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GRAVITATION

Every body in the Universe attracts every other body in
the Universe. This force of attraction between any pair of
bodies in the Universe is called gravitational force. It is a
fundamental force and also is the weakest force in nature.
Any body which has some mass (be it a very small mass like
that of an electron or a very large mass like that of Sun or

L

stars) exerts a gravitational force on any other body having
some mass. Thus gravitational force is due to the mass of
the interacting bodies. The law which governs the gravi-
tational force between any pair of bodies in the Universe is
called ‘Newton’s Universal law of gravitation, named after
Sir Isaac Newton who discovered this law.

UNIVERSAL LAW OF GRAVITATION

According to Newton’s universal law of gravitation, ‘every
particle in the universe attracts every other particle in the
universe with a force that is directly proportional to the prod-
uct of the masses of those particles and inversely proportional
to the square of the distance between those particles. This
force acts along the line joining the two particles.”
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Fig. 3.1

Consider two particles 1 and 2 of mass ‘m,’ and ‘m,’ re-
spectively, separated by a distance ‘r’ The gravitational force
of attraction between the two particles (F), as per Newton’s
universal law of gravitation is

Foemm,and F 4.

2
r
m, m
F ‘2 Z or
r
1:_Gmlmz
=—12,
r

where ‘G’ is a constant of proportionality called universal
gravitational constant. Particle 1 exerts a force on particle 2
(1321 ) and it is an attractive force directed towards 1 from 2.
Similarly, particle 2 exerts a force on particle 1 (Flz) and it
is an attractive force directed towards 2 from 1.
Thus the gravitational force between 1 and 2 form an
action-reaction pair.
B,=-F, ;F=[F,|=[E,| then F )

2
r
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Ifm1=m2=1kgandr=lm,then

_Gmm, GxlIxl

F= = T G

Thus the universal gravitational constant ‘G’ is nu-
merically equal to the gravitational force between two
particles of unit mass each, separated by unit distance.
The value of ‘G’ was first experimentally established
by Henry Cavendish. The SI unit of ‘G’ is N m? kg™
and its dimensional formula is M™'L*T2 The value of
G =6.67 x 107" N m? kg™.

This law is called universal law of gravitation because
it holds good irrespective of the nature of the objects (like
size, shape, mass etc.) and at all places and at all times. The
value of G does not depend upon the mass of the particles,
the distance between the particles or the medium separating
them.

Characteristics of gravitational force

(i) The gravitational force between any two bodies form
an action-reaction pair. The force on each body due
to the other body is of same magnitude but opposite
in direction.

(ii) The gravitational force between any pair of bodies is
always attractive in nature.

(iii) The gravitational force between a pair of bodies is
independent of the presence or absence of any other
body in their neighbourhood

(iv) The gravitational force between any pair of bodies is
independent of the medium separating the bodies.
Hence protecting a body (or shielding a body) from
gravitational force is impossible.

(v) Gravitational force is a central force i.e., it acts along
the line joining the two interacting particles.

(vi) Gravitational force is the weakest force in nature.
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(vii) Gravitational force is negligibly small in case of
light bodies but becomes quite significant in case of
massive bodies like planets, satellites and stars.
Gravitational force is a long-range force i.e., it is
effective even if the distance between the interacting
particles is very large. For example, the gravitational
force between Sun and planet Pluto exists even though
the distance between them is large and is the cause for
the motion of Pluto around the Sun.

Gravitational force is a conservative force. Hence
potential energies are associated with gravitational
forces

(vii)

(ix)

@
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Notes:

Newtons law of Universal Gravitation is strictly applica-
ble to particles or point masses. If the sizes of the bodies
are very small compared to their distance of separation,
such bodies can also be treated as particles. It can also
be shown that a body having spherical symmetry of mass
distribution can be treated as a particle, with mass con-
centrated at the centre of the sphere only for gravitational
interaction at points outside the sphere. If the interacting
bodies cannot be reduced to particles, integration meth-
od will have to be used for determining the gravitational
force.

CONCEPT STRANDS

Concept Strand 1

Calculate the gravitational force between an electron (mass
= 9.1 x 10" kg) and a proton(mass = 1.67 x 10% kg)
separated by a distance of 1 m.

Solution

Since the distance of separation (r = 1 m) is very large
compared to the sizes of electron and proton, we can
treat them as particles and apply the law of universal
gravitation.

GM,M, 6.67x10" x1.67x10™ x9.1x10""
= r2 = 12
=1.01x 109N

As this force is very small (in comparison to the elec-
tric force between an electron and a proton), gravitational
force on small charged particles are usually neglected.

Concept Strand 2

A uniform solid sphere of mass m, is separated from a uni-
form rod of length ‘L’ and mass m,. Calculate the gravita-
tional force exerted by the sphere on the rod.

my le (I

>
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Solution

Due to spherical symmetry, the uniform sphere of mass m_
can be considered as a particle of mass m_ at the centre of
the sphere (This is explained in later sections of this chap-
ter). However, we cannot treat the uniform rod as a par-
ticle. Hence, consider an element of the rod, of length dx,
at a distance x from the centre of the sphere. This elemental
length of rod can be treated as a particle.

3
v
N

Mass of elemental rod, dm = (n;f de

Newton’s law of universal gravitation can be applied
between m and dm
. Gravitational force on the elemental rod

dF = Gm dm _ Gmm, m

2

x* Lx”

Total force on the rod,

< Gm m,dx
S
GmmzrL "dx
=
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_ Gmym, ) Tﬂg Gmm, (_l}ur Ifr>>L,thenr+L=r
L X=r xz L X £
2 T SHSH
- _Gmlmz[ 1 _lJ _ _Gmlmz [r—(L+r)] : o
L L+r r L L r(L +iT ) Hence if the sphere and rod are separated by a very
-Gmm, o -L _ Gmm, large distance, much larger than the length of the rod, then
L r(L + r) r(L +r) the rod can also be treated as a particle.

Superposition principle of gravitational forces _

The gravitational force between any two particles is inde-
pendent of the presence or absence of other particles. This
gives rise to the superposition principle of gravitational
forces. According to the superposition principle, the gravi-
tational force on a particle of mass m, due to a distribution
of particles of masses m , m,.....,m_around it, is the vector
sum of the gravitational forces exerted on m by each of the
other particles m , m,....m , the forces between each pair
being independent of the other particles

For example

Consider a distribution of six particles (m, m,, m,, m, m, Fla, 30
and m ) around a particle of mass m as shown \ s Y,

- —Gmm, , Gmm

b F, = gravitational force on m due to m , m,.....,m_as
01 - Y -
%]

I, =- L s o e
1 ma 1 per superposition principle is

E =F, +E, +F, +F, +E, +F,

- =6
: - =~Gm Y =%
i=1

.......................................... |?|
i

CONCEPT STRAND

Concept Strand 3 D a C

Four identical particles, each of mass m, are placed at the
corners of a square of side a. Calculate the net gravitational
force on each particle.

Solution

Let us consider a particle of mass ‘m’ placed at corner A of A
the square of side a
Gravitational force on A due to particleat D is F, and

IIT-NEET-PHYSICS A EPSTUDY CIRCLE
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a
Gravitational force on A due to particle at Bis F, and

,along AD

F1= |E|: G::m

E = |E|=—Gm—m=—(£,alongAB

2 2
a

Gravitational force on A due to particle atCis F, and

AR

i ( along AC

2

(V2)

As per superposition principle, net gravitational force

onAis F=F +FE +F
= E +F3

F,=[E|=

2 >

® i

L T

Gn:z [\/5+%] ] (242 +1)Gm’
a

2a’
The magnitude of the net gravitational force on
the particles at B, C and D also will be of magnitude

(242 +1)Gm?
2’
particle at B), along CA (for particle at C) and along DB

(for particle at D).
The gravitational force between larger bodies (other

than particles) can be determined by using the superposi-
tion principle.

perpendicular to F, )

|I_3| = ,along AC

but their directions will be along BD (for

GRAVITATIONAL FIELD

The presence of a particle/body (or a mass) modifies the
space surrounding the particle/body. This modified space
surrounding a particle or body (or anything having mass) is
called the gravitational field of that particle or body. Any other
mass brought inside this gravitational field will experience a
gravitational force due to its interaction with this gravitational
field. The field concept is very useful in dealing with non-
contact forces (or action at a distance)

We know that the net gravitational force on a parti-
cle may be due to another single particle or due to a
distribution of large number of particles. The advantage

of the gravitational field concept is that it helps us to
measure the net gravitational force on a mass, with-
out bothering whether it is a single particle or a distri-
bution of particles that exert this force on the concerned
mass.

Every point in a gravitational field is characterized by
two properties, out of which one is a vector quantity and
the other is a scalar. The vector quantity is called Gravi-
tational Field Intensity E and the scalar quantity is called
Gravitational Potential V.

GRAVITATIONAL FIELD INTENSITY (E)

Gravitational field intensity E at a point in a gravita-
tional field is a vector quantity, defined mathematically as
E= It i, where Am is an infinitesimally small mass
Am -0 Am
(but not zero) placed at the point, where it experiences a
gravitational force F. To get a practical measure of the
gravitational field, it is defined as the gravitational force
exerted on a unit mass placed at that point. The SI unit of
gravitational field intensity is newton per kilogram (N kg™)

IIT-NEET-PHYSICS

and its dimensional formula is M’LT2 (same as the dimen-
sional formula of acceleration).

The gravitational field intensity (E) is also known as
strength of the gravitational field or simply Gravitational
Field. If a particle of mass m is brought to a point, where
the gravitational field is E, the net gravitational force (F)
acting on that particle at that point is given by

F=mE

A EPSTUDY CIRCLE
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Concept Strand 4

Thegravitationalfieldatapointisgivenby E = (6i + 8 + 10k)

N kg'. Calculate the net gravitational force exerted on a

particle of mass 5 kg placed at that point.

Solution
F=mE
=5x [6i+sj+1of<] N
. [30i‘+4oj+501'<] N

Magnitude of the gravitational force F = ’F‘

_\30° +40° +50°

= /900 +1600 +2500 = /5000

=70.71 N

This gravitational force acts in the same direction as
the gravitational field intensity (E) at that point.

Note:

In this problem, we do not know anything about the source/
sources which exert this net gravitational force on the par-
ticle of mass 5 kg. Hence it is not correct to say that the
gravitational force exerted by a field is in the direction of
the source.

Gravitational field intensity due
to a particle or point mass

Consider a particle of mass M, placed at a point O. We want
to determine the gravitational field intensity due to M, at a
point P near it. OP is the position vector T (taking position
O as the origin).

==l
]

-

-

oe
N

Fig.3.3

CONCEPT STRAND

If a point particle of mass m is placed at P, the gravita-

o towards O (i.e., along PO)

tional force on it will be G

GMm .
r

2
 §

|

The gravitational field intensity at P at the location of
the point mass m is given by

5. F._oM,
m r

This is defined for all points, wherever the point mass
is kept except at the location of the particle of mass M.

Concept Strand 5

Three particles of masses 1 kg, 2 kg and 3 kg are placed at
the corners of an equilateral triangle of side 1 m. Calcu-
late the magnitude and direction of the gravitational field
intensity at the location of the 2 kg mass. What is the net
gravitational force on the 2 kg mass?

Solution

This problem can be solved by two methods

IIT-NEET-PHYSICS

C3kg
im im
F,
60°
2 kg# > 1 kg

Method 1

Calculate the force F, and F, on the 2 kg mass due to
1 kg and 3 kg respectively and find out the resultant

A EPSTUDY CIRCLE
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force F=F +F,, which is the net force on 2 kg mass.
Gravitational field at the location of 2 kg mass is given by
F

Method 2

Let E, be the gravitational field at the location of 2 kg mass
due to 1 kg mass and E, be the gravitational field at the
same location due to 2 kg mass.

We have
= —-Gm,, s
E, =r—2‘r1 (m, =1kg,r =1m f, alongBA)
1
E = Gl =G, along AB
@
Similarly,
- Gm, , A
E,=- t, (m,=3kg,r,=1m, 1, =along CA)
2
Gx3
,= z =3G, along AC

By superposition principle, the gravitational field at
A(location of 2 kg mass) is given by

O i

_ G +(3G) +2% G x3G x cos60’
(- © = 60° between El and EZ )

= 1/G’ +9G* +3G?

= V13G> =/13G Nkg

13 x 6.67 x 107" N kg™!

=24.05 x 10" N kg™!
If E makes an angle of ¢ with AB,

E,sin®
tand = e B (From parallelogram law of vectors)
E, +E, cosO
_ 3Gsin60"  3sin60°
G +3Gcos60° 1+ 3cos60°

343

— =1.039
5

- ¢ =tan"'(1.039) = 46.1°

Hence the gravitational field at A (location of 2 kg
mass) makes an angle of 46.1° in the anti-clockwise direc-
tion with AB.

The net gravitational force on 2 kg mass,

F=mE
=2x24.05x 107!
=48.1 x 100" N

Gravitational field intensity due to a thin uniform
ring at a point on its axis

Consider a thin, uniform ring of mass M and radius a with
centre at O. The gravitational field intensity (E) due to this
ring at a point P on the axis of the ring, distant r’ from the
centre of the ring is to be determined.

il . s ol o 5 N
a
dEsin¢
O } P
r »|
B

IIT-NEET-PHYSICS

Mass
circumference

Let A = mass per unit length of ring

M

27ma
Consider an element of the ring, of length ‘d¢’ at A. Its

Md/
2Ta

mass dm = Ad/ =

The gravitational field intensity at P due to this elemen-

tal ring at A is dE = Gdm , along PA
AP makes an angle ¢ with OP. Now dE can be resolved
as dE sin¢ perpendicular to the axis OP and dE cos¢ along
the axis as shown.
dE sin$ component gets cancelled by the field of a dia-
metrically opposite element at B. Hence the effective com-
ponent of all ring elements is only dE cos¢

A EPSTUDY CIRCLE
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dEcos¢ = G

cosd
= ZGM cos@ df( v dm= Mdf)
x° x2ma 2ma

. The resultant gravitational field at P due to all ring
elementsis E = IdE cosd, along PO

E- [

cosd d/

x><7ca

¢=2ma

M - COSQ J' d¢ =

21tax

GM r
= —.— (

X X
_ GMr

3
X

_ GMr
(@® + rz)%

cosd = L)
b'e

[ x=(*+ xz)%]

E= GMr
@ +r1? )%
Notes:
(i) At the centre of the ring (point O),r =0

= E = 0. Hence the gravitational field at the centre of
the thin, uniform ring is zero.

(ii) Ifa<<r,E= G_M}/r = g So for points on the axis
@)z T

which are at a very large distance from the centre of
the ring, the ring can be treated as a particle (or point
mass).

(iii) The position where the gravitational field E becomes

maximum or minimum is determined by putting

dE
[T
g g.  GMr
(@® +r? )%
dE
—0>r=t —
dr N
At +% , E is maximum negative (minimum) and
2

at ——=, E is maximum positive (maximum).

The variation of E, along the axis of the ring on
either side of the ring is as shown below in Fig.3.4.

IIT-NEET-PHYSICS

O i

4 N

e, Fig.3.5 /

Gravitational field intensity due
to a uniform disc at a point on its axis
Consider a uniform disc of mass M and radius a with cen-

tre at O. The point P is on the axis of the disc at a distance
r from centre O.

4 )

dx

N Fig.3.6 )

The disc can be dividend into thin, uniform rings.
Consider one such ring of radius x and width along the disc
equal to dx.

Mass of disc

Surface Area of disc

Mass of ring dm = x surface area

of ring

( ](2 xdx) = —xdx
Ta a’

The gravitational field at P due to this elemental ring
is

Gdmr
dE = -~ along PO
(x? -+-r2)A
dE =Ly.¥xdx = ZGIZVII' ) X : dx
(x*+r%)2 2 a (¥ +r2)é

A EPSTUDY CIRCLE
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Gravitational field at P due to disc,

2GMr ' xdx

E = dE =
I a’ x:O(x2+rz)%
_2GMr| 1 | 2GMr|_l_ 1
a* | X“ +r a’ Lr a’ +r?
B 2GM [1 B r
a* [ \/az +r
= 2GM , where cos0 = )
a’l +r°
2GM
E= [1 - cos6:|
a’
Notes:

(1) When P is very near to centre O, 6 =~ 90°, cos® =0
GM .
= E = —— (maximum value)
a

When P is far away from 0,6 =0°,cos6 =1 =E=0
(2) If the disc is infinitely large, cos® = c0s90° = 0 and
5 2GM

for all points on the axis.

Hence the gravitational field due to an infinitely
large disc along its axis is uniform (i.e., it is independent
of the distance from the disc).

Gravitational field due to a thin, uniform

shell (hollow sphere)
3 N
Q) ado
do IS
4
asiNod = a4
0 90°

Fig. 3.7

IIT-NEET-PHYSICS
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Consider a thin, uniform spherical shell of mass M and ra-
dius a, with centre at point O. We want to calculate the gravi-
tational field due to this shell at a point P, distant r from O.
Figure 3.7 shows a spherical shell. The shaded area rep-
resents a thin ring of radius a = asin6 and width QQ = ad6

PQ = £ and angle OPQ is ¢
From  APSQ, we have PQ? = PS? + QS?

ie., £2=[r- OS]* + Q$?
=r2-2r(0OS) + (0S)? + QS?

= P=r*+2a2-2r(0S) [ QS*+0S=
=r? + a? — 2racosO Cp

0Q = ]
OS = acos0)

—(@)

£* = a? + r* — 2arcosO

Area of shaded ring = circumference x width
=2ma, x add
= 27asin®.add
= 2ma’sin6do

Mass of shaded ring, dm = x area of ring

Area of shell

x 2ma’ sin0do

47ta

= % sin0do — (ii)

The gravitational field at P due to this ring is
dE = de cosd (-

cancelled for diametrically opposite points)

sing components of the ring get

- dE= GM smGd? cosd D)
2 L
From APOQ, we have a2 = ¢? + r2 — 2/rcos¢
" £ +r* -2t W)
coshp= —— — (iv
2/0r
We have £2 = a2 + r2 — 2arcos6 from (i)
Differentiating (i), we get
24d¢ = 2arsin6dO
sinfd6 = Z;d( —(v)
ar

Using values from (iv) and (v) is (iii), we get

ry cm[l_@ =Y iy
4ar? L 2

ie, E= jdE J‘4ar{ @ _r)}df

A EPSTUDY CIRCLE
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2 25 %
ie, E= Gm (+(a .t
4ar’ ? i

1

The following cases are of particular interest:

(i) P outside the shell (r > a)
In this case, value of £ varies from £, = (r—a) to £, =

goGm[ @-r)]"
4ar2|_£+ £ a

_ Grr;[(r+a)+(a_r)_{(r—a)—(a+r)}]

4ar

(r+a)

4ar

Gm
E = 5

calculation 5f gravitational field at external points of a
thin, uniform spherical shell, the shell can be treated as
a point mass(particle) kept at the geometric centre of the
shell.

(ii) P inside the shell (r < a)
In this case, £ varies from £, = (a—r)to £,=(a +r)

Gm{ (aZ—rZ)}”'
E= l+ 7

4ar’
_ sz l:(a+r)+(a_r)_{(a—r)+(a+r)}]

4ar
. E = 0 for inside points of shell. Hence, the
gravitational field inside a thin, uniform spherical shell
due to the mass of the shell, is zero.

for all outside points. Hence, for

\

1
1
1
1
1
1
1
1
1
1
1
:
a

\_ Fig.3.8 y

Variation of gravitational field due to uniform, thin
spherical shell of radius ‘@

IIT-NEET-PHYSICS

L JT

Gravitational field intensity due
to a uniform solid sphere

Consider a uniform solid sphere of mass M and radius @’
with centre at point O. Let us evaluate its gravitational field
intensity at a point P, distant v’ from O.

(i) P isoutside the sphere (r > a)

~ R

R
L/

Fig. 3.9
N - y

The solid sphere can be divided into concentric
uniform thin shells, each of mass dm
The gravitational field at P due to thin shell is

R
r
Total gravitational field at P due to solid sphere
Gdm _GM
T2
r

E= g for outside points
r

Hence, a uniform solid sphere can be treated as a point
mass(particle) kept at its geometric centre for evaluation
of gravitational field at all outside points of the solid
sphere.

(ii) P isinside the sphere (r < a)

- ™

\_ Fig.3.10 Y,

A EPSTUDY CIRCLE
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In this case, we can treat the solid sphere as made of
two parts, namely, (1) solid sphere of radius r’ and
(2) uniform spherical shell of inside radius r and out-
side radius a. The gravitational field at P is due to the
superposition of the gravitational fields due to these
two portions. We know that gravitational field at P due
to the shell is zero (as P is in the inside of the shell).
Hence gravitational field intensity at P is due to a solid
sphere of radius r (instead of a).

M 4 , M,

Mass of reduced sphere, M’ = ——— x —nr’ = —x
(4 3] 3 a
—Ta
3
GM'
Gravitational field at PisE = >
r
GM , GMr
- rra’ a

E= (g)r for inside points of solid spherei.e., Eccr
a

for inside points

® i

L T

Hence the gravitational field intensity at inside points
of a uniform solid sphere, is directly proportional to the
distance of that point from the geometric centre of the
solid sphere.

Since r = 0 at the centre of the solid sphere, the gravi-
tational field intensity at the centre of the solid sphere
is zero.

p

E(Nkg™)
Eoxr E £ 1
' o —
Vv ' r e r?
O a =r (m)

\_ Fig.3.11 )

Variation of gravitational field intensity due to a
uniform solid sphere of radius ‘@’ is shown in Fig.3.11.

GRAVITATIONAL POTENTIAL (V)

The gravitational potential at a point is equal to the work
done by an external force on a particle of unit mass in
bringing it from infinity to its position in the gravitational
field. Gravitational potential is a scalar quantity. Its SI
unit is joule per kilogramme(] kg™') and its dimensional
formula is M°L*T 2. While bringing the unit mass from
infinity to its position in the gravitational field, at ev-
ery point in the path, the applied external force is equal
and opposite to the gravitational force on the particle
at those points i.e., the particle is brought slowly from
infinity to its position so that its kinetic energy is zero at
all positions. Hence gravitational potential (V) can also
be defined as the negative of the work done by the gravita-
tional force as a particle of unit mass is brought from in-
finity to its position in the gravitational field. If “W” is the
work done by an external force, in bringing a particle of
mass ‘m’ from infinity to its position in the gravitational
field, then the gravitational potential at that point (V) is
given by

s
m

Also W =-W _, where W = work done by gravitation-
al force in bringing the particle from infinity to its position

IIT-NEET-PHYSICS

and W, = I?G.a, where F, = gravitational force on par-

ticle and dr = displacement of particle

r [Ra
= W=-[E.dr i oy e OO, .
» m m m
=_jF_ca
c,,I’Il
V=—j‘EE

(2

Conventionally the potential of a particle at infinity is
taken as zero.

Gravitational potential (V) at a distance r
from a point mass (M)
Consider a particle of mass M placed at point O. We want

to determine the gravitational potential at point P, distant
r from O.

A EPSTUDY CIRCLE
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Fig. 3.12

The gravitational force acting on a particle of unit mass
at P is the gravitational field intensity at P due to the mass
M atO.

GM
=E= r—z, along PO.

If the unit mass is displaced from P through a small
distance dr to Q, the small amount of work done by gravi-
tational force

dW, = E.dr = Edr

=Edrcos180°
(*+ E and dr are in opposite directions)
GM
=-Edr=—-——dr
r

Work done by the gravitational force in transferring
the unit mass from infinity to P is given by

W, = jclwG [

Gravitational potential at P is given by

GM ——GM[l—iJ
r2

r [ee)

_GM _ GM _ GM

Since gravitational potential at infinite distance is

GM
considered to be zero [i.e.,—=0), the gravitational
©

potential comes out to be always negative

Relation between gravitational field intensity
(E) and gravitational potential (V)

Since V is obtained by integration of E, the converse,
namely differentiation of V gives E. Since V is in general
V=V(,y2),

E=-VV,

IIT-NEET-PHYSICS

O i

where V= il + i} + ik Jie.,
ox oz

oo, v, v

= o B

is the relation between gravitational field intensity E and
gravitational potential V
When V depends on x alone,

E = —d—v,where E= |E|
dx

E, - -dv i dv

Similarly,
dy dz

dv
we can also write E = 3 when V is spherically sym-

3 r
metric

Gravitational potential due to a thin
uniform ring along the axis of the ring

Consider a thin, uniform ring of mass m and radius a with
centre at O.

\_ Fig.3.13 y

An element of length d/ of the ring at A has a mass dm
_ Md¢
2ma
The gravitational potential at P on the axis of the

ring, distant r from the centre O, due to dm is given by
v -G dm

Total gravitational potential at P due to the ring

V= jdv j—Gd—m =——

-GM

V=——7
(@* +r2)A
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At the centre of the ring, r =0
GM

Vs,
a

Ifr>>a, V= - i.e., for distant points along the

axis, the thin uniform ring behaves like a particle of mass m
at its centre.

4 VUd kgt )

« o =“m)
a

K Fig. 3.14 /

Variation of gravitational potential along the axis of a
thin, uniform ring of radius ‘@’ is given in Fig.3.14.

Gravitational potential due to a
thin uniform spherical shell

4 N

Q ado
do I
7/ 1asiNg = a3
0 o 90° ) -
59 )'es / r ~

\_ Fig.3.15 )

Consider a thin, uniform shell of mass M and radius a with
centre at point O. The mass of the element ring(shaded

IIT-NEET-PHYSICS
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area) is dm = %sin@de (already derived in the section on

gravitational field)
Also /2 =a* + r* — 2arcos0 (from A POQ in Fig. 3.15)
2/d/ = 2arsin6dO

= sin6db = lfdé
ar
S.dm= N;[df (This is also derived in the section on
ar
gravitational field)
The gravitational potential at P due to dm is given by
G dm
dV=- (for ring)
_ GM/d/
2ar/
ie., dV=- GMas
2ar

As we vary 6 from zero to 7, the rings formed on the
shell cover up the whole shell. The potential due to the
shell is obtained by integrating dV within the limits 6 = 0
toO=m

(i) P outside the shell (r > a)
2= a%+ r? — 2arcosO
= when0=0,/=r—aandwhen0=x,/=r+a
r:(r+z) GM

V= IdV:lzz[_a)—Edé

r+a

GM

2ar

= ——[(r +a) —(r - a)]

r—-a

GM

V=- L] for all external points
r

Hence, the thin uniform shell can be treated as a point
mass, of same mass as the shell, placed at the centre of
the shell for calculation of gravitational potential at all
external points.

(ii) P inside the shell (r < a)
In this case, when © =0, / = a — r and when 0 = =,
f=a+r

a+r

V= jdv J'-_dg___

2ar

e d

V= —ﬂ (inside the shell, V is independent of )
a
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Hence, the gravitational potential due to a thin, uniform
spherical shell is the same at all points inside it and also
on its surface. i.e., the gravitational field is uniform.
Hence the interior of a thin, uniform spherical shell is
an equipotential volume.

4 N

V(J kg™)

SCTIS—

V = constant !

L Fig.3.16 )

Variation of gravitational potential due to a thin, uni-
form spherical shell of radius ‘@’ is shown in Fig. 3.16.
We know that E = 0, inside a spherical shell due to its

mass alone. Also E = —d—V =5 i—v =0 = V = constant in-
r r

side a thin, uniform spherical shell. Thus, it is not necessary
that if the gravitational field is zero at a point, the gravita-
tional potential is zero at that point.

Gravitational potential due to a
uniform solid sphere

(i) P outside the sphere (r > a)
Consider a uniform solid sphere of mass M and radius
a, with centre at O.

4 R

()
N\SZ/

Y Fig.3.17 D

IIT-NEET-PHYSICS
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The solid sphere can be divided into a large number of

concentricuniformsphericalshells,eachofmassdm.The

gravitational potential at P due to the shell of mass dmis
Gdm

r
Total gravitational potential at P due to the entire
sphere,

dV=-

[ Gdm _ GM

r

V=jdv=

GM
V = ——— for all external points
r
Hence a solid uniform sphere can be treated as a
particle at its centre, having the same mass as the sphere,
for calculation of gravitational potential at all external
points.

(ii) P inside the sphere (r < a)

4 N

f
o/

N Fig.3.18 )

The gravitational potential V at P is due to

(a) a uniform solid sphere of radius r and mass M,
and

(b) a hollow sphere of outside radius a and inside
radius r
5. V=V, +V,_, where V, = potential due to solid

sphere of mass M, and

= potential due to hollow sphere

M 4 , M

M. = X —qr’ =
S (4 4} 3 a’
—Ta
3
GM 3 o 2
7, s s :_Gl\;lr _ GIZ/Ir Q)
r a’r a

For calculation of V,» we take an elemental shell of
radius x and thickness dx(x . =r,x =a)

3Mx’
M Amxdx = x“dx

4 ' .
(—na3 a
3

dM,, =
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__ GdM,; -3GMxdx

v, = = -
X a
"¢ -3GMxdx 3GM |x2 r
v, = [av, _j T2
3GM, , ,
=- a’-r
2a’° ( )
GMr* 3GM
V=V +V, =co -2 (a2 —p?
N H a3 2a3 ( )
= _C;TI\;I [2r? + 32> - 3r?] = - Gh:[ [I‘!a2 - rz]
GM
V=- 3a% —r’
for interior points. At the centre of the sphere, r =0
sy, Yo
2 a

@—.uﬁu.jn.

L T

[

V(J kg™
Y

;r(m )

Y Fig.3.19 )

Variation of gravitational potential due to a uniform
solid sphere of radius ‘@’ is shown in Fig.3.19.

GRAVITATIONAL POTENTIAL ENERGY

Since gravitational force is a conservative force, we can de-
fine gravitational potential energy associated with a system
of particles, interacting through gravitational force.

We had earlier defined the gravitational potential V =

W,
——=, where W, = work done by gravitational force on a
m

particle of mass m, in bringing it slowly from infinity to its
position in the gravitational field.

Since —W/, is the negative of the work done by a con-
servative force, it is equal to the change in potential energy
between the final and initial positions(-.- AU =-W _, where
AU equals the change in potential energy)

y_AU_U()-U(e)

, where

CONCEPT STRAND

U(r) = gravitational potential energy of the particle at
position r

U(w) = gravitational potential energy at infinity (con-
ventionally taken as zero)

v U®
m

That is gravitational potential at a point in a gravita-
tional field is the gravitational potential energy of a unit mass
placed at that point.

~. U = mV is the gravitational potential energy of a
particle of mass m, placed at a point in a gravitational field,
where the gravitational potential is V. Gravitational poten-
tial energy of a particle is zero at infinite distance or it is
always negative.

Concept Strand 6

What is the gravitational potential energy of a particle of
mass 5 kg, when placed at a point where the gravitational
potential is —10°¢ ] kg '?

Solution
U=mV
=5x(-107°)]
=-5x10"°]

IIT-NEET-PHYSICS
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Gravitational potential difference

The gravitational potential difference between two points
in a gravitational field is the change in potential energy of
a particle of unit mass, when it is moved from one point to
the other, against the gravitational force.

A B

I
Val

Fig. 3.20

Let A and B be two points, at gravitational potentials
V, and V_ respectively. If a particle of mass m is placed at A,
its potential energy at A is U(A) =mV, — (i)
If this particle is moved very slowly from A to B, at B,
its potential energy is U(B) = mV — (ii)

AU = change in potential energy
=U(B) - U(A)
=mV,-mV,=m(V,-V,)
Potential difference between A and B is given by

_ AU _ m(Vy-V,)
m m

AV V.-V

B A

If Aisatinfinity, V,=0=> AV =V,

i.e., Gravitational potential at any point in a gravitational
field is the change in potential energy of a particle of unit

mass brought from infinity to that point in the gravitational
field.

Gravitational potential energy of a
system of two particles

The gravitational potential energy of a system of two particles
is the negative of the work done by the gravitational force
in assembling the system by bringing the particles from
infinity to the desired configuration.

Consider two particles of masses m and m,, placed at
A and B respectively, separated by a distance r’

my4

m‘

Fig. 3.21

If we consider that these particles were initially at infi-
nite distance, initial potential energy of A=m V_=0 and
initial potential energy of B=m,V_=0 (- V_=0)

IIT-NEET-PHYSICS
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- U, = Initial potential energy of the system =m V_
+m\V_=0

If particle m was brought from infinity to A, no work
is done as there is no gravitational field(or force). But m,
sets up a gravitational field all around A so that gravita-

G
tional potential at Bis V, = — =
r
Potential energy of m, when it is brought to B is =
Gmm,

mV,=-

r
.. Total potential energy of system of A and B
~ Gmm, -Gmm,

r I

Ue— Gmm,

r

This is the potential energy of the two particle system.
If we consider m, was brought to B first from infinity, it

will produce a gravitational potential at A which is V, =
Gm,

r
The change in potential energy of m, when it is brought

Gmm,

toAisU=m\V, =-
r
Hence it is immaterial how the particles were brought

to their configuration. The final energy of the configuration
-Gm m
is the same and is U = ———2
r

Gravitational potential energy
of three particle system
Let us consider that all the three particles were at infinite

distances apart initially so that they do not exert any gravi-
tational force on each other.

il C "
ms
31
PX]
A »B
my M2 ma

_ Fig.3.22 )

If m was brought first to A, no work is done as there is
no gravitational force.

A EPSTUDY CIRCLE
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U, = 0 (single particle system where V = 0)
Now m establishes a gravitational field all around it
Gm,

132

When particle m, is brought to B, the potential energy
of the two particle system of m and m, is U,, = m,V,, =
Gmm,

and the potential at B due to AisV, = —

rlZ

Gm
The gravitational potential at C due to A is——— and

I}l

G
atiCdueto Bis ———2

1}3

Hence the potential energy of 2 particle system B and
G
C B, = — 2

r}3

and the potential energy of 2 particle system Cand Ais U,
Gm,m,

131

Hence the total gravitational potential energy of the 3
particles system is

U=UAB+UBC+UCA

__Gmm, Gm,m, Gm,m,
I}Z 153 I}l
) mm, mm, mm | . o
ie, U=-G| L2423 3 ,is the gravitational
r r r

12 23 31

potential energy of a three particles system.

Note:

n(n-1)
If there are n particles in a system, they form

pairs
of particles. The total gravitational potential energy of the

system is the sum of the gravitational potential energy of
all such pairs.

‘Self energy’ of bodies

The energy possessed by a body due to interaction of the par-
ticles inside the body, is called the self energy of the body.

For a single particle, there is no self energy. For other
bodies, self energy of the body is the negative of the work
done by the gravitational forces in assembling the body
from infinity to their corresponding configuration to make
the desired body.

Self energy of a thin, uniform hollow sphere

Consider a thin, uniform hollow sphere of mass m and ra-
dius R. Its initial mass is zero and as particles of mass dm

IIT-NEET-PHYSICS
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get added to it, its mass increases (becomes more positive)
while potential energy decreases(becomes more negative).

When the mass of the shell is ‘m; if a particle of
mass dm is added to the shell, the potential energy of the
system is

dU=-Vdm = Gdem , where V = potential at surface

-Gm
R
Total potential energy of the system(self energy)
U m=M o 2
u=fau="] Gm, _ Glm’[" _-GM
L R R[2| 2R
GM?

2R
is the self energy of a thin, uniform spherical shell of mass

M and radius R.

Self energy of a uniform solid sphere

Consider a uniform solid sphere of mass M and radius R.
Initially, its mass is zero as no particle is in the system. As
particles are brought from infinity, both mass and radius
keep on increasing.

4 N

)

\_ Fig.3.23 -

At an instant, when its radius is r, its mass is m, so that

Gm
the potential at its surface is dV=———
r

When a small particle of mass dm is added to the sys-
tem, potential energy of the system is dV dm.

ie., dU = —G—mdm
r

— (i)

But m = volume x density

, M M-
= —xr® x =

A EPSTUDY CIRCLE
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2
dm= M4 — ()
3 2 2
dU=—G—mdm - .3Mr dr A ridr
r R® R? R®
=R
-3GM?
U= j'dU = I r'dr
r=0
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B 5], SRS
__3GM’

5 R

is the self energy of the uniform solid sphere of mass M and
radius R.

Concept Strand 7

Considering Earth as a uniform solid sphere of radius 6400
km and mass 5.98 x 10** kg, calculate the minimum en-
ergy required to separate all particles of Earth to infinite
distance of separation.

Solution

R =6400 km = 6.4 x 10° m; M = 5.98 x 10** kg
-3GM’

U, = The self energy of Earth =

When all particles are at infinite distance, U =0

3GM?
5R

AU=U.-U=0+

3x6.67x107" x (5.98 x10**)?
5x (6.4 x10°)

22.36 x 10°']
=2.36 x10%]

Hence it is not easy to disintegrate Earth.

ACCELERATION DUE TO GRAVITY

The force of attraction between two bodies produces accel-
eration of the bodies towards each other.

Consider the attraction between the Earth (mass M)
and a body (mass m). The force of attraction F produces
acceleration of both bodies given by

GMm .
F=—0 — (@)
F=mg=Ma — (ii)

But, M being very large, a is unnoticeable. However,
g, the acceleration due to gravity of the body of mass m is
measurable. Equations (i) and (ii) yield

IIT-NEET-PHYSICS

GM
RZ

g:

The acceleration due to gravity of Earth on a particle is
independent of its mass. The value of g at most places on
Earth is about 9.8 m s and the value has been standardized
as 9.8066 m s 2~ 9.8 ms™

Note that, in problems, unless otherwise mentioned,
we takeg=9.8 m s
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Concept Strand 8

What is the acceleration of Earth towards a spherical body
of radius 1 m and density same as that of the Earth and
which is on the surface of the Earth?

Solution
G:Ilm =Ma :>a=(lirln =%

= Wg ~10 " m s (negligibly small)
Concept Strand 9

1
If the acceleration due to gravity on a planet iszofthat on

Earth and the radius of Earth is 20 times that of the planet,
what is the density ratio of the planet to that of the Earth?

Solution
& _MR_1_ 105 _ P,
g. MRS’ 4 20p p,

4 _, 4 _,
( M, =§1tR’ppp and M, =;1rReth

Concept Strand 10

What is the distance above Earth where a body will experi-
ence equal values of acceleration due to gravity due to the

the Earth and due to a planet with iof the mass of the

Earth, and at a distance D from centre of Earth?

Solution

Let D be the distance between the Earth and the planet. Then,
GM_ m GM m

(R+h)’ =|:D—(R+h):r

:>|:D—(R+h):r M, 1

(R +h)’ M, 4

¢

D-(R+h) 1

= _—
R+h 2

D _3

= R+h 2
= e DR

3
Concept Strand 11

If an outer shell of thickness 100 km disintegrates from the
Earth, what will be the percentage change in the accelera-
tion due to gravity on the surface of the Earth?

Solution
,_ . M'_R*M'_R’R” R

=G —g— = —g—
v R* gMR'l gR"R'2 gR

878 100=1.5%
g

Variation of acceleration due to gravity

If acceleration due to gravity is considered to be the net ef-
fect of Earth on a body on or near it, it can vary due to the
following:

(i) Effect of altitude

The force of attraction experienced by a body at a height ‘h’
above the surface of the Earth is

GMm

where R is the radius of the Earth. In the above formula we
have assumed that all the mass of the Earth is concentrated

IIT-NEET-PHYSICS

at the centre. This assumption is valid so long as the force is
measured outside the bodies in question. The acceleration
due to gravity can be calculated by writing

, GMm
mg =———-
& “R+hy
GM :
where g'=— E == g =8 &
R ( hj ( h] R+h
1+— 1+—
R R

If h << R, as is usual for bodies near the surface of the

Earth, - (1_&]
g =8 R
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If we treat Earth as a uniform solid sphere of mass M and
radius R, the gravitational field of Earth at height ‘h’ above

Earth,
2 2
~6M G6M (R ) (R
®R+h’ R® |R+h| BE|R+h

which is the same expression as the effective acceleration
due to gravity at height ‘h’

It should be understood that gravitational field intensi-
ty and acceleration due to gravity are two different physical
quantities but their magnitudes and directions are same.

(ii) Effect of depth below the surface of the Earth

The average density of Earth can be calculated from the

knowledge of g and R
GM GM 4
RT3
—nR
3
_ 4nGR
E=P, 3
p = - - 5.483 g cm™ (substituting standard
¥ 4nGR
values of g, G, and R)

The Earth consists of an outer crust (~40 km) of density
~3 g cm™, a mantle (~3000 km) of density varying from 3.5
to 5.5 g cm™ and an inner solid core, of density ~13 g cm™.
However, in gravitational problems we assume that the den-
sity of Earth is a constant, and equal to p_(~5.5 g cm™)

A body at a depth d below the surface of the Earth is
subject to an attractive force due to the volume of Earth

below it, that is, due to the mass %n(R —d)’p, where p is
the average density of the Earth. Hence,

2 x(R=d)Ppim

8 =G Ry

leading to

' 4 3 ( d)
_—_G ZrR R-d) = R-
. R’(3n j( Y

R
d
fis
¢=g(1-3)

At the centre of Earth,d=R =g =0

It may be noted that g’ = 0 at the centre of the Earth.

Treating Earth as a uniform solid sphere, gravitational
field at depth ‘d’ below surface of Earth = gravitational field
atradiusr=(R —d)

IIT-NEET-PHYSICS
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GMr GM(R-d)
R’ R?.R

44

which is the same expression as g’ at depth d

i.e., E=

(iii) Apparent change in acceleration
due to gravity due to Earth’s rotation

Earth rotates about the N-S axis at an angular frequency
® = 7.3 x 10~ rads™'Any point particle P on the surface is
subject to a pseudo force.(because of rotation of Earth, a
frame of reference attached to Earth is a non-inertial frame
and hence the pseudo force)

. Fig.324 )

Fc=mmzr=m<o2Rcos7\.

where, A is the latitude at the point P. Therefore, the total
force on the particle is the resultant F’ of F_and the gravita-
tional attraction F

F'=[F* +E +2FF, cos(180° - 1)

GMmY ) , .GMm
¥ +(m®°Rcosh)’ —2
GMm|_ ®*R%cosA )
— |1+ -2,
R L GM
The second term in the bracket << the first term and the last

term. Expanding binomially and neglecting higher order
terms

.m®°R cos A

A

®’R>?cos*A

GM

F'=

GMmlr1 ~ ®’R’ cos’ A
R* | GM
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"8 =R | GM

, ®’Rcos’ A
g=g/l-——
g

Note that, at the poles, A = 90° and g’ = g while at the
equator, g’ has the lowest value g’ = g(1 — ®’R)

GMm[ ®’R’ cos’ 7\}

CONCEPT STRAND

® i

L T

(iv) Effect of the shape of the Earth

In all the cases above, we have assumed that the Earth is
perfectly spherical, but the shape is ellipsoidal, bulging at
the equator and flattened at the poles. Thus

Equatorial radius > polar radius.

1
As goc —, it increases from the equator to the poles,
RZ

being minimum at equator and maximum at the poles.

Concept Strand 12

How much faster will the Earth have to rotate for a particle
on the equator to fly off?

Solution
Weight at the equator W =m g =m(g—o’R)

For W¢=0,g=cozR:>(o

The increase is —— =~ 17

The Earth will have to rotate 17 times faster.

=1.237 x 10> rad s

1.237 x107°
7.275x107°

ESCAPE VELOCITY

Escape velocity is the minimum velocity required for a par-
ticle to escape from the gravitational field of a celestial body
such as a planet. The magnitude of escape velocity depends
on the mass of the planet, and the distance from it. Con-
sider a particle of mass m, at a distance r from a body of
mass M. Then, the potential energy of the configuration is
given by
-GMm

r

PE =

This can be taken as the PE of the particle in the field of the
massive body M.

For the particle to escape, its total energy should be
zero.
18 KE +PE=0

GMm
r

= KE=-PE=

KE = lmvZ
2

IIT-NEET-PHYSICS

2GM

r

= vV =

e

For a particle on the surface of Earth, r = R, the radius
of Earth.

2GM

With g=9.8 ms?and R = 6.4 x 10° m, the escape ve-
locity on the surface of the earth is v_=11.2 x 10° ms™

Escape velocity does not depend on (i) the mass of the
particle (ii) the angle of projection.

Note:

If a body is launched from the surface of Earth with speed
greater than v _(i.e., escape velocity), at infinite distance from
Earth, only its PE becomes zero. Its kinetic energy will not
be zero.

=5
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Concept Strand 13

What is the energy necessary for a particle of mass 1kg to
escape from the gravity of the Earth?

Solution

W= [dw =GMde—:
RT

:GMm{—_l} _ GMm
r R

6.67x107"" x5.98x10%" x1
- 6.4x10°

=6.23x107]

SATELLITES IN CIRCULAR ORBITS

Satellites are usually launched into circular orbits. Consider
a satellite in an orbit of radius r = R + h where R is the radi-
us of the Earth and h is the height above the Earth at which
the satellite is orbiting. The centripetal force necessary to
keep the satellite in its orbit is provided by the gravitational
attraction of the Earth directed towards the centre of the
Earth. Thus we may write

mv,’ ~ GMm

r I'2

where v is the orbital velocity.

/ , R’ / R’
SV = GM — & = & . Hence v, is inde-
r r R+h

pendent of mass of satellite.

v, near surface of Earth = Com. = | v, = 2Gm
R 2 R

CONCEPT STRAND

Angular velocity o is given by

w-v"— ng
" r \(R+h) @= ]

The time period Tis T = o

o &

Geostationary satellites

RZ

o

NS

3
rA T?cc r?

Geostationary satellites have time period same as that of
the Earth so that their position in the orbit is stationary
with respect to the Earth. The radius of the geostationary
orbit can be calculated as

A
of T
I‘=R+h=[gR (E]‘|

Substituting the values of g and R we get h ~ 36000 km.

A geostationary satellite moves in the same direction as
rotation of Earth (West to East), with a time period of 24
hour and its orbital plane passes through the equatorial plane
of Earth.

Concept Strand 14

Satellite A is launched such that its time period is 3 times
that of a geostationary satellite B. What is the height of A
above the Earth?

IIT-NEET-PHYSICS
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— 47’
GM
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Butr = 6.625 R for a geostationary satellite, where R is the
radius of Earth.

O i

3

————— = h =88196 km where h is the height
" 6. 625R)

of satellite A above the surface of the Earth.

First and second cosmic velocities

For satellites in orbits close to the Earth, equation for or-
bital speed v, can be written as

gR =7.92 km s™' where v, is called the first cos-

mic velocity.

CONCEPT STRAND

The escape velocity from the surface of Earth is also
known as the second cosmic velocity.

v, =,/2gR =\/Evo =11.2 km s™

Concept Strand 15 v 2m
—=i = —
A planet revolving around the star in a circular orbit of R I
radius R with a time period T is subject to a gravitational
force proportional to R, Calculate T as a function of R. . 2R mR?
=— =
Solution ¥
2 -2
e Te2e [Bw
R m k
Energy of a satellite Kepler’s laws

Consider a satellite in a circular orbit of radius r around a
planet of mass M.
mv’  GMm
- 2

r T
G 1 , GMm
Kinetic energy = —mv"* =
2 2r
: -GMm
Potential energy =
<
TE = Total energy = PE + KE = _Gsz
r

= E=-KE= %
For satellites,

KE:PE:TE=1:-2:-1

IIT-NEET-PHYSICS

First law (The law of orbits)

“The path of a planet is an elliptical orbit around the sun
with the sun at one of its foci”.

Second law (The law of areas)

“The radius vector, drawn from the sun to the planet sweeps
out equal areas in equal intervals of time”. Alternatively,
“The areal velocity of a planet in its orbit is a constant”

Consider a small elemental area dA swept out by the
planet;
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fil-mkev-Cose

dx=L¢dp
2

dA 1,d0 1, L
—=—1 —=—r1'0=

dt 2 dt 2 2m

where L is the angular momentum, a constant.

Third law (The law of periods)

“The square of the time period of a planet around the sun is
proportional to the cube of the semi major axis of its orbit”
This has been proved for satellites in circular orbits in.

Angular momentum of a satellite

If m is the mass of satellite, v, is its orbiting speed and r is
the radius of the orbit, then

¥; LT

CONCEPT STRAND

@;..qgu.jn.

L T

Angular momentum of the satellite in its orbit is

L=Txp

Il
B
—_
=
X
<
o
S—

L=mrv, (" sin0=sin 90°=1)

L=mt, fG—m = J/m’Gmr
r

3

L=mrvo= m Gr

is the angular momentum of the satellite. Here, we
have considered that there is no spin for the satellite.
Since no external torque acts on the satellite during its
orbital motion, its angular momentum is conserved. i.e.
L = constant

Concept Strand 16

A planet in its elliptical orbit has the farthest distance from
the Sun(r ) equal to three times its nearest distance from
the Sun(r,). Will the orbital speed of the planet be different
at those points? Explain

Solution

Let m be the mass of the planet. If v and v, are the orbital
speeds of the planet with respect to the Sun, at positions r|
and r, respectively, then

Angular momentum of planet at position T

, 18

L =m(F|xVI) =L =mry, (Fx _]_Vl)

gular momentum of the planet is conserved (" no torque
acts on the planet), L =L, =>mrv =mry,

tion to Sun is three times the orbital speed of planet in the
farthest position.

Angular momentum of planet at position T, is

L,= m(F XV:) =% L: =mr,v, (% I -J—Vz). Since an-

LT
Y, § 3t 3
V=3V

Hence the orbital speed of planet in the nearest posi-

Nature of trajectory

Let a satellite be projected from certain height from Earth’s
surface with a velocity v along the x-direction as shown in
Fig. 3.24.

(i) Ifv=0, it will fall vertically down towards Earth.

(i) If0<v< v, where v, = \/g_R , then the projectile will
fall back to Earth in a spiral path.

IIT-NEET-PHYSICS

(iii) If v= v,, where v = \/g? , the satellite will move in a
circular orbit of radius R.

(iv) If v, <V<vV, where v, = \/Zg_R , the satellite will move
in an elliptical orbit.

(v) If v=v, the projectile will escape from Earth’s gravity
in a parabolic path.

(vi) If v > v, the projectile will escape from Earth’s gravity
in a hyperbolic path.
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—GMm
1. PE ofbodyon R -mgR —WR
surface of Earth
o sl —GMm mgR -WR
2. PE ataltitude -
h=R 2R 2 2
—_— —GMm mgR —-WR
3. PE at finite
altitude ‘b’ Bk (l + h) (1 + h]
R
N rig. 326 o 4. PE atinfinite Zero Zero Zero
altitude
Potential Energy at different positions GMm  mgR WR
5. Minimum work 2R 5 >
M = mass of Earth, m = mass of body, done to transfer
G = universal gravitational constant a body from

Earth’s surface

R = radius of Earth, W = weight of body (mg) to an altitude

g = acceleration due to gravity (on surface of Earth) h=R
SUMMARY
Gmm,

F=

F— Gravitational force between two particles of masses m, and m,.
2
: G — Gravitational Constant

r — Distance between the two masses

GM
g= L =£‘KGR p

2 e e

g — Acceleration due to gravity on the surface of Earth

‘ R, — Radius of Earth
M, — Mass of Earth
p,—~ Density of Earth
g= GI\ZA g — Acceleration due to gravity on the surface of a planet or satellite
£ M — Mass of the planet or satellite
R — radius of the planet or satellite
g, =g—o'Rcos’ A gh — Acceleration due to gravity at a given latitude A
® — Angular velocity of rotation of Earth
g. =g—oR, g, —> Acceleration due to gravity at the equator
8,=8 g, = Acceleration due to gravity at the poles
g=_GM _ g[ R, ]2 g, —> Acceleration due to gravity at a height h above the surface of Earth
(R, +h)’ R,+h
g = acceleration due to gravity on the surface of Earth.
If %=n,h=R(\/;_1) R = radius of Earth
g = g(l — z_h_] g, — Acceleration due to gravity at a height h above the surface of Earth
R, (h<<R)
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4
84 = ;nGp(Re -d) g, —> Acceleration due to gravity at a depth “d” from surface of earth.
p —> Average density of Earth
d .
g.=g|l = p —> density of Earth.
¢ R, —> radius of Earth
e R, [n - 1] d = depth below surface of Earth
g n
gccntre of Earth =0
=M I - Gravitational intensity at a distance ‘r’ from the centre of a particle of
r* mass M
GM G A . o ’
V=r—— V — Gravitational Potential at a distance ‘r’ from a particle of mass M
r
pE-_Gmym, PE — Potential Energy of a system of two particles of masses m and m,
r separated by a distance ’
2GM
vV, = = V28R v_—> Escape velocity from the surface of Earth
’ GM ’GM
V, = f——=,— v, —> Orbital velocity of a satellite which is orbiting in a circular path of
R+h r radius r’(at a height h from the surface)
3
T=2n (R+h) T — Time period of revolution of a satellite which is revolving at a
GM height ‘b’
Energy of a satellite KE — Kinetic Energy of a satellite
1 , 1 GMm PE — Potential Energy of a satellite
KE~ Emv" B E(R + h) TE — Total Energy of a satellite
B i
(R+h)
1 GMm
e i Sy e S E
2(R+h)
K.E:PE:T.E =1:-2:-1
R . .
T=2% J: T — Time Period of a planet around the Sun
& g = Acceleration due to gravity of Sun at the orbit
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