented by A.
- · Parts of androecium
 - Stamen: It is the male reproductive organ of a flower.

Androecium (based on stamen length)

Didynamous

Six stamens are present, two are short and four are long.

E.g., mustard flower

Tetradynamous

Four stamens grouped into two sets of equal length.

E.g., Ocimum, Salvia flower

Stamen (Based on fusion to floral parts)

Epipetalous

Stamens are attached to the petals. E.g., brinjal flower

Epiphyllous

Stamens are attached to the perianth. E.g., Lily

Stamen (Based on whether stamen is free or united)

Polyandrous

Stamens are free. E.g, lotus

Stamens are with united filaments.

E.g., China rose

Adelphous (stamens are united)

Filaments are divided into bundles.

E.g., pea plant

One distinct filament and a bunch of joint filaments

Polyadelphous

Filaments are divided into more than two bundles.

E.g., lemon

Gynoecium

- **Pistils** (also known as **carpels**) are collectively termed as gynoecium. The gynoecium is the **female reproductive organ**.
- Function: It is involed in sexual reproduction in plants.
- Symbol: It is represented by G.

Characteristic features of the gynoecium

Classification based on the position of ovary

Hypogynous

- Gynoecium occupies the highest position.
- Calyx, corolla, and androecium are present below the gynoecium.
- Ovary is superior.
- Symbol: It is represented by <u>G</u>.
- E.g., Hibiscus, mustard flower, brinjal flower

Perigynous

- Gynoecium is situated in the centre.
- Calyx, corolla, and androecium are located at the rim of thalamus.
- Ovary is half inferior.
- Symbol: It is represented by -G-.
- E.g., Rose, plum flower, peach flower

Epigynous

- Thalamus margin grows **upward**, **enclosing the ovary and fusing** with them.
- Calyx, corolla, and androecium are above the ovary.
- Ovary is inferior.
- Symbol: It is represented by G .
- E.g., Sunflower, guava flower, cucumber flower

Parts of the ovary

An ovary has one or more chambers known as **locules**.

- Each ovary bears one or more ovules.
- Ovules are connected to the ovary by a flattened, cushion-like placenta.
- A mature ovary has an ovary wall known as pericarp that encloses locules. Placenta arises from pericarp and is attached to ovules via funiculus.
- · Ovules develop into fruit after fertilisation.

Classification based on arrangement of ovules

Axile placentation: Ovules are attached to multilocular (ovary with multiple chambers) ovaries.

E.g., Tomato, Iemon

▶ Marginal placentation: Placenta forms a ridge on which ovules are present.

E.g., Pea

> Parietal placentation

Ovules develop on the inner wall of the ovary or on the peripheral part.

E.g., Cantaloupe

Ovaries become two-chambered due to false septum.

E.g., Mustard, *Argemone*

► Free-central placentation: Ovules are borne on the central axis of the ovary without any septa.

E.g., Primrose, Dianthus

Basal placentation: Ovules develop at the base of the ovary.

E.g., Marigold, sunflower

Flower - Types (based on whorls)

Flower has all four whorls. E.g., Hibiscus Gynoecium Androecium Corolla

Incomplete

one or more whorls.

E.g., Papaya flower (the male flowers lack the gynoecium and the female flower lacks the androecium)

Flower is devoid of

- · Classification of flower based on presence of sexual reproductive organ
 - > Staminate flower

Calyx

- Only androecium is present.
- It is found in dioecious plants.
- It is also found in unisexual flowers in monoecious plants.
- E.g., Male papaya flower

Staminode

- Rudimentary stamen is present.
- Stamen is sterile (does not produce pollen grains).
- E.g., Banana flower

Pistillate flower

- Only gynoecium is present.
- It is found in dioecious plants.
- E.g., Female Cucurbit flower

Bisexual flower

- Both **androecium** and **gynoecium** are present in the same flower.
- It is found in monoecious plants.
- E.g., Mustard flower

Arisaema triphyllum

Summary Sheet

Section	Flower	Pedicel	Bract	Whorls of flower
Definition	• Reproductive organ of a plant	• Stalk of the plant that connects the flower with the stem.	• Green, leaf-like structures that protect the flower	• Arrangement of sepals, petals, stamens, or carpels rising from a common point around the stem or stalk
Classification	Based on whorls • Complete flower: All 4 whorls, i.e., calyx, corolla, androecium, and gynoecium are present. E.g., Hibiscus • Incomplete flower: 1 or more whorl is absent. E.g., Papaya flower	Based on the presence of pedicel • Sessile: Pedicel is absent. E.g., Rosa indica • Pedicellate: Pedicel is present. E.g., Saffron flower	Ebracteate: Bracts are absent. E.g., Mustard flower Bracteate: Bracts are present. E.g., Tulip Spathe: Modified bract, colourful to attract pollinators E.g., Bougainvillea	(a) Based on function of whorl • Essential or reproductive whorls Androecium: Collection of stamens Gynoecium: Collection of pistils • Non-essential whorls or non-reproductive whorls Calyx: Collection of sepals Corolla: Collection of petals (b) Based on number of appendages Trimerous: Number of units of the whorls is 3 or a multiple of 3. Tetramerous: Number of units of the whorls is 4 or a multiple of 4. Pentamerous: Number of units of the whorls is 5 or a multiple of 5.

Section	Calyx	Corolla	Perianth
Definition	Collective term for sepals	Collective term for petals	Collective term for tepals (undifferentiated sepals and petals)
Features	Leaf-like, green in colour Function : Protects the bud	Shapes: Various such as bell shaped, tubular Function: To attract pollinators	It is commonly found in monocots.
Classification	Gamosepalous: Sepals are united E.g., Primrose Polysepalous: Sepals are free E.g., Rose	Gamopetalous: Petals are united E.g., Morning glory Polypetalous: Petals are free E.g., Plumeria	

Section	Aestivation	Symmetry	Androecium	Gynoecium
Definition	Arrangement of sepals and petals with respect to other members of the same whorl	When flower can be divided into equal proportions on either side of a plane of division.	Group of stamens	Group of pistils or carpels
Features	It is important for taxonomic classification of plants.	Not all flowers possess symmetry	Male reproductive organ of a plant. Has 3 parts: Anther, filament, connective	(i) Female reproductive organ Stigma - Style - Ovary (ii) Locules - Chambers in the ovary (iii) Ovule - Contained within the ovary and connected to the ovary by the placenta

Classification

Valvate: Sepals or petals in a whorl touch one other at the margin.

Twisted: Margins of the sepals or petals overlap that of the next one.

Imbricate:

Margins of sepals or petals overlap one another but not in any particular direction.

Vexillary or papilionaceous:

Largest petal
(standard) overlaps the two
lateral (wings) that
in turn overlap the
two smallest
anterior petals
(keel/carina).

Actinomorphic:

Any plane passing through a flower can divide it into equal halves.

Zygomorphic:

Only one plane passing through flower can divide it into 2 equal halves.

Asymmetric:

Cannot divide flower into 2 equal halves.

Based on stamen length

Didynamous: 4 stamens grouped into 2 sets of equal length

Tetradynamous: 6 stamens present, 2 are short, 4 are long

Based on fusion of stamen with other parts

Epipetalous:

Stamens attached to petals

Episepalous:

Stamens attached to sepals

Based on whether stamen is free or united

Polyandrous:

Free stamens

Adelphous:

United stamens

Monoadelphous:

Single bundle of united stamens

Diadelphous: 2 bundles of united

stamens

Polyadelphous:

More than 2 bundles of united stamens

Based on number of lobes of anther

Monothecous:

Single-lobed structure

Dithecous:

Dual-lobed structure

Based on whether pistil is united or free Monocarpous:

Single pistil

Apocarpous:

More than 1 pistil present freely

Syncarpous: More than one united pistil present.

Based on position of ovary Hypogynous:

Calyx, corolla, and androecium present below ovary

Perigynous:

Calyx, corolla, and androecium present at rim of thalamus

Epigynous: Calyx, corolla, and androecium present above ovary

Based on ovule arrangement

- (i) Axile placentation
- (ii) Marginal placentation
- (iii) Parietal placentation
- (iv) Free-central placentation
 - (v) Basal placentation

Symbols for Floral Formula

S.No.	Floral part	Classification	Symbol
1		Ebracteate	EBr
	Bracts	Bracteate	Br
2	Calyx	Gamosepalous	For n sepals in a flower
		Polysepalous	K _n
3	Corolla		For n petals in a flower
		Gamopetalous	C _(n)
		Polypetalous	C _n
4	Perianth		Р
5	Symmetry	Actinomorphic	\oplus
		Zygomorphic	%
		Asymmetric	(至)
6	Androecium		А
7	Gynoecium	Hypogynous	<u>G</u>
		Perigynous	-G-
		Epigynous	G