
 
 
 

 
 
 
 
 
 
 
 
  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 
 
 
 
 

 
                                                              

 ▀▄ DIFFRACTION OF LIGHT 

 Light travels in a straight line. However, when light passes through a small hole, there is a certain amount of spreading of light.  
Similarly, when light passes by an obstacle, it appears to bend round the edges of the obstacle, it appears to bend round the edges  
of the obstacle and enters its geometrical shadow. 
 

The phenomenon of bending of light around the corners of small obstacle or apertures and its consequent spreading into the 
regions of geometrical shadow is called diffraction of light.     

 
To understand diffraction more clearly, consider a narrow aperture AB illuminated with light from a source S, as shown in Fig.  

(a) XY is a screen placed at large distance from AB. According to rectilinear propagation of light, only the portion A’ B’ of the screen  
should be illuminated. However, it is seen that light enters the region of the geometrical shadow beyond A’ and B’. The shadow is not 
sharp. 

    X          X 
     
           Geometrical shadow   
                        A’ 
Narrow aperture       A’          Small obstacle   
            

               A          A 
               S 

  S  
              B          B  

      
         B’              B’ 
    Screen        Geometrical shadow           Screen  
 
 
     Y           Y 
   [Diffraction of light round corners of (a) a small aperture (b) a small object] 
 

Similarly, when an obstacle AB (e.g., a very small disc) is placed in the path of light, we expect a dark shadow A’B’ on the screen,  
as shown in Fig. (b). However, we observe a circular bright band at the centre, surrounded by dark and bright rings alternately. This shows 
that light bends around the edges, i.e., light shows diffraction. 
 

Experiment 1: As shown in Fig., hold two blades so that their edges are parallel and form a narrow slit in between. Look 
through the slit on the straight filament of a clear glass bulb. With slight adjustment of the slit, a diffraction pattern of alternate bright  
and dark bands is seen. 
 

2. Look at a street lamp through a piece of fine cloth. The lamp appears as an enlarged disc. The threads in mutually perpendi- 
cular directions enclose a number of slits which form a pattern of several weaker images of the slits. 
 
3. A pinhole placed at a distance of 2 m from a sodium lamp form a pattern of several weaker images of the slits. 
  
  

 
 
 
 
 
 
 
 
                [Experiment 1: A single slit formed by two blades] 
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▀▄ Size of aperture or obstacle for observing diffraction: Suppose plane waves are made to fall on a screen having a  
small aperture. The waves emerging out of the aperture are observed to be slightly curved at the edges. This is diffraction. If the size  
of the aperture is large compared to the wavelength of the waves, the amount of bending is small [Fig. (a)]. If the size of the aperture is 

small, comparable to the wavelength  of the waves, then the diffracted waves are almost spherical [Fig. (b)]. Hence the diffraction  
effect is more pronounced if the size of the aperture or the obstacle is of the order of the wavelength of the waves. 
 
 
            
 
         Diffracted wavefronts      Diffracted wavefronts   
 
 

                              
 
 
 
 
 
 
 
 
  Incident plane                           Incident plane  

                 wavefronts      Bending    wavefronts 
         of wavefronts  

(a) Size of aperture > .     (b) Size of aperture  . 
    [Diffraction of a wave at a small aperture] 

As the wavelength of light ( 10–6 m) is much smaller than the size of the objects around us, so diffraction of light is not easily 
seen. But sound waves have large wavelength. They get easily diffracted by the objects around us.  

 
 

 ▀▄ Fresnel and Fraunhofer diffraction 

  Two types of diffraction: The diffraction phenomenon can be divided into two categories: 
 

1. Fresnel’s diffraction: In Fresnel’s diffraction, the source and screen are placed close to the aperture or the obstacle and 
light after diffraction appears converging towards the screen and hence no lens is required to observe it. The incident wave 
fronts are either spherical or cylindrical. 
 

 2: In Fraunhofer’s diffraction, the source and screen are placed at large distances (effectively  
at infinity) from the aperture or the obstacle and converging lens is used to observe the diffraction pattern. The incident wavefront is  
planar one.   
 
 

▀▄ DIFFRACTION AT A SINGLE SLIT 

 A source S of monochromatic light is placed at the focus of a convex lens L1. A parallel beam of light and hence a plane wavefront 
WW gets incident on a narrow rectangular slit AB of width d. 
 
 The incident wavefront disturbs all parts of the slit AB simultaneously. According to Huygens’s theory, all parts of the slit AB will 
become source of secondary wavelets, which all start in the same phase. These wavelets spread out in all directions, thus causing 
diffraction of light after it emerges through slit AB. Suppose the diffraction pattern is focussed by a convex lens L2 on a screen placed in  
its focal plane. 
 

⬚ Central maximum: All the secondary wavelets going straight across the slit AB are focussed at the central point O of 
the screen. The wavelets from any two corresponding points of the two halves of the slit reach the point O in the same phase, 
they add constructively to produce a central bright fringe. For detailed explanation of diffraction fringes, see for your 
knowledge box on page.  
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         [Diffraction at a single slit] 
            

⬚ Calculation of path difference: Suppose the secondary wavelets diffracted at an angle  are focussed at point P. The secondary 
wavelets start from different parts of the slit in same phase but they reach the point P in different phases. Draw perpendicular AN from  
A on to the ray from B. Then the path difference between the wavelets from A and B will be  

  p = BP – AP = BN = AB sin  = d sin . 

⬚ Positions of minima: Let the point P be so located on the screen that the path difference, p =  and angle  = 1. Then from the 
above equation, we get 

    d sin 1 =  

 We can divide the slit AB into two halves AC and CB. Then the path difference between the wavelets from A and C will be /2. 

Similarly, corresponding to every point in the upper half AC, there is a point in the lower half CB for which the path difference is /2.  
Hence the wavelets from the two halves reach the point p always in opposite phases. They interfere destructively so as to produce a 
minimum. 

 Thus, the condition for first dark fringe is    d sin 1 =  

 Similarly, the condition for second dark fringe will be  d sin 2 = 2 

 Hence the condition for nth dark fringe can be written as  d sin n = n,   n = 1, 2, 3, ...... 

 The directions of various minima are given by   n ≃ sin n = n    [As  < < d, so sin n  n] 
                    d 

 Positions of secondary maxima: Suppose the point P is so located that p = 3  
                2 

 When  = ’1, then  d sin ’1 = 3  
         2 
 We can divide the slit into three equal parts. The path difference between two corresponding points of the first two parts will  

be /2. The wavelets from these points will interfere destructively. However, the wavelets from the third part of the slit will contribute  
to some intensity forming a secondary maximum. The intensity of this maximum is much less than that of the central maximum. 
 Thus, the condition for the first secondary maximum is  

  d sin ’1 = 3/2  

 Similarly, the condition for the second secondary maximum is  d sin ’2 = 5  
             2 

 Hence the condition for nth secondary maximum can be written as  d sin ’n = (2n + 1) ,  n = 1, 2, 3, ......  
            2 

 The directions of secondary maxima are given by  ’n ≃ sin ’n = (2n + 1)     
                    2d 
 The intensity of secondary maxima decreases as n increases. 
 

⬚ Intensity distribution curve: If we plot a graph between the intensities of maxima and minima against the diffraction angle ,  

we get a graph of the type shown in Fig. It has a broad central maximum in the direction ( = 0) of incident light. On either side of the 
central maximum, it has secondary maxima of decreasing intensity at positions,   

    =  (2n + 1)        
             2d      



 
 
 
 
 
 

 and minima at positions,   =  n   [n  0] 
                  d 
 The intensities of secondary maxima relating to the intensity of central maximum are in ratio,  
  1:   1:   1:    1     ........ 
       21    61     121 
 Thus, the intensity of the first secondary maximum is just 4% of that of the central maximum.   

 
                   Intensity  
 
 
 
 

 [Variation of intensity with angle  in single slit diffraction] 
 
 
 
 

                – 3      – 2                     –        O                                        3   
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Intensity of secondary maxima decreases with the order of the maximum: The reason is that the intensity of the central 
maximum is due to the constructive interference of wavelets form all parts of the slit, the first secondary maximum is due to 
the contribution of wavelets from one third part of the sit (wavelets from remaining two parts interfere destructively), the 
second secondary maximum is due to the contribution of wavelets form the one fifth part only (the remaining four parts 
interfere destructively), the second secondary maximum is due to the contribution of wavelets from the one fifth part only 
(the remaining four parts interfere destructively) and so on. Hence the intensity of secondary maximum decreases with the 
increase in the order n of the maximum. 

              

FOR YOUR KNOWLEDGE............................................ 

 

  Explanation of diffraction fringes 

Central maximum: All the wavelengths going straight ( = 0) across the slit are focussed at the central point O of the screen, as 
shown in Fig. The wavelets from any two corresponding points such as (0, 12), (2, 10), (4, 8) etc. from the two halves of the slit 
have zero path difference. They undergo constructive interference to produce central bright fringe.  
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First dark fringe: If angle  is such that the path difference, p = d sin  = , then the path difference between the rays’ form A  
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            8     Lens 
      II      
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              N 
          12        Screen 

       p =  
            B  

    [Diffraction at an angle  given by d sin  = ] 

and B when they reach P is , as shown in Fig. If we divide the slit into two halves I and II, of 6 parts each, then obviously the wavelets  

 form 0 and 6 will have a path difference of /2 or a phase difference of . They interfere destructively. Similarly, the wavelet pairs (1, 7), 
(2, 8), (3, 9), (4, 10), (5, 11) and (6, 12) of the two halves will interfere destructively. Hence the condition for first dark fringe is  

   d sin  =  

First secondary maximum: Suppose the angle  is such that the path difference p = d sin  = 3/2. 
We can divide the slit into three equal regions I, II and III, as shown in Fig. The path difference between any two corresponding 

points of regions I and II will be  or phase difference will be . The wavelets from these points will interfere destructively. The wavelets  
             2 
from III region of the slit will contribute to some intensity forming a secondary maximum. The intensity of this maximum is much less  
than the central maximum. The condition for the first secondary maximum can be written as  
           

d sin  = 3       
                     2 
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  [Diffraction at an angle  given by d sin  = 3 ] 
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 WIDTH OF CENTRAL AND SECONDARY MAXIMA 

 Angular width of central maximum: The angular width of the central maximum is the angular separation between the directions  
of the first minima on the two sides of the central maximum, as shown in Fig. 
 
 
 
 
 
     

        d                             0            Central maximum    

                     
 

 
 
 
        D            Screen 
              [Angular and linear widths of central maximum)] 
 The directions of first minima on either side of central maximum are given by 

    =  
           d 
  This angle is called half angular width of central maximum. 

  ∴ Angular width of central maximum = 2 = 2 
                    d  

Linear width of central maximum: If D is the distance of the screen from the single slit, then the linear width of central maximum 

will be    0 = D  2𝝏 = 2D     2 (rad) =       Arc       = 0 
              d           Radius         D  
Linear width of a secondary maximum: the angular width of nth secondary maximum is the angular separation between the 

directions of nth and (n + 1)th minima. 

Direction of nth minimum, n = n  
               d 

Direction of (n + 1)th minimum,  n + 1 = (n + 1)  
              d 

 ∴ Angular width of nth secondary maximum = n + 1 – n = (n + 1)  – n  =   
          d        d    d  

  Hence the linear width of nth secondary maximum = Angular width  D 

  or  = D 
           d 

  Clearly,  0 = 2             
  Thus, the central maximum of a diffraction pattern is twice as wide as any secondary maximum. 

  Clearly,  width of a secondary maximum            1      
       slit width 

As the slit width is increased, the secondary maxima get narrower. If the slit is sufficiently wide, the secondary maxima  
disappear and only the central maximum is obtained which is the sharp image of the slit. Thus a distinct diffraction pattern is possible  
only if the slit is very narrow.   
 

⬚ ⬚ VALIDITY OF RAY OPTICS: FRESNEL’S DISTANCE 

 Ray optics as a limiting case of wave optics: Fresnel’s distance and Fresnel’s zone: A parallel beam of light of 

wavelength  on passing through an aperture of size d gets diffracted into a beam of angular width, 

     =  
           d 

 If a screen is placed at distance D, this beam spreads over a linear width, x = D 
                  d 
 If the diffraction spread x is small, the concept of ray optics will be valid. 

 If we have an aperture of size d = 10 mm and use light of wavelength  = 6  10–7 m, then the beam after travelling a distance  
of 3 m will get diffracted through a width 
 



 
 
 
 
 
 
 

   x = D  = 3  6  10–7  

            d       10  10–3   

   = 18  10–5 m = 0.18 mm 
 This diffraction spreading is not quite large. Thus, ray optics is valid in many common situations. It is useful here to define what is 
called Fresnel’s distance, DF. 
 The distance at which the diffraction spread of a beam is equal to the size of the aperture is called Fresnel’s distance. 
 i.e., when x = d, D = DF 

 ∴ d = DF        or DF = d2  

           d             
 If D < DF, then there will not be too much broadening by diffraction i.e., the light will travel along straight lines and the concepts  
of ray optics will be valid. 

 As D < DF  or D < d2 or d > √D 

             
 For a given value of D, the quantity √ D is called the size of Fresnel zone and is denoted by dF. 

 i.e., dF = √ D 
 Hence the concepts of ray optics can be conveniently used without introducing any appreciable error if the size of the aperture  
is greater than the size of the Fresnel zone, 
 i.e.,  d > dF ..... 
 

Examples based on Diffraction of Light and Fresnel’s distance 
◆ Formula Used    
 1. For diffraction at a single slit of width d,  
  (i) Condition for nth minimum is  

   d sin  = n  where n = 1, 2, 3, ...... 
  (ii) Condition of nth secondary maximum is  

   d sin  = (2n + 1) , where n = 1, 2, 3, ..... 
                   2 

  (iii) Angular position or direction of nth minimum, n = n 
            d 
  (iv) Distance of nth minimum from the centre of the screen, 

   xn = nD 
             d 
  (v) Angular position of nth secondary maximum, 

   n’ = (2n + 1)       
                2d 

  (vi) Distance of nth secondary maximum from the centre of the screen, xn’ = (2n + 1) D 
                    2d 

  (vii) Width of central maximum, 0 = 2 = 2D 
                    d 

  (viii) Angular spread of central maximum on either side,  =   
                       d 

  (ix) Total angular spread of central maximum,  2 = 2 
                  d 
 2. For diffraction at a circular aperture of diameter d,  
  (i) Angular spread of central maximum,            

    = 1.22  
              d 

  (ii) Linear spread, x = D 

  (iii) Areal spread, x2 = (D)2 
  Where D is the distance at which the effect is considered. 
 3. Fresnel distance, DF = d2 

                 
 4. Size of Fresnel zone, dF = √D 
 
 



 
 
 
 
 
 
◆ Units Used    
 Angles , n and n’ are in radian, wavelength  in metre, distances d, dF, D and DF in metre and n is a pure number. 

Q. 1. Fraunhofer diffraction from a single slit of width 1.0 m is observed with light of wavelength 500 nm. Calculate the half  
angular width of the central maximum. 

 Sol. The Fraunhofer diffraction is the diffraction of plane wavefronts from a single slit. 

   Here d = 1.0 m = 1.0  10–6 m,  = 500 nm = 500  10–9 m 

  Half angular width  of the central maximum is given by 

   sin  =  = 500  10–9 = 0.5  ∴  = 30     

               d      1.0  10–6       
  

Q. 2. Light of wave length 600 nm falls normally on a slit of width 1.2 m producing Fraunhoffer diffraction pattern on a screen. 
Calculate the angular position of the first minimum and the angular width of the central maximum. 

Sol. Here  = 600 nm = 600  10–9 m, d = 1.2 m = 1.2  10–6 m 

 The angular position  of the first dark fringe is given by 

  sin  =  = 600  10–9 = 1   ∴  = 30.    

               d     1.2  10–6     2 

 Angular width of central maximum = 2 = 60 
 
Q. 3. Microwaves of frequency 24,000 MHz are incident normally on a rectangular slit of width 5 cm. Calculate the angular spread  

of the central maximum of the diffraction pattern of the slit.  

 Sol. Here f = 24,000 MHz = 24  109 Hz, d = 5 cm, 5  10–2 m 
   Angular spread of central maximum is  

   2 = 2 =    2c   =        2  3  108       = 1 rad   

             d        d v     5  10–2  24  109    2 
 
 Q. 4. A slit of width ‘d’ is illuminated by red light of wavelength 6500 Å. For what value of ‘d’ will (i) the first minimum fall at an  

angle of diffraction of 30 and (ii) the first maximum fall at an angle of diffraction of 30.    
 Sol. (i) For first minimum of the diffraction pattern, 

   d sin  =  

  ∴ d =               = 6,500  10–10 m  

           sin    sin 30 

   = 6, 500  10–10 m = 1.3  10–6 m   
                 0.5 
  (ii) For first secondary maximum of the diffraction pattern, 

   d sin  = 3 
    2 

  ∴ d =      3     = 3  6,500  10–10 m  

           2 sin             2  sin 30 

   = 1.95  10–6 m. 
Q. 5. Light of wavelength 550 nm is incident as parallel beam on a slit of width 0.1 mm. Find the angular width and the linear  

width of the principal maxima in the resulting diffraction pattern on a screen kept at a distance of 1.1 m from the slit.  
Which of these widths would not change if the screen were moved to a distance of 2.2 m from the slit?   

 Sol. Here  = 550 nm = 550  10–9 m, d = 0.1 mm = 0.1  10–3 m, D = 1.1 m 

  Angular width of principal maximum,  2 = 2 = 2  550  10–9 = 1.1  10–2 rad       

                 d         0.1  10–3    

  Linear width of principal maximum,  0 = 2D = 1.1  0.011 = 0.0121 m = 12.1 mm. 
                  d 
  When the screen is moved to a distance of 2.2 m, the angular width would not change because it is independent of this  

distance D.          
Q. 6. A screen is placed 2 m away from a single narrow slit. Calculate the slit width if the first minimum lies 5 mm on either side of 

central maximum. Incident plane waves have a wavelength of 5000 Å. 

 Sol. Here D = 2 m, x1 = 5 mm = 5  10–3 m,  = 5000 Å = 5  10–7 m   

  Linear width of central maximum, 0 = 2 x1 = 2  5  10–3 m = 10–2 m 

  Slit width, d = 2D = 2  2  5  10–7    

              0                10–2   

    = 2  10–4 m = 0.2 mm. 



 
 
 
 
 
 
 

Q. 7. A parallel beam of light of wavelength 600 nm is incident normally on a slit of width ‘d’. If the distance between the slits  
and the screen is 0.8 m and the distance of 2nd order maximum from the centre of the screen is 15 mm, calculate the width  
of the slit.  

Sol. Distance of 2nd order maximum from the centre of the screen, 

   x2’ = 5 D or d = 5   D 
            2  d                                       2   x2’  

  Given  = 600 nm = 6  10–7 m, D = 0.8 m,  

   x2’ = 15 mm = 15  10–3 m 

 ∴ d = 5  0.8  6  10–7 = 8  10–5 m = 8 m     

            2  15  10–3    
 
Q. 8. Determine the angular separation between central maximum and first order maximum of the diffraction pattern due to a  

single slit of width 0.25 mm when light of wavelength 5890 Å is incident on it normally. 
Sol. From Fig., it is clear that the angular separation between central maximum and first order minimum is  
       Central maximum 
           
 
 
        
                      First order maximum 
 
 
 
 

                 –            = 0                        3        2      
                   d                               d             2d          d      

   = 3 – 0 = 3    
         2d           2d 

 or  = 3  5890  10–10 = 3.534  10–3 rad 

          2  0.25  10–3   
 

Q. 9. Parallel light of wavelength 5000 Å falls normally on a single slit. The central maximum spreads out to 30 on either side  

of the incident light. Find the width of the slit. For what width of the slit the central maximum would spread out to 90 from  
the direction of the incident light? 

Sol.  Angular spread of central maximum on either side of incident light is given by 

  sin  =  
               d 

 ∴ Slit width, d =            = 5000  10–10 = 10–6 m    

               sin            sin 30 

 For  = 90, we have d =              = 5000  10–10 = 5  10–7 m.     

            sin 90               1   
Q. 10. A slit of width 0.025 mm is placed in front of a lens of focal length 50 cm. The slit is illuminated with light of wavelength  

5900 Å. Calculate the distance between the centre and first dark band of diffraction pattern obtained on a screen placed  
at the focal plane of the lens. 

Sol. Here  = 5900 Å = 59  10–8 m, f = 50 cm = 0.50 m, d = 0.025 mm = 2.5  10–5 m 

 For first dark band, sin  =  
    d 
 As the diffraction pattern is obtained in the focal plane of lens, therefore 

   tan  = x 
                   f 
 where x is the distance between the centre and the first dark band. 

  For small , tan  ≃ sin      or  x =   
      f     d        10 

 ∴ x =   f = 59  10–8  0.50   

              d               2.5  10–5  

  = 11.8  10–3 m = 11.8 mm.  



 
 
 
 
 
 
Q. 11. Two wavelength of sodium light 590 nm, 596 nm are used, in turn, to study the diffraction taking place at a single slit of  

aperture 2  10–4 m. The distance between the slit and the screen is 1.5 m. Calculate the separation between the positions  
of first maximum of the diffraction pattern obtained in the two cases. 

Sol. Here  1 = 590 nm = 590  10–9 m 

  2 = 596 nm = 596  10–9 m, d = 2  10–4 m, D = 1.5 m 
 Distance of first secondary maximum from the centre of the screen is  

  x = 3 D  
            2   d 
 For the two wavelengths, we have 

  x1 =   3   D1 and x2 = 3   D2   
            2     d          2     d 
 Spacing between the first two maximum of sodium lines 

  = x2 – x1 = 3D (2 – 1)  
      2d 

  =      3  1.5     (596  10–9 – 590  10–9)      

      2  2  10–6  

  = 3  1.5  6  10–3  
   4 

  = 6.75  10–3 m = 6.75 mm  
 
Q. 12. In Young’s double slit experiment, the distance d between the slits S1 and S2 is 1 mm. What should the width of each slit be so  

as to obtain 10 maxima of the double slit pattern within the central maximum of the single slit pattern? 
 Sol. The linear separation between n bright fringes in an interference pattern on the screen is given by  

   xn = nD 
             d 
  As xn << D, the angular separation between n bright fringes should be 

   n = xn = n 
           D      d 

  For 10 bright fringes, we get, 10 = 10   
       d 
  The angular width of the central maximum in the diffraction pattern due to slit of width a is  

   2 1 = 2 
                a 

  We want 10  < 2  or a   d = 1 mm = 0.2 mm.  
          d       a          5    5 
 

Q. 13. Angular width of a central maximum in the Fraunhoffer diffraction pattern of a slit is measured. The slit is illuminated by  
light of wavelength 6000 Å. When the slit is illuminated by light of another wavelength, the angular width decreases by  
30 %. Calculate the wavelength of this light. The same decrease in the angular-width of central maximum is obtained when 
the original apparatus is immersed in a liquid. Find refractive index of the liquid.              Screen 

 Sol. In single slit diffraction, first minimum occurs at  

   d sin  =  or sin  =  

                   d      

  As  < < d,  so  ≃ sin  =       
           d      d   

  Angular width of central maximum is   = 2 = 2  

         d                

  ∴ 2 = 2 

   1    1 

  or 2 = 2 . 1 =   70    6000 = 4200 Å   [∵ 2 = 70 % of 1] 

           1            100   
  When the apparatus is immersed in the liquid, the decrease in angular width is same. This indicates that the wavelength of  

light in the liquid is also 4200 Å. 

   =     = 6000 = 1.43 

          l     4200 
 
 



 
 
 
 
 
 

 

 Q. 14. A laser operates at a frequency of 3  1014 Hz and has an aperture of 10–2 m. What will be the angular spread? 
       

 Sol. Here v = 3  1014 Hz, d = 10–2 m, c = 3  108 m s–1 

  Wavelength,   = c =   3  108   = 10–6 m       

           v     3  1014   

  ∴ Angular spread,  = 1.22  = 1.22  10–6  
                d              10–2 

   = 1.22  10–4 rad.     
 

 Q. 15. A laser beam has a wavelength of 7  10–7 m and aperture 10–2 m. The beam is sent to moon, the distance of which from  

earth is 4  105 km. Find (i) the angular spread and (ii) areal spread when the beam reaches the moon.    

 Sol. Here   = 7  10–7 m, d = 10–2 m, D = 4  105 km = 4  108 m 
  For the circular aperture, we have 
  (i) Angular spread,   (ii) Areal spread 

    = 1.22       = (D)2 = (4  108  8.54  10–5)2  

              d     = 1.197  109 m2 

   = 1.22  7  10–7    
               10–2 

   = 8.54  10–5 rad. 
 

Q. 16. A laser light beam of power 20 mW is focused on a target by a lens of focal length 0.05 m. If the aperture of the laser be 1  
mm and the wavelength of its light 7000 Å, calculate the angular spread of the laser, the area of the target hit by it, and the 
intensity of the impact on the target. 

 Sol. Here P = 20 mW = 20  10–3 W, f = 0.05 m, d = 1 mm = 10–3 m,  = 7000 Å = 7000  10–10 m 
  (a) Angular spread of the laser beam,  

    = 1.22  = 1.22  7000  10–10     

               d                 1  10–3 

   = 8.54  10–4 radian. 

  (b) Linear spread of the laser = f .  = 5  10–2  8.54  10–4 m 
  ∴ Linear spread of the laser, i.e., area of the target hit by it 

   = (5  8.54  10–6)2 

   = 1.832  10–15 m2 
  (c) Intensity of impact of the laser on the target 

   = Power of laser =    20  10–3               

            Area hit           1.832  10–15  

   = 10.97  1012 Wm–2 
 

Q. 17. Calculate the distance that a beam of light of wavelength 500 nm can travel without significant broadening, if the diffraction 
aperture is 3 mm wide.  

       Or 
 For what distance is ray optics a good approximation when the aperture is 3 mm wide and the wavelength is 500 nm? 

Sol. Here d = 3 mm = 3  10–3 m,  = 500 nm = 500  10–9 m 
 The distance up to which a beam of light can travel without significant broadening is called Fresnel distance and its value is  

given by  DF = d2 = (3  10–3)2 = 18 m  

                500  10–9 
 

Q. 18. Light of wavelength 5  10–7 m is diffracted by an aperture of width 2  10–3 m. For what distance travelled by the diffracted  
beam does the spreading due to diffraction become greater than the width of the aperture?      

 Sol. Fresnel distance,  

   DF
 = d2 = (2  10–3)2 = 8 m  

                   5  10–7 
  So, at a distance greater than 8 m, the spreading due to diffraction becomes greater than the width of the aperture. 
 Q. 19. Light of wavelength 600 nm is incident on an aperture of size 2 mm. Calculate the distance up to which light can travel such  

that its spread is less than the size of the aperture.   
 Sol. Fresnel distance,  



 
 
 
 
 

DF = d2 = (2  10–3)2 = 6.67 m.  

              600  10–9  So, at a distance less than 6.67 m, the spreading of light is less than the size of the aperture.
           

 DIFFERENCE BETWEEN INTERFERENCE AND DIFFRACTION 

   
 

   
    

    
          
  
 
 
 
 
 
 
 
 
 
 
 
 
 

 DIFFRACTION AS A LIMIT ON RESOLVING POWER 

Diffraction as a limit on resolving power: All optical instruments like lens, telescope, microscope etc., act as apertures. Light  
on passing through them undergoes diffraction. This puts the limit on their resolving power. Suppose a lens is used to form the image  
of an object. We can think of the lens as a circular aperture. The image of each point is set of alternate bright and dark circular fringes  
with a bright disc at the centre. The size of this disc depends on the aperture of the lens and the wavelength of light used. If we have  
two nearby point objects, their images may give rise to diffraction patterns which overlap on each other, making the identification or 
resolution of the two objects difficult. 
 Limit of resolution: The smallest linear or angular separation between two points objects at which they can be just separately 
seen or resolved by an optical instrument is called the limit of resolution of the instrument. 
 Resolving power: The resolving power of an optical instrument is its ability to resolve or separate the images of two nearby  
point objects so that they can be distinctly seen. It is equal to the reciprocal of the limit of resolution of the optical instrument. 
 The smaller the limit of resolution of an optical instrument 
 
  Rayleigh’s criterion for resolution: If we look through a telescope at two stars lying closed together, their different patterns 
overlap and the resultant pattern is little broader but otherwise similar to that of a single star, as shown in Fig. So the two stars cannot be 
resolved or separately seen. 
 
 
  (a)       (b) 
 
 
 
 
 
 
 
  (c)       (d) 
 
 
 
 
 
 
 [(a), (b) Overlapping of diffraction patterns of two close print objects. (c), (d) their resultant diffraction patterns]  

Interference Diffraction 
1. Interference is the result of superposition of   
secondary waves starting from two difference 
wavefronts originating from two coherent sources. 
 
2. All bright and dark fringes are of equal width. 
 
 
3. All bright fringes are of same intensity. 
 
 
4. Regions of dark fringes are perfectly dark. So, 
there is a good contrast between bright and dark 
fringes. 
 

5. At an angle of /d, we get a bright fringe in the 
interference pattern of two narrow slits separated 
by a distance d. 

Diffraction is the result of superposition of 
secondary waves starting from different parts of 
the same wavefront. 
 
The width of central bright fringe is twice the width 
of any secondary maximum. 
 
Intensity of bright fringes decreases as we move 
away from central bright fringe on either side. 
 
Regions of dark fringes are not perfectly dark. 
So, there is a poor contrast between bright and 
dark fringes. 
 

At an angle of /d, we get the first dark fringe in 
the diffraction pattern of a single slit of width d. 



 
 
 
 
 
 

According to Rayleigh’s criterion, the images of two-point objects are just resolved when the central maximum of the  
diffraction pattern of one fall over the first minimum of the diffraction pattern of the other, as shown in Fig. When seen through  
the telescope, the resultant diffraction has a well-marked depression at the top, showing that these are really two stars and not one.  
Thus, the images of two stars have been just resolved. 
          
      Max.      Max. 
 
 
 
 
 
 
 
 
     First        First 
     min.        min. 
              (a)       (b) 
 
 
 
 
 
 
 
 
               (c)        (d)  
     [Rayleigh’s criterion for resolution] 
 

RESOLVING POWER OF MICROSCOPE AND TELESCOPE 

 Resolving power of a microscope: The resolving power of a microscope is defined as reciprocal of the smallest distance  
between two point objects at which they can be just resolved when seen through the microscope.    
 The smallest distance between two points objects at which they can be just resolved by the microscope, or the limit of  
resolution, is given by 

   d =                 

           2 sin      

 ∴ Resolving power of a microscope = 1 = 2  sin  

                     d            

  Here,  = the wavelength of light used, 

    = half the angle of cone of light from each point object or the angle subtended by each  point object on the radius  
       of the objective [Fig] 

 = the refractive index of the medium between the point object and the objective of the microscope. 
 
 
 
 
 
                Objective 
  
     

                        
 
 

  The factor  sin  is called the numerical aperture (for eye,  sin  = 0.004).  
The smaller the limit of resolution ‘d’, the greater will be the resolving power. The resolving power of a microscope increases 

when an oil of high refractive index () is used between the object and the objective (called the oil immersion objective) of the 
microscope. 
 



 
 
 
 

  
Resolving power of a telescope: The resolving power of a telescope of defined as the reciprocal of the smallest angular  

separation between two distant objects whose images can be just resolved by it. 
The smallest linear angular separation between two distant objects whose images can be just resolved by the telescope, or the 

limit of resolution, is given by 

  d = 1.22  
               D 
∴ Resolving power of a telescope =   1   =      D        

                 d      1.22  

Here  = the wavelength of light, 
 D = the diameter of the telescope objective, and  
           

 d = the angle subtended by the two distant objects at the objective. 
Thus, larger the aperture of the objective and smaller the wavelength of light used, the greater will be the resolving power of  
the telescope. 

  

Resolving power of human eye: The diameter of the pupil of human eye is about 2 mm. If we take  = 5000 Å, then the  
smallest angular separation between two distant point objects that the human eye can resolve will be   

 d = 1.22  = 1.22  5000  10–10   

              D                   2  10–3   

  = 0.305  10–3 rad  1’ 
Thus, the human eye can see two points objects distinctly if they subtended, at the eye, and angle equal to one minute of arc.  

This angle is called the limit of resolution of the eye. The reciprocal of this angle of limit of resolution gives the resolving power of the  
eye.  
 Further, if d is the separation between two point objects at a distance of 1 km which can be just resolving by human eyes, then 

  0.305  10–3 =    d        
               103 
 or d = 0.305 m = 30.5 cm 
 Thus, the human eyes can see two objects separated by 30 cm just resolved from a distance of 1 km. 

Examples based on Resolving Power of (i) Telescope (ii) Microscope 
◆ Formula Used    

  1. Limit of resolution of a telescope, d = 1.22  
      D 
 2. Resolving power of a telescope =   1   =     D      

      d      1.22  
  Where D = diameter of the objective lens. 

 3. Limit of resolution of a microscope, d =                

                 2  sin      

 4. Resolving power of a microscope = 1 = 2  sin  

         d            

  Where  = half angle of cone of light from the point object. The factor  sin  is called numerical aperture (N.A.). 
◆ Units Used    
 Lengths , D and d are in metre while angle  and d  are in radian. 
 
Q. 1. Assume that light of wavelength 6000 Å is coming from a star. What is the limit of resolution of a telescope whose objective  

has a diameter of 100 inch? 
 Sol. The limit of resolution of a telescope, 

   d = 1.22  
                D 

  Here D = 100 inch = 254 cm,  = 6000 Å = 6  10–5 cm 

  ∴ d = 1.22  6  10–5 = 2.9  10–7 rad.       
       254 

 Q. 2. A telescoping is used to resolve two stars separated by 4.6  10–6 rad. If the wavelength of light used is 5460 Å, what would  
be the aperture of the objective of the telescope?   

 Sol. Here d = 4.6  10–6 rad,  = 5460 Å = 5460  10–10 m 

  As d = 1.22  
                D 
 



 
 
 
 
 
 

  ∴ Aperture of the telescope, D = 1.22  = 1.22  5460  10–10 = 0.1488 m     

                 d                4.6  10–6     
 

Q. 3. The objective of an astronomical telescope has a diameter of 150 mm and a focal length of 4.0 m. The eyepiece has a focal  
length of 25.0 mm. Calculate the magnifying and resolving powers of the telescope. What is the distance between the  

objective and the eyepiece? Take  = 6000 Å 
 Sol. Assume that the final image is formed at infinity. Then   

  Magnifying power, m = f0 =         4         = 160            = 2.049  105  

               fe     25  10–4    Distance between objective and eyepiece 

  Resolving power =     D     =        150  10–3     = f0 + fe = 4 + 25  10–3 = 4.025 m.  

      1.22      1.2  6000  10–10  
 

Q. 4. Calculate the separation of two points on the moon that can be resolved using 600 cm telescope. given the distance of the  

moon from the earth is 3.8  1010 cm. The wavelength most sensitive to the eye is 5.5  10–5 cm.   
       

 Sol.  Here D = 600 cm,     = 5.5  10–5 cm 

  Limit of resolution,  d = 1.22  = 1.22  5.5  10–5 = 1.1  10–7 rad      
                  D                   600                       

Let x be the distance between two points on the moon and d be the distance between the moon and the objective of the 

telescope. Then  d  =   x  
                 D 

  or x = d  d = 3.8  1010  1.1  10–7 = 4180 cm. 
 

Q. 5. A telescope has an objective of diameter 60 cm. The focal lengths of the objective and eye-piece are 2.0 m and 1.0 cm 
respectively. The telescope is directed to view two distant almost point sources of light (e.g. two stars of a binary). The  
sources are at roughly the same distance (= 104 light years) along the line of sight but are separated transverse to the line  
of sight by a distance of 1010 m. Will the telescope resolve the two objects i.e. will it see two distinct stars?  

 Sol.  Separation between the two stars is  y = 1010 m 
  Distance of the stars from the earth is  

   x = 104 light years = 104  9.47  1015 m 
  ∴ Angle subtended by the line joining the two stars on the objective lens (or on eye) is  

   d  = y =             1010              = 0.106  10–9 rad                

                   104  98.47  1015 
  Now diameter of objective, D = 60 cm = 0.60 m 

  For mean yellow colour,  = 600 nm = 6  10–7 m 
  According to Rayleigh’s criterion, the limit of resolution of the telescope is  

   d’ = 1.22  = 1.22  6  10–7    
                 D                 0.60 

   = 1.22  10–6 rad. 

  As the angle d subtended by the transverse separation of the two stars is much too small compared to the limit of resolution  

d’, hence the two stars of the binary cannot be resolved by the given telescope. 
   
 Q. 6. Calculate the resolving power of a microscope if its numerical aperture is 0.12 and the wavelength of light used is 6000 Å. 
 Sol. Here 

   N.A. = 0.12,  = 6000 Å = 6  10–7 m 

  R.P. of microscope = 2  N.A. = 2  0.12 = 4  105 m–1.     

                         6  10–7 
 

Q. 7. Calculate the numerical aperture of a microscope required to just resolve two points separated by a distance of 10–4 cm, using 

light of wavelength 5.8  10–5 cm.     

 Sol. Here  = 5.8  10–5 cm, d = 10–4 cm 

  As  d =                     

           2  N. A. 

   N.A. =      = 5.8  1.5–5 = 0.29   

               2 d       2  10–4 

 



 

 

 

 

 
 

 Q. 8. The smallest object detail that can be resolved with a certain microscope with light of wavelength 6000 Å is 3.5  10–5 cm.  
Find the numerical aperture of the objective (i) when used dry and (ii) when immersed in an oil of refractive index 1.5.      

 Sol. Here  = 6000 Å = 6  10–7 m, d = 3.5  10–5 cm = 3.5  10–7 m 
  (i) When the objective is used dry,   (ii) When the objective is immersed in an oil of refractive index 1.5, 

   N.A. =    =   6  10–7   = 0.86       N.A. =   dry aperture = 1.5  0.86 = 1.44 

               2d    3.5  10–7    
  
 Q. 9. Assuming the diameter of the eye pupil to be 2.0 mm, calculate the smallest angular separation at which two point objects  

can be distinctly seen when viewed in light of wavelength 6000 Å. 

 Sol. Here  = 6000 Å = 6  10–7 m, d = 2.0 mm = 2.0  10–3 m 
  The limit of resolution of the eye, 

   d = 1.22  = 1.22  6  10–7 = 3.66  10–4 rad      

                 d            2.0  10–3    
 
 
 
 
 
 
 
 


