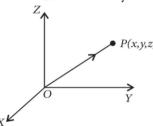


QUICK RECAP

VECTOR

- A physical quantity having magnitude as well as direction is called a vector. A vector is represented by a line segment, denoted as \overrightarrow{AB} or \overrightarrow{a} . Here, point A is the initial point and B is the terminal point of the vector \overrightarrow{AB} .
- Magnitude: The distance between the points A and B is called the magnitude of the directed line segment \overrightarrow{AB} . It is denoted by $|\overrightarrow{AB}|$.
- Position Vector: Let P be any point in space, having coordinates (x, y, z) with respect to some fixed point O(0, 0, 0) as origin, then

the vector \overrightarrow{OP} having O as its initial point and P as its terminal point is called the position vector of the point P with respect to O. The vector \overrightarrow{OP} is usually denoted by \overrightarrow{r} .



Magnitude of \overrightarrow{OP} is, $|\overrightarrow{OP}| = \sqrt{x^2 + y^2 + z^2}$ i.e., $|\vec{r}| = \sqrt{x^2 + y^2 + z^2}$.

In general, the position vectors of points A, B, C, etc. with respect to the origin O are denoted by \vec{a} , \vec{b} , \vec{c} , etc. respectively.

Direction Cosines and Direction Ratios: The angles α , β , γ made by the vector \vec{r} with the positive directions of x, y and z-axes respectively are called its direction angles. The cosine values of these angles, *i.e.*, cos α , cos β and cos γ are called direction cosines of the vector \vec{r} , and usually denoted by l, m and n respectively.

Direction cosines of \vec{r} are given as

$$l = \frac{x}{\sqrt{x^2 + y^2 + z^2}}, m = \frac{y}{\sqrt{x^2 + y^2 + z^2}},$$

$$n = \frac{z}{\sqrt{x^2 + y^2 + z^2}}$$

The numbers lr, mr and nr, proportional to the direction cosines of vector \vec{r} are called direction ratios of the vector \vec{r} and denoted as a, b and c respectively.

i.e., a = lr, b = mr and c = nr

Note: $l^2 + m^2 + n^2 = 1$ and $a^2 + b^2 + c^2 \neq 1$, (in general).

TYPES OF VECTORS

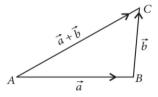
- Zero vector: A vector whose initial and terminal points coincide is called a zero (or null) vector. It cannot be assigned a definite direction as it has zero magnitude and it is denoted by the $\vec{0}$.
- Unit Vector: A vector whose magnitude is unity *i.e.*, $|\vec{a}| = 1$. It is denoted by \hat{a} .
- Equal Vectors: Two vectors \vec{a} and \vec{b} are said to be equal, written as $\vec{a} = \vec{b}$, iff

they have equal magnitudes and direction regardless of the positions of their initial points.

- Coinitial Vectors: Vectors having same initial point are called co-initial vectors.
- Collinear Vectors: Two or more vectors are called collinear if they have same or parallel supports, irrespective of their magnitudes and directions.
- Negative of a Vector: A vector having the same magnitude as that of a given vector but directed in the opposite sense is called negative of the given vector *i.e.*, $\overrightarrow{BA} = -\overrightarrow{AB}$.

ADDITION OF VECTORS

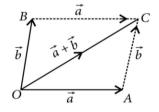
Triangle law: Let the vectors be \vec{a} and \vec{b} so positioned such that initial point of one coincides with \vec{a} terminal point of the



other. If $\vec{a} = \overrightarrow{AB}$, $\vec{b} = \overrightarrow{BC}$. Then the vector $\vec{a} + \vec{b}$ is represented by the third side of $\triangle ABC$ i.e., $\overrightarrow{AB} + \overrightarrow{BC} = \overrightarrow{AC}$

Parallelogram law:

If the two vectors \vec{a} and \vec{b} are represented by the two adjacent sides OA and OB of a parallelogram



OACB, then their sum $\vec{a} + \vec{b}$ is represented in magnitude and direction by the diagonal *OC* of parallelogram \overrightarrow{OACB} through their common point O i.e., $\overrightarrow{OA} + \overrightarrow{OB} = \overrightarrow{OC}$

Properties of Vector Addition

- Vector addition is commutative *i.e.*, $\vec{a} + \vec{b} = \vec{b} + \vec{a}$.
- Vector addition is associative *i.e.*, $\vec{a} + (\vec{b} + \vec{c}) = (\vec{a} + \vec{b}) + \vec{c}$.
- Existence of additive identity: The zero vector acts as additive identity *i.e.*,

 $\vec{a} + \vec{0} = \vec{a} = \vec{0} + \vec{a}$ for any vector \vec{a} .

Existence of additive inverse: The negative of \vec{a} i.e., $-\vec{a}$ acts as additive inverse i.e., $\vec{a} + (-\vec{a}) = \vec{0} = (-\vec{a}) + \vec{a}$ for any vector \vec{a} .

MULTIPLICATION OF A VECTOR BY A SCALAR

Let \vec{a} be a given vector and λ be a given scalar (a real number), then $\lambda \vec{a}$ is defined as the multiplication of vector \vec{a} by the scalar λ . Its magnitude is $|\lambda|$ times the modulus of \vec{a} i.e., $|\lambda \vec{a}| = |\lambda| |\vec{a}|$.

Direction of $\lambda \vec{a}$ is same as that of \vec{a} if $\lambda > 0$ and opposite to that of \vec{a} if $\lambda < 0$.

Note: If $\lambda = \frac{1}{|\vec{a}|}$, provided that $\vec{a} \neq 0$, then $\lambda \vec{a}$ represents the unit vector in the direction

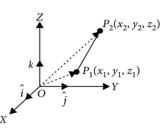
of \vec{a} i.e. $\hat{a} = \frac{\vec{a}}{|\vec{a}|}$

COMPONENTS OF A VECTOR

- Let O be the origin and P(x, y, z) be any point in space. Let \hat{i} , \hat{j} , \hat{k} be unit vectors along the X-axis, Y-axis and Z-axis respectively. Then $\overrightarrow{OP} = x\hat{i} + y\hat{j} + z\hat{k}$, which is called the component form of \overrightarrow{OP} . Here x, y and z are scalar components of \overrightarrow{OP} and $x\hat{i}$, $y\hat{j}$, $z\hat{k}$ are vector components of \overrightarrow{OP} .
- If \vec{a} and \vec{b} are two given vectors as $\vec{a} = a_1\hat{i} + a_2\hat{j} + a_3\hat{k}$ and $\vec{b} = b_1\hat{i} + b_2\hat{j} + b_3\hat{k}$ and λ be any scalar, then
- $\vec{a} + \vec{b} = (a_1 + b_1)\hat{i} + (a_2 + b_2)\hat{j} + (a_3 + b_3)\hat{k}$
- $\vec{a} \vec{b} = (a_1 b_1)\hat{i} + (a_2 b_2)\hat{j} + (a_3 b_3)\hat{k}$
- $\vec{a} = \vec{b} \Leftrightarrow a_1 = b_1, a_2 = b_2 \text{ and } a_3 = b_3$
- \vec{a} and \vec{b} are collinear iff $\frac{b_1}{a_1} = \frac{b_2}{a_2} = \frac{b_3}{a_3} = \lambda.$

VECTOR JOINING TWO POINTS

If $P_1(x_1, y_1, z_1)$ and $P_2(x_2, y_2, z_2)$ are any two points in the space then the vector joining P_1 and P_2 is the vector P_1P_2 .



Applying triangle law in $\triangle OP_1P_2$, we get $\overrightarrow{OP_1} + \overrightarrow{P_1P_2} = \overrightarrow{OP_2}$ $\Rightarrow P_1P_2 = \overrightarrow{OP_2} - \overrightarrow{OP_1}$

i.e., $\theta = \cos^{-1}\left(\frac{\vec{a} \cdot \vec{b}}{|\vec{a}||\vec{b}|}\right)$

$$= (x_2 \hat{i} + y_2 \hat{j} + z_2 \hat{k}) - (x_1 \hat{i} + y_1 \hat{j} + z_1 \hat{k})$$

$$= (x_2 - x_1) \hat{i} + (y_2 - y_1) \hat{j} + (z_2 - z_1) \hat{k}$$

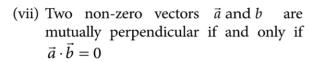
$$\therefore |\overline{P_1 P_2}| = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2 + (z_2 - z_1)^2}$$

SECTION FORMULA

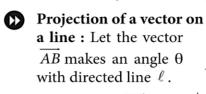
- Let A, B be two points such that $\overrightarrow{OA} = \overrightarrow{a}$ and $\overrightarrow{OB} = \overrightarrow{b}$.
- The position vector \vec{r} of the point P which divides the line segment AB internally in the ratio m: n is given by $\vec{r} = \frac{m\vec{b} + n\vec{a}}{m+n}$.
- The position vector \vec{r} of the point P which divides the line segment AB externally in the ratio m: n is given by $\vec{r} = \frac{m\vec{b} n\vec{a}}{m-n}$.
- The position vector \vec{r} of the mid-point of the line segment AB is given by $\vec{r} = \frac{\vec{a} + \vec{b}}{2}$.

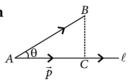
PRODUCT OF TWO VECTORS

- Scalar (or dot) product: The scalar (or dot) product of two (non-zero) vectors \vec{a} and \vec{b} , denoted by $\vec{a} \cdot \vec{b}$ (read as \vec{a} dot \vec{b}), is defined as $\vec{a} \cdot \vec{b} = |\vec{a}| |\vec{b}| \cos \theta = ab \cos \theta$, where, $a = |\vec{a}|, b = |\vec{b}|$ and $\theta (0 \le \theta \le \pi)$ is the angle between \vec{a} and \vec{b} .
- ► Properties of Scalar Product :
 - (i) Scalar product is commutative: $\vec{a} \cdot \vec{b} = \vec{b} \cdot \vec{a}$
 - (ii) $\vec{a} \cdot \vec{0} = 0$
 - (iii) Scalar product is distributive over addition:
 - $\vec{a} \cdot (\vec{b} + \vec{c}) = \vec{a} \cdot \vec{b} + \vec{a} \cdot \vec{c}$
 - $(\vec{a} + \vec{b}) \cdot \vec{c} = \vec{a} \cdot \vec{c} + \vec{b} \cdot \vec{c}$
 - (iv) $\lambda(\vec{a} \cdot \vec{b}) = (\lambda \vec{a}) \cdot \vec{b} = \vec{a} \cdot (\lambda \vec{b}), \lambda$ be any scalar.
 - (v) If \hat{i} , \hat{j} , \hat{k} are three unit vectors along three mutually perpendicular lines, then $\hat{i} \cdot \hat{i} = \hat{j} \cdot \hat{j} = \hat{k} \cdot \hat{k} = 1$ and $\hat{i} \cdot \hat{j} = \hat{j} \cdot \hat{k} = \hat{k} \cdot \hat{i} = 0$
 - (vi) Angle between two non-zero vectors \vec{a} and \vec{b} is given by $\cos\theta = \frac{\vec{a} \cdot \vec{b}}{|\vec{a}||\vec{b}|}$



(viii) If
$$\theta = 0$$
, then $\vec{a} \cdot \vec{b} = |\vec{a}| |\vec{b}|$
If $\theta = \pi$, then $\vec{a} \cdot \vec{b} = -|\vec{a}| |\vec{b}|$





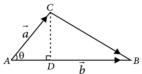
Projection of \overrightarrow{AB} on $\ell = |\overrightarrow{AB}| \cos \theta = \overrightarrow{AC} = \overrightarrow{p}$. The vector \vec{p} is called the projection vector. Its magnitude is |p|, which is known as projection of vector AB.

Projection of a vector \vec{a} on \vec{b} , is given as $\vec{a} \cdot \hat{b}$ i.e., $\frac{1}{|\vec{b}|} (\vec{a} \cdot \vec{b})$.

- Vector (or Cross) Product: The vector (or cross) product of two (non-zero) vectors a and b (in an assigned order), denoted by $\vec{a} \times \vec{b}$ (read as \vec{a} cross \vec{b}), is defined as $\vec{a} \times \vec{b} = |\vec{a}| |\vec{b}| \sin \theta \hat{n}$ where $\theta(0 \le \theta \le \pi)$ is the angle between \vec{a} and \vec{b} and \hat{n} is a unit vector perpendicular to both a and b.
- **Properties of Vector Product:**
 - (i) Non-commutative : $\vec{a} \times \vec{b} = -\vec{b} \times \vec{a}$
 - (ii) Vector product is distributive over addition:

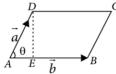
$$\vec{a} \times (\vec{b} + \vec{c}) = \vec{a} \times \vec{b} + \vec{a} \times \vec{c}$$

- (iii) $\lambda(\vec{a} \times \vec{b}) = (\lambda \vec{a}) \times \vec{b} = \vec{a} \times (\lambda \vec{b}), \quad \lambda$ be any scalar.
- (iv) $(\lambda_1 \vec{a}) \times (\lambda_2 \vec{b}) = \lambda_1 \lambda_2 (\vec{a} \times \vec{b})$
- (v) $\hat{i} \times \hat{j} = \hat{k}, \ \hat{j} \times \hat{k} = \hat{i}, \ \hat{k} \times \hat{i} = \hat{j}$
- (vi) Two non-zero vectors \vec{a} , \vec{b} are collinear if and only if $\vec{a} \times \vec{b} = \vec{0}$ Similarly, $\vec{a} \times \vec{a} = \vec{0}$ and $\vec{a} \times (-\vec{a}) = \vec{0}$, since in the first situation $\theta = 0$ and in the second one, $\theta = \pi$, making the value of $\sin \theta$ to be 0.
- (vii) If \vec{a} and \vec{b} represent the adjacent sides of a triangle as given in the figure. Then,



Area of triangle $ABC = \frac{1}{2}AB \cdot CD$ $=\frac{1}{2}|\vec{b}||\vec{a}|\sin\theta = \frac{1}{2}|\vec{a}\times\vec{b}|$

(viii) If \vec{a} and \vec{b} represent the adjacent sides of a parallelogram as given in the figure. $A = \vec{b}$



Then, area of parallelogram $ABCD = AB \cdot DE$ $= |\vec{b}| |\vec{a}| \sin \theta = |\vec{a} \times \vec{b}|$

- (ix) If $\vec{a} = a_1 \hat{i} + a_2 \hat{j} + a_3 \hat{k}, \vec{b} = b_1 \hat{i} + b_2 \hat{j} + b_3 \hat{k},$ $\vec{a} \times \vec{b} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \end{vmatrix}$ $= (a_2b_3 - a_3b_2)\hat{i} + (a_3b_1 - a_1b_3)\hat{j}$ $+(a_1b_2-a_2b_1)\hat{k}$
- (x) Angle between two vectors \vec{a} and \vec{b} is given by $\sin\theta = \frac{|\vec{a} \times \vec{b}|}{|\vec{a}||\vec{b}|}$ *i.e.*, $\theta = \sin^{-1}\left(\frac{|\vec{a} \times \vec{b}|}{|\vec{a}||\vec{b}|}\right)$
- Scalar Triple Product : The scalar triple product of any three vectors a, b and c is written as $\vec{a} \cdot (\vec{b} \times \vec{c})$ or $|\vec{a} \ \vec{b} \ \vec{c}|$.
- Coplanarity of Three Vectors: Three vectors a, b and c are coplanar iff $a \cdot (b \times c) = 0$.
- Volume of parallelopiped formed by adjacent sides given by the three vectors $\vec{a} = (a_1\hat{i} + a_2\hat{j} + a_3\hat{k}), \quad \vec{b} = (b_1\hat{i} + b_2\hat{j} + b_3\hat{k}),$

and $\vec{c} = (c_1 \hat{i} + c_2 \hat{j} + c_3 \hat{k})$, is $|\vec{a} \cdot (\vec{b} \times \vec{c})|$. i.e., $|\vec{a} \cdot (\vec{b} \times \vec{c})| = \begin{vmatrix} a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \\ c_1 & c_2 & c_3 \end{vmatrix}$

i.e.,
$$|\vec{a} \cdot (\vec{b} \times \vec{c})| = \begin{vmatrix} a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \\ c_1 & c_2 & c_3 \end{vmatrix}$$

- For any three vectors \vec{a} , \vec{b} and \vec{c} ,
 - (i) $[\vec{a} \ \vec{b} \ \vec{c}] = [\vec{b} \ \vec{c} \ \vec{a}] = [\vec{c} \ \vec{a} \ \vec{b}]$
 - (ii) $[\vec{a} \ \vec{b} \ \vec{c}] = -[\vec{a} \ \vec{c} \ \vec{b}]$ (iii) $[\vec{a} \ \vec{a} \ \vec{b}] = 0$

Previous Years' CBSE Board Questions

10.2 Some Basic Concepts

VSA (1 mark)

- 1. Find a vector \vec{a} of magnitude $5\sqrt{2}$, making an angle of $\frac{\pi}{4}$ with *x*-axis, $\frac{\pi}{2}$ with *y*-axis and an acute angle θ with *z*-axis. (AI 2014)
- 2. If a unit vector \vec{a} makes angles $\frac{\pi}{3}$ with \hat{i} , $\frac{\pi}{4}$ with \hat{j} and an acute angle θ with \hat{k} , then find the value of θ . (Delhi 2013)
- 3. Find the magnitude of the vector $\vec{a} = 3\hat{i} 2\hat{j} + 6\hat{k}$. (AI 2011C)

10.3 Types of Vectors

VSA (1 mark)

- **4.** The value of p for which $p(\hat{i} + \hat{j} + \hat{k})$ is a unit vector is
 - (a) 0
- (b) $\frac{1}{\sqrt{3}}$
- (c) 1
- (d) $\sqrt{3}$

(2020)

10.4 Addition of Vectors

VSA (1 mark)

- 5. *ABCD* is a rhombus, whose diagonals intersect at *E*. Then $\overrightarrow{EA} + \overrightarrow{EB} + \overrightarrow{EC} + \overrightarrow{ED}$ equals
 - (a) $\vec{0}$
- (b) \overrightarrow{AD}
- (c) $2\overrightarrow{BC}$
- (d) $2\overrightarrow{AD}$ (2020)
- 6. Find the sum of the vectors $\vec{a} = \hat{i} 2\hat{j} + \hat{k}$, $\vec{b} = -2\hat{i} + 4\hat{j} + 5\hat{k}$ and $\vec{c} = \hat{i} 6\hat{j} 7\hat{k}$.

(Delhi 2012)

- 7. Find the sum of the following vectors: $\vec{a} = \hat{i} 3\hat{k}$, $\vec{b} = 2\hat{j} \hat{k}$, $\vec{c} = 2\hat{i} 3\hat{j} + 2\hat{k}$ (Delhi 2012)
- 8. Find the sum of the following vectors: $\vec{a} = \hat{i} - 2\hat{j}, \vec{b} = 2\hat{i} - 3\hat{j}, \vec{c} = 2\hat{i} + 3\hat{k}$ (Delhi 2012)

9. If A, B and C are the vertices of a triangle ABC, then what is the value of $\overrightarrow{AB} + \overrightarrow{BC} + \overrightarrow{CA}$?

(Delhi 2011C)

10.5 Multiplication of a Vector by a Scalar

VSA (1 mark)

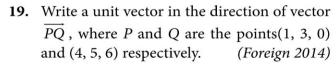
- 10. The position vector of two points A and B are $\overrightarrow{OA} = 2\hat{i} \hat{j} \hat{k}$ and $\overrightarrow{OB} = 2\hat{i} \hat{j} + 2\hat{k}$, respectively. The position vector of a point P which divides the line segment joining A and B in the ratio 2:1 is ______. (2020)
- 11. Find the position vector of a point which divides the join of points with position vectors $\vec{a} 2\vec{b}$ and $2\vec{a} + \vec{b}$ externally in the ratio 2:1. (Delhi 2016)
- 12. Write the position vector of the point which divides the join of points with position vectors $3\vec{a} 2\vec{b}$ and $2\vec{a} + 3\vec{b}$ in the ratio 2:1. (AI 2016)
- 13. Find the unit vector in the direction of the sum of the vectors $2\hat{i} + 3\hat{j} \hat{k}$ and $4\hat{i} 3\hat{j} + 2\hat{k}$.

 (Foreign 2015)
- **14.** Find a vector in the direction of $\vec{a} = \hat{i} 2\hat{j}$ that has magnitude 7 units. (*Delhi 2015C*)
- 15. Write the direction ratios of the vector $3\vec{a} + 2\vec{b}$ where $\vec{a} = \hat{i} + \hat{j} - 2\hat{k}$ and $\vec{b} = 2\hat{i} - 4\hat{j} + 5\hat{k}$.

(AI 2015C)

- **16.** Write a unit vector in the direction of the sum of the vectors $\vec{a} = 2\hat{i} + 2\hat{j} 5\hat{k}$ and $\vec{b} = 2\hat{i} + \hat{j} 7\hat{k}$. (*Delhi 2014*)
- 17. Find the value of 'p' for which the vectors $3\hat{i} + 2\hat{j} + 9\hat{k}$ and $\hat{i} 2p\hat{j} + 3\hat{k}$ are parallel.

 (AI 2014)
- 18. Find a vector in the direction of vector $2\hat{i} 3\hat{j} + 6\hat{k}$ which has magnitude 21 units. (Foreign 2014)



20. Write a vector in the direction of the vector $\hat{i} - 2\hat{j} + 2\hat{k}$ that has magnitude 9 units.

(Delhi 2014C)

- **21.** If $\vec{a} = x\hat{i} + 2\hat{j} z\hat{k}$ and $\vec{b} = 3\hat{i} y\hat{j} + \hat{k}$ are two equal vectors, then write the value of x + y + z. (Delhi 2013)
- 22. Write a unit vector in the direction of the sum of vectors $\vec{a} = 2\hat{i} - \hat{j} + 2\hat{k}$ and $\vec{b} = -\hat{i} + \hat{j} + 3\hat{k}$. (Delhi 2013)
- **23.** *P* and *Q* are two points with position vectors $3\vec{a} - 2\vec{b}$ and $\vec{a} + \vec{b}$ respectively. Write the position vector of a point R which divides the line segment *PQ* in the ratio 2 : 1 externally. (AI 2013)
- **24.** A and B are two points with position vectors $2\vec{a} - 3\vec{b}$ and $6\vec{b} - \vec{a}$ respectively. Write the position vector of a point P which divides the line segment AB internally in the ratio 1:2.(AI 2013)
- **25.** *L* and *M* are two points with position vectors $2\vec{a} - \vec{b}$ and $\vec{a} + 2\vec{b}$ respectively. Write the position vector of a point N which divides the line segment LM in the ratio 2:1 externally. (AI 2013)
- 26. Find the scalar components of the vector AB with initial point A(2, 1) and terminal point B(-5, 7). (AI 2012)
- 27. Find a unit vector parallel to the sum of the vectors $\hat{i} + \hat{j} + \hat{k}$ and $2\hat{i} - 3\hat{j} + 5\hat{k}$.

(Delhi 2012C)

- 28. Find a unit vector in the direction of the vector $\vec{a} = 3\hat{i} - 2\hat{j} + 6\hat{k}$. (AI 2012C)
- 29. Write the direction cosines of the vector $-2\hat{i}+\hat{j}-5\hat{k}.$ (Delhi 2011)
- **30.** For what value of 'a', the vectors $2\hat{i} 3\hat{j} + 4\hat{k}$ and $a\hat{i} + 6\hat{j} - 8\hat{k}$ are collinear? (Delhi 2011)
- 31. Write a unit vector in the direction of the vector $\vec{a} = 2\hat{i} + \hat{j} + 2\hat{k}$. (AI 2011)

- 32. Find a unit vector in the direction of $\vec{a} = 2\hat{i} - 3\hat{j} + 6\hat{k}.$ (Delhi 2011C)
- 33. Find a unit vector in the direction of the vector $\vec{a} = 2\hat{i} + 3\hat{j} + 6\hat{k}$. (AI 2011C)

SA (2 marks)

34. *X* and *Y* are two points with position vectors $3\vec{a} + \vec{b}$ and $\vec{a} - 3\vec{b}$ respectively. Write the position vector of a point Z which divides the line segment XY in the ratio 2:1 externally.

(AI 2019)

LA 1 (4 marks)

35. The two vectors $\hat{j} + \hat{k}$ and $3\hat{i} - \hat{j} + 4\hat{k}$ represent the two sides AB and AC, respectively of a $\triangle ABC$. Find the length of the median through A.

(Delhi 2016, Foreign 2015)

36. Find a vector of magnitude 5 units and parallel to the resultant of the vectors $\vec{a} = 2\hat{i} + 3\hat{j} - \hat{k}$ and $\vec{b} = \hat{i} - 2\hat{j} + \hat{k}$.

(Delhi 2011)

10.6 Product of Two Vectors

VSA (1 mark)

- 37. If the projection of $\vec{a} = \hat{i} 2\hat{j} + 3\hat{k}$ $\vec{b} = 2\hat{i} + \lambda \hat{k}$ is zero, then the value of λ is
 - (a) 0

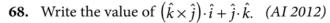
- (c) $\frac{-2}{3}$ (d) $\frac{-3}{2}$
 - (2020)
- 38. The area of the parallelogram whose diagonals are $2\hat{i}$ and $-3\hat{k}$ is ______ square units.
- **39.** The value of λ for which the vectors $2\hat{i} - \lambda\hat{j} + \hat{k}$ and $\hat{i} + 2\hat{j} - \hat{k}$ are orthogonal is (2020)
- **40.** If \hat{i} , \hat{j} , \hat{k} are unit vectors along three mutually perpendicular directions, then
 - (a) $\hat{i} \cdot \hat{j} = 1$
- (b) $\hat{i} \times \hat{j} = 1$
- (c) $\hat{i} \cdot \hat{k} = 0$
- (d) $\hat{i} \times \hat{k} = 0$ (2020)

- 41. Find the magnitude of each of the two vectors \vec{a} and \vec{b} , having the same magnitude such that the angle between them is 60° and their scalar product is $\frac{9}{2}$. (2018)
- **42.** Write the number of vectors of unit length perpendicular to both the vectors $\vec{a} = 2\hat{i} + \hat{j} + 2\hat{k}$ and $\vec{b} = \hat{j} + \hat{k}$. (AI 2016)
- **43.** If $\vec{a}, \vec{b}, \vec{c}$ are unit vectors such that $\vec{a} + \vec{b} + \vec{c} = \vec{0}$, then write the value of $\vec{a} \cdot \vec{b} + \vec{b} \cdot \vec{c} + \vec{c} \cdot \vec{a}$. (Foreign 2016)
- **44.** If $|\vec{a} \times \vec{b}|^2 + |\vec{a} \cdot \vec{b}|^2 = 400$ and $|\vec{a}| = 5$ then write the value of $|\vec{b}|$. (Foreign 2016)
- **45.** If $\vec{a} = 7\hat{i} + \hat{j} 4\hat{k}$ and $\vec{b} = 2\hat{i} + 6\hat{j} + 3\hat{k}$, then find the projection of \vec{a} on \vec{b} . (*Delhi 2015, 2013C*)
- **46.** If \hat{a} , \hat{b} and \hat{c} are mutually perpendicular unit vectors, then find the value of $|2\hat{a}+\hat{b}+\hat{c}|$. (AI 2015)
- 47. Write a unit vector perpendicular to both the vectors $\vec{a} = \hat{i} + \hat{j} + \hat{k}$ and $\vec{b} = \hat{i} + \hat{j}$. (AI 2015)
- **48.** Find the area of a parallelogram whose adjacent sides are represented by the vectors $2\hat{i} 3\hat{k}$ and $4\hat{j} + 2\hat{k}$. (Foreign 2015)
- **49.** If \vec{a} and \vec{b} are unit vectors, then what is the angle between \vec{a} and \vec{b} so that $\sqrt{2} \ \vec{a} \vec{b}$ is a unit vector? (Delhi 2015C)
- **50.** Find the projection of the vector $\vec{a} = 2\hat{i} + 3\hat{j} + 2\hat{k}$ on the vector $\vec{b} = 2\hat{i} + 2\hat{j} + \hat{k}$. (AI 2015C)
- 51. Find the projection of vector $\hat{i} + 3\hat{j} + 7\hat{k}$ on the vector $2\hat{i} 3\hat{j} + 6\hat{k}$. (*Delhi 2014*)
- 52. If \vec{a} and \vec{b} are two unit vectors such that $\vec{a} + \vec{b}$ is also a unit vector, then find the angle between \vec{a} and \vec{b} . (Delhi 2014)
- 53. If vectors \vec{a} and \vec{b} are such that, $|\vec{a}| = 3$, $|\vec{b}| = \frac{2}{3}$ and $\vec{a} \times \vec{b}$ is a unit vector, then write the angle between \vec{a} and \vec{b} . (Delhi 2014)

- **54.** If \vec{a} and \vec{b} are perpendicular vectors, $|\vec{a} + \vec{b}| = 13$ and $|\vec{a}| = 5$, find the value of $|\vec{b}|$. (AI 2014)
- 55. Write the projection of the vector $\hat{i} + \hat{j} + \hat{k}$ along the vector \hat{j} . (Foreign 2014)
- **56.** Write the value of $\hat{i} \times (\hat{j} + \hat{k}) + \hat{j} \times (\hat{k} + \hat{i}) + \hat{k} \times (\hat{i} + \hat{j})$. (Foreign 2014)
- 57. Write the projection of the vector $\vec{a} = 2\hat{i} \hat{j} + \hat{k}$ on the vector $\vec{b} = \hat{i} + 2\hat{j} + 2\hat{k}$. (Delhi 2014C)
- **58.** If \vec{a} and \vec{b} are unit vectors, then find the angle between \vec{a} and \vec{b} , given that $(\sqrt{3} \vec{a} \vec{b})$ is a unit vector. (*Delhi 2014C*)
- **59.** Write the value of cosine of the angle which the vector $\vec{a} = \hat{i} + \hat{j} + \hat{k}$ makes with *y*-axis. (*Delhi 2014C*)
- **60.** If $|\vec{a}|=8$, $|\vec{b}|=3$ and $|\vec{a} \times \vec{b}|=12$, find the angle between \vec{a} and \vec{b} . (AI 2014C)
 - 1. Find the angle between x-axis and the vector $\hat{i} + \hat{j} + \hat{k}$. (AI 2014C)
- **62.** Find $|\vec{x}|$, if for a unit vector \vec{a} , $(\vec{x} \vec{a}) \cdot (\vec{x} + \vec{a}) = 15 \qquad (AI \ 2013)$
- 63. Write the value of λ so that the vectors $\vec{a} = 2\hat{i} + \lambda \hat{j} + \hat{k}$ and $\vec{b} = \hat{i} 2\hat{j} + 3\hat{k}$ are perpendicular to each other.

 (Delhi 2013C, AI 2012C)
- **64.** For what value of λ are the vectors $\hat{i} + 2\lambda\hat{j} + \hat{k}$ and $2\hat{i} + \hat{j} 3\hat{k}$ are perpendicular?

 (AI 2013C, 2011C, Delhi 2012C)
- **65.** Write the projection of $\vec{b} + \vec{c}$ on \vec{a} , where $\vec{a} = 2\hat{i} 2\hat{j} + \hat{k}$, $\vec{b} = \hat{i} + 2\hat{j} 2\hat{k}$ and $\vec{c} = 2\hat{i} \hat{j} + 4\hat{k}$. (AI 2013C)
- **66.** Find ' λ ' when the projection of $\vec{a} = \lambda \hat{i} + \hat{j} + 4\hat{k}$ on $\vec{b} = 2\hat{i} + 6\hat{j} + 3\hat{k}$ is 4 units. (Delhi 2012)
- **67.** Write the value of $(\hat{i} \times \hat{j}) \cdot \hat{k} + \hat{i} \cdot \hat{j}$. (AI 2012)



- **69.** Write the value of $(\hat{k} \times \hat{i}) \cdot \hat{j} + \hat{i} \cdot \hat{k}$. (AI 2012)
- **70.** Write the angle between two vectors \vec{a} and \vec{b} with magnitudes $\sqrt{3}$ and 2 respectively having $\vec{a} \cdot \vec{b} = \sqrt{6}$. (AI 2011)
- 71. Write the projection of the vector $\hat{i} \hat{j}$ on the vector $\hat{i} + \hat{j}$. (AI 2011)
- 72. If $|\vec{a}| = \sqrt{3}$, $|\vec{b}| = 2$ and angle between \vec{a} and \vec{b} is 60°, find $\vec{a} \cdot \vec{b}$. (Delhi 2011C)

SA (2 marks)

- 73. Find a unit vector perpendicular to each of the vectors \vec{a} and \vec{b} and where $\vec{a} = 5\hat{i} + 6\hat{j} 2\hat{k}$ and $\vec{b} = 7\hat{i} + 6\hat{j} + 2\hat{k}$. (2020)
- 74. Show that for any two non-zero vectors \vec{a} and \vec{b} , $|\vec{a} + \vec{b}| = |\vec{a} \vec{b}|$ iff \vec{a} and \vec{b} are perpendicular vectors. (2020)
- 75. Show that the vectors $2\hat{i} \hat{j} + \hat{k}$, $3\hat{i} + 7\hat{j} + \hat{k}$ and $5\hat{i} + 6\hat{j} + 2\hat{k}$ form the sides of a right-angled triangle. (2020)
- 76. If the sum of two unit vectors is a unit vector, prove that the magnitude of their difference is $\sqrt{3}$. (Delhi 2019)
- 77. Let $\vec{a} = \hat{i} + 2\hat{j} 3\hat{k}$ and $\vec{b} = 3\hat{i} \hat{j} + 2\hat{k}$ be two vectors. Show that the vectors $(\vec{a} + \vec{b})$ and $(\vec{a} \vec{b})$ are perpendicular to each other.

 (AI 2019)
- 78. If θ is the angle between two vectors $\hat{i} 2\hat{j} + 3\hat{k}$ and $3\hat{i} 2\hat{j} + \hat{k}$, find $\sin \theta$. (2018)

LA 1 (4 marks)

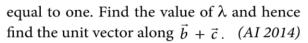
- **79.** If $\vec{a} = \hat{i} + 2\hat{j} + 3\hat{k}$ and $\vec{b} = 2\hat{i} + 4\hat{j} 5\hat{k}$ represent two adjacent sides of a parallelogram, find unit vectors parallel to the diagonals of the parallelogram. (2020)
- **80.** Using vectors, find the area of the triangle *ABC* with vertices A(1, 2, 3), B(2, -1, 4) and C(4, 5, -1) (2020, Delhi 2013, AI 2013)

- 81. If $\hat{i}+\hat{j}+\hat{k}$, $2\hat{i}+5\hat{j}$, $3\hat{i}+2\hat{j}-3\hat{k}$ and $\hat{i}-6\hat{j}-\hat{k}$ respectively are the position vectors of points A, B, C and D, then find the angle between the straight lines AB and CD. Find whether \overline{AB} and \overline{CD} are collinear or not. (Delhi 2019)
- **82.** Let $\vec{a} = 4\hat{i} + 5\hat{j} \hat{k}$, $\vec{b} = \hat{i} 4\hat{j} + 5\hat{k}$ and $\vec{c} = 3\hat{i} + \hat{j} \hat{k}$. Find a vector \vec{d} which is perpendicular to both \vec{c} and \vec{b} and $\vec{d} \cdot \vec{a} = 21$. (2018)
- **83.** If \vec{a} , \vec{b} , \vec{c} are mutually perpendicular vectors of equal magnitudes, show that the vector $\vec{a} + \vec{b} + \vec{c}$ is equally inclined to \vec{a} , \vec{b} and \vec{c} . Also, find the angle which $\vec{a} + \vec{b} + \vec{c}$ makes with \vec{a} or \vec{b} or \vec{c} .

(Delhi 2017)

- **84.** Show that the points A, B, C with position vectors $2\hat{i} \hat{j} + \hat{k}$, $\hat{i} 3\hat{j} 5\hat{k}$ and $3\hat{i} 4\hat{j} 4\hat{k}$ respectively, are the vertices of a right-angled triangle. Hence find the area of the triangle. (AI 2017)
- **85.** The two adjacent sides of a parallelogram are $2\hat{i} 4\hat{j} 5\hat{k}$ and $2\hat{i} + 2\hat{j} + 3\hat{k}$. Find the two unit vectors parallel to its diagonals. Using the diagonal vectors, find the area of the parallelogram. (AI 2016)
- **86.** If $\vec{a} \times \vec{b} = \vec{c} \times \vec{d}$ and $\vec{a} \times \vec{c} = \vec{b} \times \vec{d}$, show that $\vec{a} \vec{d}$ is parallel to $\vec{b} \vec{c}$, where $\vec{a} \neq \vec{d}$ and $\vec{b} \neq \vec{c}$. (Foreign 2016)
- 87. If $\vec{r} = x\hat{i} + y\hat{j} + z\hat{k}$, find $(\vec{r} \times \hat{i}) \cdot (\vec{r} \times \hat{j}) + xy$.

 (Delhi 2015)
- 88. If $\vec{a} = \hat{i} + 2\hat{j} + \hat{k}$, $\vec{b} = 2\hat{i} + \hat{j}$ and $\vec{c} = 3\hat{i} 4\hat{j} 5\hat{k}$, then find a unit vector perpendicular to both of the vectors $(\vec{a} \vec{b})$ and $(\vec{c} \vec{b})$. (AI 2015)
- **89.** Vectors \vec{a} , \vec{b} and \vec{c} are such that $\vec{a} + \vec{b} + \vec{c} = \vec{0}$ and $|\vec{a}| = 3$, $|\vec{b}| = 5$ and $|\vec{c}| = 7$. Find the angle between \vec{a} and \vec{b} . (Delhi 2014)
- **90.** The scalar product of the vector $\vec{a} = \hat{i} + \hat{j} + \hat{k}$ with a unit vector along the sum of vectors $\vec{b} = 2\hat{i} + 4\hat{j} 5\hat{k}$ and $\vec{c} = \lambda\hat{i} + 2\hat{j} + 3\hat{k}$ is



- **91.** Find a unit vector perpendicular to both of the vectors $\vec{a} + \vec{b}$ and $\vec{a} \vec{b}$ where $\vec{a} = \hat{i} + \hat{j} + \hat{k}, \vec{b} = \hat{i} + 2\hat{j} + 3\hat{k}$. (Foreign 2014)
- **92.** If $\vec{a} = 2\hat{i} 3\hat{j} + \hat{k}$, $\vec{b} = -\hat{i} + \hat{k}$, $\vec{c} = 2\hat{j} \hat{k}$ are three vectors, find the area of the parallelogram having diagonals $(\vec{a} + \vec{b})$ and $(\vec{b} + \vec{c})$.

(Delhi 2014C)

- 93. Find the vector \vec{p} which is perpendicular to both $\vec{\alpha} = 4\hat{i} + 5\hat{j} \hat{k}$ and $\vec{\beta} = \hat{i} 4\hat{j} + 5\hat{k}$ and $\vec{p} \cdot \vec{q} = 21$, where $\vec{q} = 3\hat{i} + \hat{j} \hat{k}$. (AI 2014C)
- **94.** If \vec{a} and \vec{b} are two vectors such that $|\vec{a} + \vec{b}| = |\vec{a}|$, then prove that vector $2\vec{a} + \vec{b}$ is perpendicular to vector \vec{b} . (*Delhi 2013*)
- **95.** If $\vec{a} = \hat{i} + \hat{j} + \hat{k}$ and $\vec{b} = \hat{j} \hat{k}$, find a vector \vec{c} , such that $\vec{a} \times \vec{c} = \vec{b}$ and $\vec{a} \cdot \vec{c} = 3$. (Delhi 2013)
- 96. If $\vec{a} = \hat{i} \hat{j} + 7\hat{k}$ and $\vec{b} = 5\hat{i} \hat{j} + \lambda\hat{k}$, then find the value of λ , so that $\vec{a} + \vec{b}$ and $\vec{a} \vec{b}$ are perpendicular vectors. (AI 2013)
- 97. If $\vec{a}, \vec{b}, \vec{c}$ are three mutually perpendicular vectors of the same magnitude, prove that $\vec{a} + \vec{b} + \vec{c}$ is equally inclined with the vectors \vec{a}, \vec{b} and \vec{c} . (Delhi 2013C)
- **98.** Dot product of a vector with vectors $\hat{i} \hat{j} + \hat{k}$, $2\hat{i} + \hat{j} 3\hat{k}$ and $\hat{i} + \hat{j} + \hat{k}$ are respectively 4, 0 and 2. Find the vector.

(Delhi 2013C)

- **99.** Find the values of λ for which the angle between the vectors $\vec{a} = 2\lambda^2 \hat{i} + 4\lambda \hat{j} + \hat{k}$ and $\vec{b} = 7\hat{i} 2\hat{j} + \lambda\hat{k}$ is obtuse. (AI 2013C)
- **100.** If \vec{a} , \vec{b} and \vec{c} are three vectors such that each one is perpendicular to the vector obtained by sum of the other two and $|\vec{a}| = 3$, $|\vec{b}| = 4$ and $|\vec{c}| = 5$, then prove that $|\vec{a} + \vec{b} + \vec{c}| = 5\sqrt{2}$. (AI 2013C)

- **101.** If $\vec{a} = 3\hat{i} \hat{j}$ and $\vec{b} = 2\hat{i} + \hat{j} 3\hat{k}$ then express \vec{b} in the form $\vec{b} = \vec{b}_1 + \vec{b}_2$ where $\vec{b}_1 \mid \mid \vec{a}$ and $\vec{b}_2 \perp \vec{a}$. (AI 2013C)
- **102.** If \vec{a} , \vec{b} , \vec{c} are three vectors such that $|\vec{a}| = 5$, $|\vec{b}| = 12$ and $|\vec{c}| = 13$ and $\vec{a} + \vec{b} + \vec{c} = \vec{0}$, find the value of $\vec{a} \cdot \vec{b} + \vec{b} \cdot \vec{c} + \vec{c} \cdot \vec{a}$.

(Delhi 2012)

- **103.** Let $\vec{a} = \hat{i} + 4\hat{j} + 2\hat{k}, \vec{b} = 3\hat{i} 2\hat{j} + 7\hat{k}$ and $\vec{c} = 2\hat{i} \hat{j} + 4\hat{k}$. Find a vector \vec{p} which is perpendicular to both \vec{a} and \vec{b} and $\vec{p} \cdot \vec{c} = 18$. (AI 2012)
- **104.** If the sum of two unit vectors \hat{a} and \hat{b} is a unit vector, show that the magnitude of their difference is $\sqrt{3}$. (*Delhi 2012C*)
- **105.** Find a unit vector perpendicular to each of the vectors $\vec{a} + \vec{b}$ and $\vec{a} \vec{b}$, where $\vec{a} = 3\hat{i} + 2\hat{j} + 2\hat{k}$ and $\vec{b} = \hat{i} + 2\hat{j} 2\hat{k}$.

(Delhi 2011)

- **106.** If two vectors \vec{a} and \vec{b} are such that $|\vec{a}| = 2$, $|\vec{b}| = 1$ and $\vec{a} \cdot \vec{b} = 1$, then find the value of $(3\vec{a} 5\vec{b}) \cdot (2\vec{a} + 7\vec{b})$. (*Delhi 2011*)
- **107.** Using vectors, find the area of the triangle with vertices A(1, 1, 2), B(2, 3, 5) and C(1, 5, 5). (AI 2011)
- **108.** If \vec{a} , \vec{b} and \vec{c} are three mutually perpendicular vectors of equal magnitude, show that $\vec{a} + \vec{b} + \vec{c}$ is equally inclined to \vec{a} , \vec{b} and \vec{c} . Also find the angle. (*Delhi 2011C*)
- 109. If \vec{a} , \vec{b} and \vec{c} are three vectors such that $|\vec{a}| = 3$, $|\vec{b}| = 4$ and $|\vec{c}| = 5$ and each one of them is perpendicular to the sum of the other two, then find $|\vec{a} + \vec{b} + \vec{c}|$. (AI 2011C)

10.7 Scalar Triple Product

VSA (1 mark)

- 110. Find λ , if the vectors $\vec{a} = \hat{i} + 3\hat{j} + \hat{k}$, $\vec{b} = 2\hat{i} \hat{j} \hat{k}$ and $\vec{c} = \lambda\hat{j} + 3\hat{k}$ are coplanar. (Delhi 2015)
- **111.** Find $\vec{a} \cdot (\vec{b} \times \vec{c})$, if $\vec{a} = 2\hat{i} + \hat{j} + 3\hat{k}$, $\vec{b} = -\hat{i} + 2\hat{j} + \hat{k}$ and $\vec{c} = 3\hat{i} + \hat{j} + 2\hat{k}$. (AI 2014)

SA (2 marks)

112. Find the volume of the parallelepiped whose adjacent edges are represented by $2\vec{a}$, $-\vec{b}$ and $3\vec{c}$, where

$$\vec{a} = \hat{i} - \hat{j} + 2\hat{k}, \ \vec{b} = 3\hat{i} + 4\hat{j} - 5\hat{k} \text{ and}$$

 $\vec{c} = 2\hat{i} - \hat{j} + 3\hat{k}.$ (2020)

113. If $\vec{a} = 2\hat{i} + 3\hat{j} + \hat{k}$, $\vec{b} = \hat{i} - 2\hat{j} + \hat{k}$ and $\vec{c} = -3\hat{i} + \hat{j} + 2\hat{k}$, find $[\vec{a}\ \vec{b}\ \vec{c}]$. (Delhi 2019)

LA 1 (4 marks)

- **114.** Find the value of x, for which the four points A(x, -1, -1), B(4, 5, 1), C(3, 9, 4) and D(-4, 4, 4) are coplanar. (AI 2019)
- **115.** Let $\vec{a} = \hat{i} + \hat{j} + \hat{k}$, $\vec{b} = \hat{i}$ and $\vec{c} = c_1 \hat{i} + c_2 \hat{j} + c_3 \hat{k}$, then
 - (a) Let $c_1 = 1$ and $c_2 = 2$, find c_3 which makes \vec{a} , \vec{b} and \vec{c} coplanar.
 - (b) If $c_2 = -1$ and $c_3 = 1$, show that no value of c_1 can make \vec{a} , \vec{b} and \vec{c} coplanar. (Delhi 2017)
- 116. Find the value of λ , if four points with position vectors $3\hat{i} + 6\hat{j} + 9\hat{k}$, $\hat{i} + 2\hat{j} + 3\hat{k}$, $2\hat{i} + 3\hat{j} + \hat{k}$ and $4\hat{i} + 6\hat{j} + \lambda\hat{k}$ are coplanar. (AI 2017)

117. Show that the vectors \vec{a} , \vec{b} and \vec{c} are coplanar if $\vec{a} + \vec{b}$, $\vec{b} + \vec{c}$ and $\vec{c} + \vec{a}$ are coplanar.

(Delhi 2016)

- 118. Find the value of λ so that the four points A, B, C and D with position vectors $4\hat{i}+5\hat{j}+\hat{k}$, $-\hat{j}-\hat{k}$, $3\hat{i}+\lambda\hat{j}+4k$ and $-4\hat{i}+4\hat{j}+4\hat{k}$ respectively are coplanar. (Delhi 2015C)
- **119.** Prove that : $[\vec{a}, \vec{b} + \vec{c}, \vec{d}] = [\vec{a}, \vec{b}, \vec{d}] + [\vec{a}, \vec{c}, \vec{d}]$. (AI 2015C)
- **120.** Prove that, for any three vectors \vec{a} , \vec{b} , \vec{c} $[\vec{a} + \vec{b} \quad \vec{b} + \vec{c} \quad \vec{c} + \vec{a}] = 2[\vec{a} \quad \vec{b} \quad \vec{c}] \quad (Delhi \ 2014)$
- **121.** Show that the four points A, B, C and D with position vectors $4\hat{i} + 5\hat{j} + \hat{k}$, $-\hat{j} \hat{k}$, $3\hat{i} + 9\hat{j} + 4\hat{k}$ and $4(-\hat{i} + \hat{j} + \hat{k})$ respectively are coplanar. (AI 2014)
- **122.** Show that the vectors \vec{a} , \vec{b} , \vec{c} are coplanar if and only if $\vec{a} + \vec{b}$, $\vec{b} + \vec{c}$ and $\vec{c} + \vec{a}$ are coplanar. (Foreign 2014)
- **123.** If the three vectors \vec{a} , \vec{b} and \vec{c} are coplanar, prove that the vectors $\vec{a} + \vec{b}$, $\vec{b} + \vec{c}$ and $\vec{c} + \vec{a}$ are also coplanar. (*Delhi 2014C*, 2013C)

Detailed Solutions

1. Here, $l = \cos \frac{\pi}{4} = \frac{1}{\sqrt{2}}$, $m = \cos \frac{\pi}{2} = 0$, $n = \cos \theta$

Since,
$$l^2 + m^2 + n^2 = 1$$

$$\Rightarrow \frac{1}{2} + 0 + \cos^2 \theta = 1 \Rightarrow \cos^2 \theta = 1 - \frac{1}{2} = \frac{1}{2}$$

$$\Rightarrow \cos\theta = \frac{1}{\sqrt{2}} \Rightarrow \theta = \frac{\pi}{4} \quad \therefore \ n = \cos\frac{\pi}{4} = \frac{1}{\sqrt{2}}$$

 \therefore The vector of magnitude $5\sqrt{2}$ is

$$\vec{a} = 5\sqrt{2}(\hat{li} + m\hat{j} + n\hat{k})$$

$$= 5\sqrt{2} \left(\frac{1}{\sqrt{2}} \hat{i} + 0 \hat{j} + \frac{1}{\sqrt{2}} \hat{k} \right) = 5(\hat{i} + \hat{k})$$

2.
$$l = \cos \frac{\pi}{3} = \frac{1}{2}, m = \cos \frac{\pi}{4} = \frac{1}{\sqrt{2}} \text{ and } n = \cos \theta$$

Now,
$$l^2 + m^2 + n^2 = 1$$

$$\Rightarrow \left(\frac{1}{2}\right)^2 + \left(\frac{1}{\sqrt{2}}\right)^2 + n^2 = 1$$

$$\Rightarrow \frac{1}{4} + \frac{1}{2} + n^2 = 1 \Rightarrow n^2 = \frac{1}{4} \Rightarrow n = \pm \frac{1}{2}$$

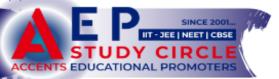
$$\Rightarrow \cos \theta = \pm \frac{1}{2}$$

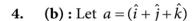
But θ is an acute angle (given).

$$\therefore \quad \theta = \cos^{-1}\left(\frac{1}{2}\right) = \frac{\pi}{3}$$

- 3. Here, $\vec{a} = 3\hat{i} 2\hat{j} + 6\hat{k}$
- \therefore Its magnitude = $|\vec{a}|$

$$= \sqrt{3^2 + (-2)^2 + 6^2} = \sqrt{9 + 4 + 36} = \sqrt{49} = 7.$$





So, unit vector of $\vec{a} = \frac{\hat{i} + \hat{j} + \hat{k}}{\sqrt{1 + 1 + 1}} = \frac{1}{\sqrt{3}} (\hat{i} + \hat{j} + \hat{k})$

- The value of p is $\frac{1}{\sqrt{3}}$.
- (a): $\overrightarrow{EA} + \overrightarrow{EB} + \overrightarrow{EC} + \overrightarrow{ED}$ $= \overrightarrow{EA} + \overrightarrow{EB} - \overrightarrow{EA} - \overrightarrow{EB}$

[As diagonals of a rhombus bisect each other]

The given vectors are

$$\vec{a} = \hat{i} - 2\hat{j} + \hat{k}, \ \vec{b} = -2\hat{i} + 4\hat{j} + 5\hat{k}, \ \vec{c} = \hat{i} - 6\hat{j} - 7\hat{k}$$

- \therefore Their sum = $\vec{a} + \vec{b} + \vec{c}$
- $=(\hat{i}-2\hat{j}+\hat{k})+(-2\hat{i}+4\hat{j}+5\hat{k})+(\hat{i}-6\hat{j}-7\hat{k})$
- $=-4\hat{j}-\hat{k}$.
- 7. Required sum = $\vec{a} + \vec{b} + \vec{c}$
- $=(\hat{i}-3\hat{k})+(2\hat{j}-\hat{k})+(2\hat{i}-3\hat{j}+2\hat{k})$
- $=3\hat{i}-\hat{j}-2\hat{k}$.
- 8. Required sum = $\vec{a} + \vec{b} + \vec{c}$

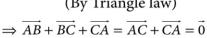
$$=(\hat{i}-2\hat{j})+(2\hat{i}-3\hat{j})+(2\hat{i}+3\hat{k})=5\hat{i}-5\hat{j}+3\hat{k}.$$

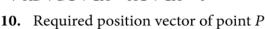
9. Let *ABC* be the given

triangle.

Now
$$\overrightarrow{AB} + \overrightarrow{BC} = \overrightarrow{AC}$$

(By Triangle law)





$$= \frac{1(2\hat{i} - \hat{j} - \hat{k}) + 2(2\hat{i} - \hat{j} + 2\hat{k})}{2+1}$$

$$= \frac{2\hat{i} - \hat{j} - \hat{k} + 4\hat{i} - 2\hat{j} + 4\hat{k}}{3}$$

$$= \frac{1}{3}(6\hat{i} - 3\hat{j} + 3\hat{k}) = 2\hat{i} - \hat{j} + \hat{k}$$

11. Required position vector

$$= \frac{2 \cdot (2\vec{a} + \vec{b}) - 1(\vec{a} - 2\vec{b})}{2 - 1} = \frac{4\vec{a} + 2\vec{b} - \vec{a} + 2\vec{b}}{1}$$
$$= 3\vec{a} + 4\vec{b}$$

12. Required position vector

$$=\frac{2(2\vec{a}+3\vec{b})+1(3\vec{a}-2\vec{b})}{2+1}=\frac{7\vec{a}+4\vec{b}}{3}=\frac{7}{3}\vec{a}+\frac{4}{3}\vec{b}$$

13. Let $a = 2\hat{i} + 3\hat{j} - \hat{k}$ and $b = 4\hat{i} - 3\hat{j} + 2\hat{k}$.

Then, the sum of the given vectors is

$$\vec{c} = \vec{a} + \vec{b} = (2+4)\hat{i} + (3-3)\hat{j} + (-1+2)\hat{k} = 6\hat{i} + \hat{k}$$

and
$$|\vec{c}| = |\vec{a} + \vec{b}| = \sqrt{6^2 + 1^2} = \sqrt{36 + 1} = \sqrt{37}$$

$$\therefore \text{ Unit vector, } \hat{c} = \frac{\vec{c}}{|\vec{c}|} = \frac{6\hat{i} + \hat{k}}{\sqrt{37}} = \frac{6}{\sqrt{37}}\hat{i} + \frac{1}{\sqrt{37}}\hat{k}$$

14. A unit vector in the direction of $\vec{a} = \hat{i} - 2\hat{j}$

is
$$\hat{a} = \frac{\vec{a}}{|\vec{a}|} = \frac{\hat{i} - 2\hat{j}}{\sqrt{1^2 + (-2)^2}} = \frac{1}{\sqrt{5}}(\hat{i} - 2\hat{j})$$

The required vector of magnitude 7 in the

direction of
$$\vec{a} = 7 \cdot \hat{a} = \frac{7}{\sqrt{5}}(\hat{i} - 2\hat{j})$$
.

15.
$$\vec{a} = \hat{i} + \hat{j} - 2\hat{k}$$
; $\vec{b} = 2\hat{i} - 4\hat{j} + 5\hat{k}$

$$\therefore 3\vec{a} + 2\vec{b} = 3(\hat{i} + \hat{j} - 2\hat{k}) + 2(2\hat{i} - 4\hat{j} + 5\hat{k})$$

$$= (3\hat{i} + 3\hat{j} - 6\hat{k}) + (4\hat{i} - 8\hat{j} + 10\hat{k}) = 7\hat{i} - 5\hat{j} + 4\hat{k}$$

The direction ratios of the vector

$$3\vec{a} + 2\vec{b}$$
 are 7, -5, 4.

16. Refer to answer 13.

17. Let $\vec{a} = 3\hat{i} + 2\hat{j} + 9\hat{k}$ and $\vec{b} = \hat{i} - 2p\hat{j} + 3\hat{k}$

For \vec{a} and \vec{b} to be parallel, $\vec{b} = \lambda \vec{a}$.

$$\Rightarrow \hat{i} - 2p\hat{j} + 3\hat{k} = \lambda(3\hat{i} + 2\hat{j} + 9\hat{k}) = 3\lambda\hat{i} + 2\lambda\hat{j} + 9\lambda\hat{k}$$

$$\Rightarrow 1 = 3\lambda; -2p = 2\lambda, 3 = 9\lambda$$

$$\Rightarrow \lambda = \frac{1}{3}$$
 and $p = -\lambda = -\frac{1}{3}$

18. Let $\vec{a} = 2\hat{i} - 3\hat{j} + 6\hat{k}$.

The vector in the direction of \vec{a} with a magnitude of $21 = 21 \times \hat{a}$

 $\therefore \text{ Required vector} = 21 \times \frac{2\hat{i} - 3\hat{j} + 6\hat{k}}{\sqrt{2^2 + (-3)^2 + 6^2}}$

$$=21\times\frac{2\hat{i}-3\hat{j}+6\hat{k}}{7}=6\hat{i}-9\hat{j}+18\hat{k}$$

19. We have $\overrightarrow{PQ} = \overrightarrow{OQ} - \overrightarrow{OP}$

$$=(4\hat{i}+5\hat{j}+6\hat{k})-(\hat{i}+3\hat{j})=3\hat{i}+2\hat{j}+6\hat{k}$$

Required unit vector = $\frac{3\hat{i} + 2\hat{j} + 6\hat{k}}{\sqrt{3^2 + 2^2 + 6^2}} = \frac{3\hat{i} + 2\hat{j} + 6\hat{k}}{7}$

- 20. Refer to answer 18.
- **21.** Given, $\vec{a} = \vec{b}$

$$\Rightarrow x\hat{i} + 2\hat{j} - z\hat{k} = 3\hat{i} - y\hat{j} + \hat{k}$$

$$x = 3, y = -2, z = -1$$

Hence, the value of x + y + z = 0

- **22.** Refer to answer 13.
- 23. Refer to answer 11.
- **24.** Refer to answer 12.
- 25. Refer to answer 11.

26. Vector
$$\overrightarrow{AB} = \overrightarrow{OB} - \overrightarrow{OA}$$

$$=(-5\hat{i}+7\hat{j})-(2\hat{i}+\hat{j})=-7\hat{i}+6\hat{j}$$

So, its scalar components are (-7, 6).

27. Let
$$\vec{a} = \hat{i} + \hat{j} + \hat{k}$$
 and $\vec{b} = 2\hat{i} - 3\hat{j} + 5\hat{k}$

$$\vec{a} + \vec{b} = (\hat{i} + \hat{j} + \hat{k}) + (2\hat{i} - 3\hat{j} + 5\hat{k})$$

$$=3\hat{i}-2\hat{j}+6\hat{k}$$

Any vector parallel to $\vec{a} + \vec{b}$

$$= \lambda(\vec{a} + \vec{b}) = \lambda(3\hat{i} - 2\hat{j} + 6\hat{k})$$

:. The unit vector in this direction

$$= \frac{\lambda(3\hat{i} - 2\hat{j} + 6\hat{k})}{\sqrt{(3\lambda)^2 + (-2\lambda)^2 + (6\lambda)^2}}$$

$$= \frac{\lambda(3\hat{i} - 2\hat{j} + 6\hat{k})}{|\lambda| \cdot 7} = \pm \frac{1}{7}(3\hat{i} - 2\hat{j} + 6\hat{k})$$

28. The given vector is $\vec{a} = 3\hat{i} - 2\hat{j} + 6\hat{k}$

$$\Rightarrow |\vec{a}| = \sqrt{3^2 + (-2)^2 + 6^2} = 7$$

 \therefore A unit vector in the direction of vector \vec{a} is

$$\hat{a} = \frac{\vec{a}}{|\vec{a}|} = \frac{1}{7} (3\hat{i} - 2\hat{j} + 6\hat{k})$$

29. We have, $\vec{a} = -2\hat{i} + \hat{j} - 5\hat{k}$

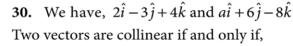
Direction cosines of the given vector are

$$\left(\frac{-2}{\sqrt{(-2)^2+(1)^2+(-5)^2}}, \frac{1}{\sqrt{(-2)^2+(1)^2+(-5)^2}}, \frac{1}{\sqrt{(-2)^2+(1)^2+(-5)^2}}, \frac{1}{\sqrt{(-2)^2+(1)^2+(-5)^2}}\right)$$

$$\frac{-5}{\sqrt{(-2)^2 + (1)^2 + (-5)^2}}$$

$$=\left(\frac{-2}{\sqrt{4+1+25}}, \frac{1}{\sqrt{4+1+25}}, \frac{-5}{\sqrt{4+1+25}}\right)$$

$$\therefore \text{ Direction cosines are } \left(\frac{-2}{\sqrt{30}}, \frac{1}{\sqrt{30}}, \frac{-5}{\sqrt{30}} \right)$$



$$\frac{a_1}{a_2} = \frac{b_1}{b_2} = \frac{c_1}{c_2} = \lambda \implies \frac{2}{a} = \frac{-3}{6} = \frac{4}{-8} = \frac{-1}{2} = \lambda$$

$$\implies \frac{2}{a} = \frac{-1}{2} \implies a = -4$$

31.
$$\vec{a} = 2\hat{i} + \hat{j} + 2\hat{k}$$

$$|\vec{a}| = \sqrt{(2)^2 + (1)^2 + (2)^2} = \sqrt{4 + 1 + 4} = \sqrt{9} = 3.$$

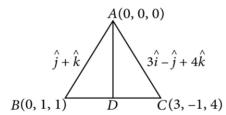
Required unit vector is $\hat{a} = \frac{\vec{a}}{|\vec{a}|} = \frac{2\hat{i} + \hat{j} + 2\hat{k}}{3}$

$$= \frac{2}{3}\hat{i} + \frac{1}{3}\hat{j} + \frac{2}{3}\hat{k}$$

- **32.** Refer to answer 31.
- **33.** Refer to answer 31.
- **34.** Position vector which divides the line segment joining points with position vectors $3\vec{a} + \vec{b}$ and $\vec{a} 3\vec{b}$ in the ratio 2 : 1 externally is given by

$$\frac{2(\vec{a} - 3\vec{b}) - 1(3\vec{a} + \vec{b})}{2 - 1} = \frac{2\vec{a} - 6\vec{b} - 3\vec{a} - \vec{b}}{1}$$
$$= -\vec{a} - 7\vec{b}$$

- **35.** Take *A* to be as origin (0, 0, 0).
- \therefore Coordinates of *B* are (0, 1, 1) and coordinates of *C* are (3, -1, 4).



Let D be the mid point of BC and AD is a median of ΔABC .

$$\therefore$$
 Coordinates of *D* are $\left(\frac{3}{2}, 0, \frac{5}{2}\right)$

So, length of
$$AD = \sqrt{\left(\frac{3}{2} - 0\right)^2 + (0)^2 + \left(\frac{5}{2} - 0\right)^2}$$

$$=\sqrt{\frac{9}{4} + \frac{25}{4}} = \frac{\sqrt{34}}{2}$$
 units

36.
$$\vec{a} = 2\hat{i} + 3\hat{j} - \hat{k}, \ \vec{b} = \hat{i} - 2\hat{j} + \hat{k}$$

$$\vec{a} + \vec{b} = (2\hat{i} + 3\hat{j} - \hat{k}) + (\hat{i} - 2\hat{j} + \hat{k}) = 3\hat{i} + \hat{j}$$

$$|\vec{a} + \vec{b}| = \sqrt{3^2 + 1^2} = \sqrt{10}$$

:. A vector of magnitude 5 in the direction of

$$\vec{a} + \vec{b}$$
 is $\frac{5(\vec{a} + \vec{b})}{|\vec{a} + \vec{b}|} = \frac{5(3\hat{i} + \hat{j})}{\sqrt{10}}$

37. (c): Here,
$$\vec{a} = \hat{i} - 2\hat{j} + 3\hat{k}$$
, $\vec{b} = 2\hat{i} + \lambda\hat{k}$

Since, projection of \vec{a} on $\vec{b} = 0$

$$\Rightarrow \frac{\vec{a} \cdot \vec{b}}{|\vec{b}|} = 0 \Rightarrow \frac{(\hat{i} - 2\hat{j} + 3\hat{k}) \cdot (2\hat{i} + \lambda\hat{k})}{\sqrt{2^2 + \lambda^2}} = 0$$

$$\Rightarrow \frac{2+3\lambda}{\sqrt{4+\lambda^2}} = 0 \Rightarrow 2+3\lambda = 0 \Rightarrow \lambda = -\frac{2}{3}$$

38. Given, two diagonals \vec{d}_1 and \vec{d}_2 are $2\hat{i}$ and $-3\hat{k}$ respectively.

$$\vec{d}_1 \times \vec{d}_2 = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ 2 & 0 & 0 \\ 0 & 0 & -3 \end{vmatrix} = \hat{i}(0) - \hat{j}(-6 - 0) + \hat{k}(0) = 6\hat{j}$$

So, area of the parallelogram = $\frac{1}{2} |\vec{d}_1 \times \vec{d}_2|$ = $\frac{1}{2} \times 6 = 3$ sq. units

39. Let
$$\vec{a} = 2\hat{i} - \lambda\hat{j} + \hat{k}$$
 and $\vec{b} = \hat{i} + 2\hat{j} - \hat{k}$

We know, \vec{a} and \vec{b} are orthogonal iff $\vec{a} \cdot \vec{b} = 0$

$$\Rightarrow (2\hat{i} - \lambda\hat{j} + \hat{k}) \cdot (\hat{i} + 2\hat{j} - \hat{k}) = 0$$

$$\Rightarrow$$
 2-2 λ -1=0 \Rightarrow 1-2 λ =0 \Rightarrow $\lambda = \frac{1}{2}$

40. (c): Since, \hat{i} , \hat{j} , \hat{k} are mutually perpendicular.

$$\hat{i} \cdot \hat{k} = 0$$

41. Given,
$$|\vec{a}| = |\vec{b}|$$
, $\theta = 60^{\circ}$ and $\vec{a} \cdot \vec{b} = \frac{9}{2}$

Now,
$$\cos \theta = \frac{\vec{a} \cdot \vec{b}}{|\vec{a}| |\vec{b}|}$$

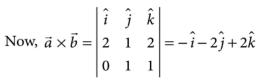
$$\Rightarrow \cos 60^{\circ} = \frac{9/2}{|\vec{a}|^2} \Rightarrow \frac{1}{2} = \frac{9/2}{|\vec{a}|^2}$$

$$\Rightarrow |\vec{a}|^2 = 9 \Rightarrow |\vec{a}| = 3 : |\vec{a}| = |\vec{b}| = 3$$

42. Given, $\vec{a} = 2\hat{i} + \hat{j} + 2\hat{k}$ and $\vec{b} = \hat{j} + \hat{k}$

Unit vectors perpendicular to \vec{a} and \vec{b} are

$$\pm \left(\frac{\vec{a} \times \vec{b}}{|\vec{a} \times \vec{b}|} \right)$$
.



 \therefore Unit vectors perpendicular to \vec{a} and \vec{b} are

$$\pm \frac{(-\hat{i} - 2\hat{j} + 2\hat{k})}{\sqrt{(-1)^2 + (-2)^2 + (2)^2}} = \pm \left(-\frac{1}{3}\hat{i} - \frac{2}{3}\hat{j} + \frac{2}{3}\hat{k}\right)$$

So, there are two unit vectors perpendicular to the given vectors.

43. We have $\vec{a}, \vec{b}, \vec{c}$ are unit vectors.

Therefore, $|\vec{a}| = 1$, $|\vec{b}| = 1$ and $|\vec{c}| = 1$

Also, $\vec{a} + \vec{b} + \vec{c} = \vec{0}$ (given)

$$\Rightarrow \left| \vec{a} + \vec{b} + \vec{c} \right|^2 = 0$$

$$\Rightarrow |\vec{a}|^2 + |\vec{b}|^2 + |\vec{c}|^2 + 2(\vec{a} \cdot \vec{b} + \vec{b} \cdot \vec{c} + \vec{c} \cdot \vec{a}) = 0$$

$$\Rightarrow 1 + 1 + 1 + 2(\vec{a} \cdot \vec{b} + \vec{b} \cdot \vec{c} + \vec{c} \cdot \vec{a}) = 0$$

$$\Rightarrow 3 + 2(\vec{a} \cdot \vec{b} + \vec{b} \cdot \vec{c} + \vec{c} \cdot \vec{a}) = 0$$

$$\Rightarrow (\vec{a} \cdot \vec{b} + \vec{b} \cdot \vec{c} + \vec{c} \cdot \vec{a}) = -\frac{3}{2}$$

44.
$$|\vec{a} \times \vec{b}|^2 + |\vec{a} \cdot \vec{b}|^2 = 400$$

$$\Rightarrow \left\{ |\vec{a}||\vec{b}|\sin\theta \right\}^2 + \left\{ |\vec{a}||\vec{b}|\cos\theta \right\}^2 = 400$$

$$\Rightarrow |\vec{a}|^2 |\vec{b}|^2 \sin^2 \theta + |\vec{a}|^2 |\vec{b}|^2 \cos^2 \theta = 400$$

$$\Rightarrow |\vec{a}|^2 |\vec{b}|^2 = 400 \Rightarrow 25 \times |\vec{b}|^2 = 400 \quad [\because |\vec{a}| = 5]$$

$$\Rightarrow |\vec{b}|^2 = 16 \Rightarrow |\vec{b}| = 4$$

45. Projection of \vec{a} on $\vec{b} = \frac{\vec{a} \cdot \vec{b}}{|\vec{b}|}$

$$=\frac{(7\hat{i}+\hat{j}-4\hat{k})\cdot(2\hat{i}+6\hat{j}+3\hat{k})}{\sqrt{(2)^2+(6)^2+(3)^2}}=\frac{14+6-12}{7}=\frac{8}{7}$$

46. Here \hat{a}, \hat{b} and \hat{c} are mutually perpendicular unit vectors.

$$\Rightarrow$$
 $|\hat{a}| = |\hat{b}| = |\hat{c}| = 1$ and $\hat{a} \cdot \hat{b} = \hat{b} \cdot \hat{c} = \hat{c} \cdot \hat{a} = 0$...(1)

$$|2\hat{a} + \hat{b} + \hat{c}|^2 = (2\hat{a} + \hat{b} + \hat{c}).(2\hat{a} + \hat{b} + \hat{c})$$

$$=4\hat{a}\cdot\hat{a}+2\hat{a}\cdot\hat{b}+2\hat{a}\cdot\hat{c}+2\hat{b}\cdot\hat{a}+\hat{b}\cdot\hat{b}+\hat{b}\cdot\hat{c}+2\hat{c}\cdot\hat{a}$$

$$+\hat{c}\cdot\hat{b}+\hat{c}\cdot\hat{c}$$

$$= 4|\hat{a}|^2 + |\hat{b}|^2 + |\hat{c}|^2 + 4\hat{a}\cdot\hat{b} + 2\hat{b}\cdot\hat{c} + 4\hat{a}\cdot\hat{c}$$

$$(:: b \cdot a = a \cdot b, c \cdot a = a \cdot c, c \cdot b = b \cdot c)$$

$$= 4 \cdot 1^2 + 1^2 + 1^2$$

= 6

[Using (1)]

- $\therefore |2\hat{a} + \hat{b} + \hat{c}| = \sqrt{6}.$
- **47.** Here, $\vec{a} = \hat{i} + \hat{j} + \hat{k}$ and $\vec{b} = \hat{i} + \hat{j}$

Vector perpendicular to both \vec{a} and \vec{b} is

$$\vec{a} \times \vec{b} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ 1 & 1 & 1 \\ 1 & 1 & 0 \end{vmatrix} = -\hat{i} + \hat{j} + 0\hat{k} = -\hat{i} + \hat{j}$$

 \therefore Unit vector perpendicular to both \vec{a} and \vec{b}

$$= \frac{\vec{a} \times \vec{b}}{|\vec{a} \times \vec{b}|} = \frac{-\hat{i} + \hat{j}}{\sqrt{(-1)^2 + 1^2}} = \frac{1}{\sqrt{2}} \left(-\hat{i} + \hat{j}\right).$$

48. Let $\vec{a} = 2\hat{i} - 3\hat{k}$ and $\vec{b} = 4\hat{j} + 2\hat{k}$

The area of a parallelogram with \vec{a} and \vec{b} as its adjacent sides is given by $|\vec{a} \times \vec{b}|$.

Now,
$$\vec{a} \times \vec{b} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ 2 & 0 & -3 \\ 0 & 4 & 2 \end{vmatrix} = 12\hat{i} - 4\hat{j} + 8\hat{k}$$

$$\vec{a} \times \vec{b} = \sqrt{(12)^2 + (-4)^2 + (8)^2} = \sqrt{144 + 16 + 64}$$

$$=\sqrt{224} = 4\sqrt{14}$$
 sq. units.

49. Let θ be the angle between the unit vectors \vec{a} and \vec{b} .

$$\therefore \cos \theta = \frac{\vec{a} \cdot \vec{b}}{|\vec{a}| |\vec{b}|} = \vec{a} \cdot \vec{b} \qquad (\because |\vec{a}| = 1 = |\vec{b}|) \dots (1)$$

Now $1 = \left| \sqrt{2} \vec{a} - \vec{b} \right|$

$$\Rightarrow 1 = \left| \sqrt{2} \, \vec{a} - \vec{b} \right|^2 = \left(\sqrt{2} \, \vec{a} - \vec{b} \right) \cdot \left(\sqrt{2} \, \vec{a} - \vec{b} \right)$$

$$= 2 |\vec{a}|^2 - \sqrt{2} \, \vec{a} \cdot \vec{b} - \vec{b} \cdot \sqrt{2} \, \vec{a} + |\vec{b}|^2 = 2 - 2\sqrt{2} \, \vec{a} \cdot \vec{b} + 1$$

 $(\because \vec{a} \cdot \vec{b} = \vec{b} \cdot \vec{a})$

$$=3-2\sqrt{2}\ \vec{a}\cdot\vec{b}$$

$$\Rightarrow \vec{a} \cdot \vec{b} = \frac{1}{\sqrt{2}} \Rightarrow \cos \theta = \frac{1}{\sqrt{2}}$$
 [By using (1)]

$$\therefore \quad \theta = \pi/4$$

- **50.** Refer to answer 45.
- **51.** Refer to answer 45.

52. Given
$$|\vec{a}| = 1 = |\vec{b}|$$
, $|\vec{a} + \vec{b}| = 1$

$$\Rightarrow \left| \vec{a} + \vec{b} \right|^2 = 1 \Rightarrow (\vec{a} + \vec{b}) \cdot (\vec{a} + \vec{b}) = 1$$

$$\Rightarrow \vec{a} \cdot \vec{a} + \vec{a} \cdot \vec{b} + \vec{b} \cdot \vec{a} + \vec{b} \cdot \vec{b} = 1$$

$$\Rightarrow |\vec{a}|^2 + 2\vec{a} \cdot \vec{b} + |\vec{b}|^2 = 1 \Rightarrow 1 + 2\vec{a} \cdot \vec{b} + 1 = 1$$

$$\Rightarrow 2\vec{a} \cdot \vec{b} = -1 \Rightarrow 2|\vec{a}| \cdot |\vec{b}| \cos \theta = -1$$

$$\Rightarrow 2 \cdot 1 \cdot 1 \cos \theta = -1$$

$$\Rightarrow \cos \theta = -\frac{1}{2} \Rightarrow \theta = 120^{\circ}$$

53. Given,
$$|\vec{a}| = 3, |\vec{b}| = \frac{2}{3}, |\vec{a} \times \vec{b}| = 1$$

$$\Rightarrow |\vec{a}||\vec{b}|\sin\theta = 1 \Rightarrow 3.\frac{2}{3}\sin\theta = 1$$

$$\Rightarrow \sin \theta = \frac{1}{2} \Rightarrow \theta = \frac{\pi}{6}$$

54. Given:
$$\vec{a} \perp \vec{b} \implies \vec{a} \cdot \vec{b} = 0$$

Also, $|\vec{a}| = 5$ and $|\vec{a} + \vec{b}| = 13$

$$\Rightarrow |\vec{a} + \vec{b}|^2 = 13^2 \Rightarrow (\vec{a} + \vec{b}) \cdot (\vec{a} + \vec{b}) = 169$$

$$\Rightarrow \vec{a} \cdot \vec{a} + \vec{a} \cdot \vec{b} + \vec{b} \cdot \vec{a} + \vec{b} \cdot \vec{b} = 169$$

$$\Rightarrow |\vec{a}|^2 + 0 + 0 + |\vec{b}|^2 = 169$$

$$\Rightarrow |\vec{b}|^2 = 169 - |\vec{a}|^2 = 169 - 5^2 = 144$$

$$\Rightarrow |\vec{b}| = 12$$

55. The projection of the vector $(\hat{i} + \hat{j} + \hat{k})$ along

the vector
$$\hat{j}$$
 is $(\hat{i} + \hat{j} + \hat{k}) \cdot \left(\frac{\hat{j}}{\sqrt{0^2 + 1^2 + 0^2}}\right) = 1$

56. We have,

$$\begin{split} \hat{i} \times \left(\hat{j} + \hat{k}\right) + \hat{j} \times \left(\hat{k} + \hat{i}\right) + \hat{k} \times \left(\hat{i} + \hat{j}\right) \\ &= \hat{i} \times \hat{j} + \hat{i} \times \hat{k} + \hat{j} \times \hat{k} + \hat{j} \times \hat{i} + \hat{k} \times \hat{i} + \hat{k} \times \hat{j} \\ &= \hat{k} - \hat{j} + \hat{i} - \hat{k} + \hat{j} - \hat{i} = \vec{0} \,. \end{split}$$

- 57. Refer to answer 45.
- 58. Refer to answer 49.
- **59.** Let θ be the angle between the vector $\vec{a} = \hat{i} + \hat{j} + \hat{k}$ and y-axis i.e., $\vec{b} = \hat{j}$

$$\therefore \cos \theta = \frac{\vec{a} \cdot \vec{b}}{|\vec{a}||\vec{b}|} = \frac{(\hat{i} + \hat{j} + \hat{k}) \cdot \hat{j}}{|\hat{i} + \hat{j} + \hat{k}||\hat{j}|}$$
1

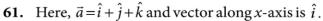
$$=\frac{1}{\sqrt{1^2+1^2+1^2}}\frac{1}{\sqrt{1^2}}=\frac{1}{\sqrt{3}}$$

60. Let angle between the vectors \vec{a} and \vec{b} be θ .

Given:
$$|\vec{a}| = 8, |\vec{b}| = 3$$
 and $|\vec{a} \times \vec{b}| = 12$

$$\Rightarrow |\vec{a}| \cdot |\vec{b}| \cdot |\sin \theta| = 12 \Rightarrow 8 \times 3 \sin \theta = 12$$

$$\Rightarrow \sin \theta = \frac{12}{24} = \frac{1}{2} \Rightarrow \theta = \frac{\pi}{6}$$
.



$$\therefore$$
 Angle between \vec{a} and \hat{i} is given by

$$\cos \theta = \frac{\vec{a} \cdot \hat{i}}{\sqrt{1^2 + 1^2 + 1^2} \cdot \sqrt{1^2}} = \frac{\left(\hat{i} + \hat{j} + \hat{k}\right) \cdot \hat{i}}{\sqrt{3} \cdot 1} = \frac{1}{\sqrt{3}}$$

$$\Rightarrow \theta = \cos^{-1} \left(\frac{1}{\sqrt{3}} \right)$$

62. Here $(\vec{x} - \vec{a}) \cdot (\vec{x} + \vec{a}) = 15$, where \vec{a} is unit vector.

$$\Rightarrow \vec{x} \cdot \vec{x} + \vec{x} \cdot \vec{a} - \vec{a} \cdot \vec{x} - \vec{a} \cdot \vec{a} = 15$$

$$\Rightarrow |\vec{x}|^2 - |\vec{a}|^2 = 15$$

$$(: \vec{x} \cdot \vec{a} = \vec{a} \cdot \vec{x})$$

$$\Rightarrow |\vec{x}|^2 - 1 = 15$$

$$(::|\vec{a}|=1)$$

$$\Rightarrow |\vec{x}|^2 = 16 = 4^2 \Rightarrow |\vec{x}| = 4$$

63. Here, $\vec{a} = 2\hat{i} + \lambda\hat{j} + \hat{k}$ and $\vec{b} = \hat{i} - 2\hat{j} + 3\hat{k}$ For \vec{a} is perpendicular to \vec{b} , $\vec{a} \cdot \vec{b} = 0$

$$\Rightarrow (2\hat{i} + \lambda\hat{j} + \hat{k}) \cdot (\hat{i} - 2\hat{j} + 3\hat{k}) = 0$$

$$\Rightarrow$$
 2 × 1 + λ (-2) + 1 × 3 = 0

$$\Rightarrow$$
 2 - 2 λ + 3 = 0

$$\Rightarrow \lambda = \frac{5}{2}$$

64. Refer to answer 63.

65. Here, $\vec{a} = 2\hat{i} - 2\hat{j} + \hat{k}$

$$\vec{b} = \hat{i} + 2\hat{j} - 2\hat{k}$$
 and $\vec{c} = 2\hat{i} - \hat{j} + 4\hat{k}$

$$\Rightarrow$$
 $\vec{b} + \vec{c} = 3\hat{i} + \hat{j} + 2\hat{k}$

 \therefore Projection of $\vec{b} + \vec{c}$ on \vec{a}

$$=\frac{(\vec{b}+\vec{c}).\vec{a}}{|\vec{a}|}=\frac{\left(3\hat{i}+\hat{j}+2\hat{k}\right).\left(2\hat{i}-2\hat{j}+\hat{k}\right)}{\left|2\hat{i}-2\hat{j}+\hat{k}\right|}$$

$$= \frac{3 \times 2 + 1 \times (-2) + 2 \times 1}{\sqrt{2^2 + (-2)^2 + 1^2}} = \frac{6}{3} = 2$$

66. Here, $\vec{a} = \lambda \hat{i} + \hat{j} + 4\hat{k}$, $\vec{b} = 2\hat{i} + 6\hat{j} + 3\hat{k}$

Given: Projection of \vec{a} on $\vec{b} = 4$

$$\Rightarrow \frac{\vec{a} \cdot \vec{b}}{|\vec{b}|} = 4 \Rightarrow \frac{(\lambda \hat{i} + \hat{j} + 4\hat{k}) \cdot (2\hat{i} + 6\hat{j} + 3\hat{k})}{|2\hat{i} + 6\hat{j} + 3\hat{k}|} = 4$$

$$\Rightarrow \frac{2\lambda + 6 + 12}{\sqrt{2^2 + 6^2 + 3^2}} = 4$$

$$\Rightarrow$$
 $2\lambda + 18 = 4 \times 7$

$$\Rightarrow$$
 $2\lambda = 28 - 18 = 10 \Rightarrow \lambda = 5$.

67.
$$(\hat{i} \times \hat{j}) \cdot \hat{k} + \hat{i} \cdot \hat{j} = \hat{k} \cdot \hat{k} + \hat{i} \cdot \hat{j} = 1 + 0 = 1$$

68.
$$(\hat{k} \times \hat{j}) \cdot \hat{i} + \hat{j} \cdot \hat{k} = -\hat{i} \cdot \hat{i} + \hat{j} \cdot \hat{k} = -1 + 0 = -1$$

69.
$$(\hat{k} \times \hat{i}) \cdot \hat{j} + \hat{i} \cdot \hat{k} = \hat{j} \cdot \hat{j} + 0 = 1 + 0 = 1$$

70. Let θ be the angle between \vec{a} and \vec{b} , then

$$\cos \theta = \frac{\vec{a} \cdot \vec{b}}{|\vec{a}| |\vec{b}|} = \frac{\sqrt{6}}{\sqrt{3} \cdot 2} \times \frac{\sqrt{3}}{\sqrt{3}}$$

$$=\frac{\sqrt{18}}{3\times 2} = \frac{3\sqrt{2}}{3\times 2} = \frac{1}{2} = \frac{1}{\sqrt{2}}$$

$$\therefore \quad \theta = \cos^{-1} \frac{1}{\sqrt{2}} \Rightarrow \theta = \frac{\pi}{4}.$$

71. Let $\vec{a} = \hat{i} - \hat{j}$ and $\vec{b} = \hat{i} + \hat{j}$

$$|\vec{b}| = \sqrt{1^2 + 1^2} = \sqrt{1 + 1} = \sqrt{2}$$

Also, $\vec{a} \cdot \vec{b} = (\hat{i} - \hat{j}) \cdot (\hat{i} + \hat{j}) = \hat{i} \cdot \hat{i} + \hat{i} \cdot \hat{j} - \hat{j} \cdot \hat{i} - \hat{j} \cdot \hat{j} = 1 - 1 = 0$

$$\therefore \text{ Projection of } \vec{a} \text{ on } \vec{b} = \frac{\vec{a} \cdot \vec{b}}{|\vec{b}|} = \frac{0}{\sqrt{2}} = 0$$

72. Here, $|\vec{a}| = \sqrt{3}$, $|\vec{b}| = 2$ and angle between \vec{a} and \vec{b} is 60°.

Now
$$\vec{a} \cdot \vec{b} = |\vec{a}| \cdot |\vec{b}| \cdot \cos 60^{\circ} = \sqrt{3} \times 2 \times \frac{1}{2} = \sqrt{3}$$
.

73. Here, $\vec{a} = 5\hat{i} + 6\hat{j} - 2\hat{k}$ and $\vec{b} = 7\hat{i} + 6\hat{j} + 2\hat{k}$ Vector perpendicular to both \vec{a} and \vec{b} is

$$\vec{a} \times \vec{b} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ 5 & 6 & -2 \\ 7 & 6 & 2 \end{vmatrix}$$

$$= \hat{i}(12+12) - \hat{j}(10+14) + \hat{k}(30-42)$$

$$= 24\hat{i} - 24\hat{j} - 12\hat{k} = 12(2\hat{i} - 2\hat{j} - \hat{k})$$

 $\therefore \text{ Unit vector perpendicular to both } \vec{a} \text{ and } \vec{b}$ $= \frac{\vec{a} \times \vec{b}}{|\vec{a} \times \vec{b}|} = \frac{24\hat{i} - 24\hat{j} - 12\hat{k}}{\sqrt{576 + 576 + 144}} = \frac{12(2\hat{i} - 2\hat{j} - \hat{k})}{\sqrt{1296}}$

$$= \frac{12(2\hat{i} - 2\hat{j} - \hat{k})}{36} = \frac{1}{3}(2\hat{i} - 2\hat{j} - \hat{k})$$

74. For any two non-zero vectors \vec{a} and \vec{b} , we have

$$|\vec{a} + \vec{b}| = |\vec{a} - \vec{b}| \implies |\vec{a} + \vec{b}|^2 = |\vec{a} - \vec{b}|^2$$

$$\Rightarrow \vec{a}^2 + \vec{b}^2 + 2\vec{a} \cdot \vec{b} = \vec{a}^2 + \vec{b}^2 - 2\vec{a} \cdot \vec{b}$$

$$\Rightarrow$$
 $4\vec{a} \cdot \vec{b} = 0 \Rightarrow \vec{a} \cdot \vec{b} = 0$

So, \vec{a} and \vec{b} are perpendicular vectors.

75. Let $A(2\hat{i} - \hat{j} + \hat{k})$, $B(3\hat{i} + 7\hat{j} + \hat{k})$ and

$$C(5\hat{i}+6\hat{j}+2\hat{k})$$

Then, $\overrightarrow{AB} = (3-2)\hat{i} + (7+1)\hat{j} + (1-1)\hat{k} = \hat{i} + 8\hat{j}$

$$\overrightarrow{AC} = (5-2)\hat{i} + (6+1)\hat{j} + (2-1)\hat{k} = 3\hat{i} + 7\hat{j} + \hat{k}$$

 $\overrightarrow{BC} = (5-3)\hat{i} + (6-7)\hat{j} + (2-1)\hat{k} = 2\hat{i} - \hat{j} + \hat{k}$

Now, angle between \overrightarrow{AC} and \overrightarrow{BC} is given by

$$\Rightarrow \cos \theta = \frac{\overrightarrow{AC} \cdot \overrightarrow{BC}}{|\overrightarrow{AC}||\overrightarrow{BC}|} = \frac{6 - 7 + 1}{\sqrt{9 + 49 + 1}\sqrt{4 + 1 + 1}}$$

$$\Rightarrow$$
 cos $\theta = 0 \Rightarrow AC \perp BC$

So, A, B, C are the vertices of right angled triangle.

76. Given,
$$\hat{a} + \hat{b} = \hat{c}$$

$$\Rightarrow (\hat{a} + \hat{b}) \cdot (\hat{a} + \hat{b}) = \hat{c} \cdot \hat{c}$$

$$\Rightarrow \hat{a} \cdot \hat{a} + \hat{a} \cdot \hat{b} + \hat{b} \cdot \hat{b} + \hat{b} \cdot \hat{a} = \hat{c} \cdot \hat{c}$$

$$\Rightarrow 1 + \hat{a} \cdot \hat{b} + 1 + \hat{a} \cdot \hat{b} = 1$$

$$\Rightarrow 2 \hat{a} \cdot \hat{b} = -1 \qquad ...(i)$$

Now
$$(\hat{a} - \hat{b})^2 = (\hat{a} - \hat{b}) \cdot (\hat{a} - \hat{b})$$

$$=\hat{a}\cdot\hat{a}-\hat{a}\cdot\hat{b}-\hat{b}\cdot\hat{a}+\hat{b}\cdot\hat{b}=1-\hat{a}\cdot\hat{b}-\hat{a}\cdot\hat{b}+1$$

$$=2-2\hat{a}\cdot\hat{b}=2-(-1)$$
 [Using(i)]

= 3

$$\therefore \left| \hat{a} - \hat{b} \right| = \sqrt{3}$$

77. Given,
$$\vec{a} = \hat{i} + 2\hat{j} - 3\hat{k}$$
 and $\vec{b} = 3\hat{i} - \hat{j} + 2\hat{k}$

Now,
$$\vec{a} + \vec{b} = 4\hat{i} + \hat{j} - \hat{k}$$

Also,
$$\vec{a} - \vec{b} = -2\hat{i} + 3\hat{j} - 5\hat{k}$$

Now,
$$(\vec{a} + \vec{b}) \cdot (\vec{a} - \vec{b}) = (4\hat{i} + \hat{j} - \hat{k}) \cdot (-2\hat{i} + 3\hat{j} - 5\hat{k})$$

$$= (4)(-2) + (1)(3) + (-1)(-5) = -8 + 3 + 5 = 0$$

Hence, $(\vec{a} + \vec{b})$ and $(\vec{a} - \vec{b})$ are perpendicular to each other.

78. Let
$$\vec{a} = \hat{i} - 2\hat{j} + 3\hat{k}$$
, $\vec{b} = 3\hat{i} - 2\hat{j} + \hat{k}$

Now,
$$\vec{a} \cdot \vec{b} = |\vec{a}| |\vec{b}| \cos \theta$$

$$\Rightarrow (\hat{i} - 2\hat{j} + 3\hat{k}) \cdot (3\hat{i} - 2\hat{j} + \hat{k}) = \sqrt{(1)^2 + (-2)^2 + (3)^2}$$

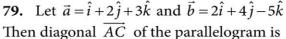
$$\times \sqrt{(3)^2 + (-2)^2 + (1)^2} \cos \theta$$

$$\Rightarrow$$
 3+4+3= $\sqrt{14} \times \sqrt{14} \cos \theta$

$$\Rightarrow \cos\theta = \frac{10}{14}$$

$$\therefore \sin \theta = \sqrt{1 - \cos^2 \theta} = \sqrt{1 - \frac{100}{196}} = \sqrt{\frac{96}{196}}$$

$$\Rightarrow \sin\theta = \frac{4\sqrt{6}}{14} = \frac{2\sqrt{6}}{7}$$

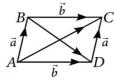


id diagonal AC of the parallelogram
$$\vec{p} = \vec{a} + \vec{b}$$

$$B = \vec{a} + \vec{b}$$

$$= \hat{i} + 2\hat{j} + 3\hat{k} + 2\hat{i} + 4\hat{j} - 5\hat{k}$$

$$= 3\hat{i} + 6\hat{j} - 2\hat{k}$$
A



Therefore unit vector parallel to it is

$$\frac{\vec{p}}{|\vec{p}|} = \frac{3\hat{i} + 6\hat{j} - 2\hat{k}}{\sqrt{9 + 36 + 4}} = \frac{1}{7}(3\hat{i} + 6\hat{j} - 2\hat{k})$$

Now, diagonal \overrightarrow{BD} of the parallelogram is

$$\vec{p}' = \vec{b} - \vec{a} = 2\hat{i} + 4\hat{j} - 5\hat{k} - \hat{i} - 2\hat{j} - 3\hat{k} = \hat{i} + 2\hat{j} - 8\hat{k}$$

Therefore unit vector parallel to it is

$$\frac{\vec{p}'}{|\vec{p}'|} = \frac{\hat{i} + 2\hat{j} - 8\hat{k}}{\sqrt{1 + 4 + 64}} = \frac{1}{\sqrt{69}}(\hat{i} + 2\hat{j} - 8\hat{k})$$

80. Given, $\triangle ABC$ with vertices

$$A(1,2,3) \equiv \hat{i} + 2\hat{j} + 3\hat{k}, \ B(2,-1,4) \equiv 2\hat{i} - \hat{j} + 4\hat{k},$$

$$C(4,5,-1) \equiv 4\hat{i} + 5\hat{j} - \hat{k}$$

Now
$$\overrightarrow{AB} = \overrightarrow{OB} - \overrightarrow{OA} = (2\hat{i} - \hat{j} + 4\hat{k}) - (\hat{i} + 2\hat{j} + 3\hat{k})$$

$$=\hat{i}-3\hat{j}+\hat{k}.$$

$$\overrightarrow{AC} = \overrightarrow{OC} - \overrightarrow{OA} = (4\hat{i} + 5\hat{j} - \hat{k}) - (\hat{i} + 2\hat{j} + 3\hat{k})$$

$$=3\hat{i}+3\hat{j}-4\hat{k}.$$

$$\therefore \quad (\overrightarrow{AB} \times \overrightarrow{AC}) = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ 1 & -3 & 1 \\ 3 & 3 & -4 \end{vmatrix} = 9\hat{i} + 7\hat{j} + 12\hat{k}$$

Hence, area of $\triangle ABC$

$$=\frac{1}{2}|\overrightarrow{AB}\times\overrightarrow{AC}|=\frac{1}{2}|9\hat{i}+7\hat{j}+12\hat{k}|$$

$$= \frac{1}{2}\sqrt{9^2 + 7^2 + 12^2} = \frac{1}{2}\sqrt{81 + 49 + 144}$$

$$=\frac{1}{2}\sqrt{274}$$
 sq. units

81. Given, position vector of $A = \hat{i} + \hat{j} + \hat{k}$

Position vector of $B = 2\hat{i} + 5\hat{j}$

Position vector of $C = 3\hat{i} + 2\hat{j} - 3\hat{k}$

Position vector of $D = \hat{i} - 6\hat{j} - \hat{k}$

$$\therefore \overrightarrow{AB} = (2\hat{i} + 5\hat{j}) - (\hat{i} + \hat{j} + \hat{k}) = \hat{i} + 4\hat{j} - \hat{k} \text{ and}$$

$$\overrightarrow{CD} = (\hat{i} - 6\hat{j} - \hat{k}) - (3\hat{i} + 2\hat{j} - 3\hat{k}) = -2\hat{i} - 8\hat{j} + 2\hat{k}$$

Now
$$|\overrightarrow{AB}| = \sqrt{(1)^2 + (4)^2 + (1)^2} = \sqrt{18}$$

$$|\overrightarrow{CD}| = \sqrt{(-2)^2 + (-8)^2 + (2)^2} = \sqrt{4 + 64 + 4}$$

= $\sqrt{72} = 2\sqrt{18}$

Let θ be the angle between \overrightarrow{AB} and \overrightarrow{CD} .

$$\therefore \cos \theta = \frac{\overrightarrow{AB} \cdot \overrightarrow{CD}}{|\overrightarrow{AB}| |\overrightarrow{CD}|} = \frac{(\hat{i} + 4\hat{j} - \hat{k}) \cdot (-2\hat{i} - 8\hat{j} + 2\hat{k})}{(\sqrt{18})(2\sqrt{18})}$$
$$= \frac{-2 - 32 - 2}{36} = \frac{-36}{36} = -1$$

$$\Rightarrow$$
 $\cos\theta = -1$ \Rightarrow $\theta = \pi$

Since, angle between \overrightarrow{AB} and \overrightarrow{CD} is 180°.

$$\therefore$$
 \overrightarrow{AB} and \overrightarrow{CD} are collinear.

82. Let
$$\vec{d} = x\hat{i} + y\hat{j} + z\hat{k}$$

 $\vec{d} \cdot \vec{b} = 0$ and $\vec{d} \cdot \vec{c} = 0$

Now, it is given that, \vec{d} is perpendicular to

$$\vec{b} = \hat{i} - 4\hat{j} + 5\hat{k}$$
 and $\vec{c} = 3\hat{i} + \hat{j} - \hat{k}$

$$\Rightarrow x - 4y + 5z = 0 \qquad \dots (i)$$

and
$$3x + y - z = 0$$
 ...(ii)

Also,
$$\vec{d} \cdot \vec{a} = 21$$
, where $\vec{a} = 4\hat{i} + 5\hat{j} - \hat{k}$

$$\Rightarrow 4x + 5y - z = 21 \qquad \dots(iii)$$

Eliminating z from (i) and (ii), we get

$$16x + y = 0$$
 ...(iv)

Eliminating z from (ii) and (iii), we get

$$x + 4y = 21$$
 ...(v)

Solving (iv) and (v), we get

$$x = \frac{-1}{3}$$
, $y = \frac{16}{3}$

Putting the values of x and y in (i), we get $z = \frac{13}{3}$

$$\vec{d} = \frac{-1}{3}\hat{i} + \frac{16}{3}\hat{j} + \frac{13}{3}\hat{k}$$
 is the required vector.

83.
$$|\vec{a}| = |\vec{b}| = |\vec{c}|$$
 (Given) ...(i)

and
$$\vec{a} \cdot \vec{b} = 0$$
, $\vec{b} \cdot \vec{c} = 0$, $\vec{c} \cdot \vec{a} = 0$...(ii)

Let $(\vec{a}+\vec{b}+\vec{c})$ be inclined to vectors \vec{a} , \vec{b} , \vec{c} by angles α , β and γ respectively. Then

$$\cos \alpha = \frac{(\vec{a} + \vec{b} + \vec{c}) \cdot \vec{a}}{\left| \vec{a} + \vec{b} + \vec{c} \right| \left| \vec{a} \right|} = \frac{\vec{a} \cdot \vec{a} + \vec{b} \cdot \vec{a} + \vec{c} \cdot \vec{a}}{\left| \vec{a} + \vec{b} + \vec{c} \right| \left| \vec{a} \right|}$$

$$= \frac{\left| \vec{a} \right|^2 + 0 + 0}{\left| \vec{a} + \vec{b} + \vec{c} \right| \left| \vec{a} \right|} \qquad [Using(ii)]$$

$$= \frac{\left| \vec{a} \right|}{\left| \vec{a} + \vec{b} + \vec{c} \right|} \qquad ...(iii)$$

Similarly,
$$\cos \beta = \frac{|b|}{|\vec{a} + \vec{b} + \vec{c}|}$$
 ...(iv)

and
$$\cos \gamma = \frac{\left| \vec{c} \right|}{\left| \vec{a} + \vec{b} + \vec{c} \right|}$$
 ...(v)

From (i), (iii), (iv) and (v), we get

 $\cos \alpha = \cos \beta = \cos \gamma \Rightarrow \alpha = \beta = \gamma$ Hence, the vector $\vec{a} + \vec{b} + \vec{c}$ is equally inclined to

the vector \vec{a} , \vec{b} and \vec{c} .

Also the angle between them is given as

$$\alpha = \cos^{-1}\left(\frac{|\vec{a}|}{|\vec{a}+\vec{b}+\vec{c}|}\right), \beta = \cos^{-1}\left(\frac{|\vec{b}|}{|\vec{a}+\vec{b}+\vec{c}|}\right),$$

$$\gamma = \cos^{-1}\left(\frac{\mid \vec{c}\mid}{\mid \vec{a} + \vec{b} + \vec{c}\mid}\right)$$

84. We have, $A(2\hat{i} - \hat{j} + \hat{k})$, $B(\hat{i} - 3\hat{j} - 5\hat{k})$ and $C(3\hat{i} - 4\hat{j} - 4\hat{k})$

Then,
$$\overrightarrow{AB} = (1-2)\hat{i} + (-3+1)\hat{j} + (-5-1)\hat{k}$$

= $-\hat{i} - 2\hat{j} - 6\hat{k}$

$$\overrightarrow{AC} = (3-2)\hat{i} + (-4+1)\hat{j} + (-4-1)\hat{k} = \hat{i} - 3\hat{j} - 5\hat{k}$$

and
$$\overrightarrow{BC} = (3-1)\hat{i} + (-4+3)\hat{j} + (-4+5)\hat{k} = 2\hat{i} - \hat{j} + \hat{k}$$

Now angle between \overrightarrow{AC} and \overrightarrow{BC} is given by

$$\cos \theta = \frac{(\overrightarrow{AC})(\overrightarrow{BC})}{|\overrightarrow{AC}||\overrightarrow{BC}|} = \frac{2+3-5}{\sqrt{1+9+25} \cdot \sqrt{4+1+1}}$$

$$\Rightarrow \cos\theta = 0 \Rightarrow BC \perp AC$$

So, *A*, *B*, *C* are vertices of right angled triangle.

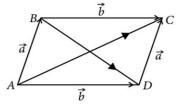
Now area of
$$\triangle ABC = \frac{1}{2} |\overrightarrow{AC} \times \overrightarrow{BC}|$$

$$= \frac{1}{2} \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ 1 & -3 & -5 \\ 2 & -1 & 1 \end{vmatrix} = \frac{1}{2} |(-3-5)\hat{i} - (1+10)\hat{j} + (-1+6)\hat{k}|$$

$$=\frac{1}{2}|-8\hat{i}-11\hat{j}+5\hat{k}|$$

$$=\frac{1}{2}\sqrt{64+121+25}=\frac{\sqrt{210}}{2}$$
 sq. units.

85. Let
$$\vec{a} = 2\hat{i} - 4\hat{j} - 5\hat{k}$$
 and $\vec{b} = 2\hat{i} + 2\hat{j} + 3\hat{k}$



Then diagonal \overrightarrow{AC} of the parallelogram is $\vec{p} = \vec{a} + \vec{b}$

$$= 2\hat{i} - 4\hat{j} - 5\hat{k} + 2\hat{i} + 2\hat{j} + 3\hat{k} = 4\hat{i} - 2\hat{j} - 2\hat{k}$$

Therefore, unit vector parallel to it is

$$\frac{\vec{p}}{|\vec{p}|} = \frac{4\hat{i} - 2\hat{j} - 2\hat{k}}{\sqrt{16 + 4 + 4}} = \frac{2\hat{i} - \hat{j} - \hat{k}}{\sqrt{6}}$$

Now, diagonal \overrightarrow{BD} of the parallelogram is

$$\vec{p}' = \vec{b} - \vec{a} = 2\hat{i} + 2\hat{j} + 3\hat{k} - 2\hat{i} + 4\hat{j} + 5\hat{k} = 6\hat{j} + 8\hat{k}$$

Therefore, unit vector parallel to it is

$$\frac{\vec{p}'}{|\vec{p}'|} = \frac{6\hat{j} + 8\hat{k}}{\sqrt{36 + 64}} = \frac{6\hat{j} + 8\hat{k}}{10} = \frac{3\hat{j} + 4\hat{k}}{5}$$

Now,
$$\vec{p} \times \vec{p}' = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ 4 & -2 & -2 \\ 0 & 6 & 8 \end{vmatrix}$$

$$=\hat{i}(-16+12)-\hat{j}(32-0)+\hat{k}(24-0)$$

$$=-4\hat{i}-32\hat{j}+24\hat{k}$$

$$\therefore \text{ Area of parallelogram} = \frac{|\vec{p} \times \vec{p}'|}{2}$$

$$=\frac{\sqrt{16+1024+576}}{2}=2\sqrt{101} \text{ sq. units.}$$

86. Two non zero vectors are parallel if and only if their cross product is zero vector.

So, we have to prove that cross product of $\vec{a} - \vec{d}$ and $\vec{b} - \vec{c}$ is zero vector.

$$(\vec{a} - \vec{d}) \times (\vec{b} - \vec{c}) = (\vec{a} \times \vec{b}) - (\vec{a} \times \vec{c}) - (\vec{d} \times \vec{b}) + (\vec{d} \times \vec{c})$$

Since, it is given that $\vec{a} \times \vec{b} = \vec{c} \times \vec{d}$ and $\vec{a} \times \vec{c} = \vec{b} \times \vec{d}$

And,
$$\vec{d} \times \vec{b} = -\vec{b} \times \vec{d}$$
, $\vec{d} \times \vec{c} = -\vec{c} \times \vec{d}$

Therefore,

$$(\vec{a}-\vec{d})\times(\vec{b}-\vec{c})=(\vec{c}\times\vec{d})-(\vec{b}\times\vec{d})+(\vec{b}\times\vec{d})-(\vec{c}\times\vec{d})=\vec{0}$$

Hence, $\vec{a} - \vec{d}$ is parallel to $\vec{b} - \vec{c}$, where

 $\vec{a} \neq \vec{d}$ and $\vec{b} \neq \vec{c}$.

87.
$$(\vec{r} \times \hat{i}) \cdot (\vec{r} \times \hat{j}) + xy$$

$$= [(x\hat{i} + y\hat{j} + z\hat{k}) \times \hat{i}] \cdot [(x\hat{i} + y\hat{j} + z\hat{k}) \times \hat{j})] + xy$$

= $(-y\hat{k} + z\hat{j}) \cdot (x\hat{k} - z\hat{i}) + xy = -xy + xy = 0$

88. Here,
$$\vec{a} = \hat{i} + 2\hat{j} + \hat{k}$$
, $\vec{b} = 2\hat{i} + \hat{j}$, $\vec{c} = 3\hat{i} - 4\hat{j} - 5\hat{k}$

$$\vec{a} - \vec{b} = (\hat{i} + 2\hat{j} + \hat{k}) - (2\hat{i} + \hat{j}) = -\hat{i} + \hat{j} + \hat{k}$$

$$\vec{c} - \vec{b} = (3\hat{i} - 4\hat{j} - 5\hat{k}) - (2\hat{i} + \hat{j}) = \hat{i} - 5\hat{j} - 5\hat{k}$$

Vector perpendicular to both $\vec{a} - \vec{b}$ and $\vec{c} - \vec{b}$ is

$$(\vec{a} - \vec{b}) \times (\vec{c} - \vec{b}) = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ -1 & 1 & 1 \\ 1 & -5 & -5 \end{vmatrix}$$

$$= (-5+5)\hat{i} - (5-1)\hat{j} + (5-1)\hat{k} = -4\hat{j} + 4\hat{k}$$

... Unit vector perpendicular to both $\vec{a} - \vec{b}$ and $\vec{c} - \vec{b}$

$$= \frac{-4\hat{j} + 4\hat{k}}{\left|-4\hat{j} + 4\hat{k}\right|} = \frac{-4\hat{j} + 4\hat{k}}{\sqrt{(-4)^2 + 4^2}} \ = \frac{-4\hat{j} + 4\hat{k}}{4\sqrt{2}} = \frac{1}{\sqrt{2}}(-\hat{j} + \hat{k}).$$

89. Given $\vec{a} + \vec{b} + \vec{c} = 0$ and $|\vec{a}| = 3$, $|\vec{b}| = 5$, $|\vec{c}| = 7$

We have
$$\vec{a} + \vec{b} + \vec{c} = 0$$

$$\Rightarrow \vec{a} + \vec{b} = -\vec{c} \implies \left| \vec{a} + \vec{b} \right|^2 = \left| -\vec{c} \right|^2$$

$$\Rightarrow \left| \vec{a} \right|^2 + \left| \vec{b} \right|^2 + 2(\vec{a} \cdot \vec{b}) = \left| \vec{c} \right|^2$$

$$\Rightarrow 9 + 25 + 2|\vec{a}||\vec{b}|\cos\theta = 49$$

$$\Rightarrow$$
 2 × 3 × 5 × cos θ = 49 – 34 = 15

$$\Rightarrow \cos \theta = \frac{15}{30} = \frac{1}{2} \Rightarrow \theta = \frac{\pi}{3} = 60^{\circ}$$

90. Here, $\vec{a} = \hat{i} + \hat{j} + \hat{k}$; $\vec{b} = 2\hat{i} + 4\hat{j} - 5\hat{k}$ and

$$\vec{c} = \lambda \hat{i} + 2\hat{j} + 3\hat{k}$$

$$\Rightarrow \vec{b} + \vec{c} = (2 + \lambda)\hat{i} + 6\hat{j} - 2\hat{k}$$

The unit vector along $\vec{b} + \vec{c}$ is $\vec{p} = \frac{\vec{b} + \vec{c}}{|\vec{b} + \vec{c}|}$

$$= \frac{(2+\lambda)\hat{i} + 6\hat{j} - 2\hat{k}}{\sqrt{(2+\lambda)^2 + 6^2 + (-2)^2}} = \frac{(2+\lambda)\hat{i} + 6\hat{j} - 2\hat{k}}{\sqrt{\lambda^2 + 4\lambda + 44}}$$

Also, $\vec{a} \cdot \vec{p} = 1$ (Given)

$$\Rightarrow \frac{(2+\lambda)+6-2}{\sqrt{\lambda^2+4\lambda+44}} = 1$$

$$\Rightarrow \sqrt{\lambda^2 + 4\lambda + 44} = \lambda + 6$$

$$\Rightarrow \lambda^2 + 4\lambda + 44 = \lambda^2 + 12\lambda + 36$$

$$\Rightarrow$$
 $8\lambda = 8 \Rightarrow \lambda = 1$

:. The required unit vector

$$\vec{p} = \frac{(2+1)\hat{i} + 6\hat{j} - 2\hat{k}}{\sqrt{1+4+44}} = \frac{1}{7} (3\hat{i} + 6\hat{j} - 2\hat{k}).$$

91. We have $\vec{a} = \hat{i} + \hat{j} + \hat{k}, \vec{b} = \hat{i} + 2\hat{j} + 3\hat{k}$

Let
$$\vec{r} = \vec{a} + \vec{b} = 2\hat{i} + 3\hat{j} + 4\hat{k}$$

and
$$\vec{p} = \vec{a} - \vec{b} = -\hat{j} - 2\hat{k}$$

A unit vector perpendicular to both \vec{r} and \vec{p} is given as $\pm \frac{\vec{r} \times \vec{p}}{|\vec{r} \times \vec{p}|}$.

Now,
$$\vec{r} \times \vec{p} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ 2 & 3 & 4 \\ 0 & -1 & -2 \end{vmatrix} = -2\hat{i} + 4\hat{j} - 2\hat{k}$$

So, the required unit vector is

$$=\pm\frac{\left(-2\hat{i}+4\hat{j}-2\hat{k}\right)}{\sqrt{\left(-2\right)^{2}+4^{2}+\left(-2\right)^{2}}}=\mp\frac{\left(\hat{i}-2\hat{j}+\hat{k}\right)}{\sqrt{6}}.$$

92. Here,
$$\vec{a} = 2\hat{i} - 3\hat{j} + \hat{k}$$
; $\hat{b} = -\hat{i} + \hat{k}$; $\vec{c} = 2\hat{j} - \hat{k}$

$$\vec{a} + \vec{b} = (2\hat{i} - 3\hat{j} + \hat{k}) + (-\hat{i} + \hat{k}) = \hat{i} - 3\hat{j} + 2\hat{k},$$

$$\vec{b} + \vec{c} = (-\hat{i} + \hat{k}) + (2\hat{j} - \hat{k}) = -\hat{i} + 2\hat{j}$$

$$\therefore (\vec{a} + \vec{b}) \times (\vec{b} + \vec{c}) = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ 1 & -3 & 2 \\ -1 & 2 & 0 \end{vmatrix} = -4\hat{i} - 2\hat{j} - \hat{k}$$

 \therefore Area of a parallelogram whose diagonals are $\vec{a} + \vec{b}$ and $\vec{b} + \vec{c}$

$$=\frac{1}{2}\left|\left(\vec{a}+\vec{b}\right)\times\left(\vec{b}+\vec{c}\right)\right| \; = \frac{1}{2}\left|-4\hat{i}-2\hat{j}-\hat{k}\right|$$

$$= \frac{1}{2}\sqrt{(-4)^2 + (-2)^2 + (-1)^2} = \frac{\sqrt{21}}{2} \text{ sq.units.}$$

93. Refer to answer 82.

94. Here
$$|\vec{a} + \vec{b}| = |\vec{a}|$$

$$\Rightarrow \left| \vec{a} + \vec{b} \right|^2 = \left| \vec{a} \right|^2 \Rightarrow \left(\vec{a} + \vec{b} \right) \cdot \left(\vec{a} + \vec{b} \right) = \vec{a} \cdot \vec{a}$$

$$\Rightarrow \vec{a} \cdot \vec{a} + \vec{a} \cdot \vec{b} + \vec{b} \cdot \vec{a} + \vec{b} \cdot \vec{b} = \vec{a} \cdot \vec{a}$$

$$\Rightarrow 2\vec{a} \cdot \vec{b} + \vec{b} \cdot \vec{b} = 0 \qquad \left[\because \vec{b} \cdot \vec{a} = \vec{a} \cdot \vec{b} \right]$$

$$\Rightarrow \left(2\vec{a} + \vec{b}\right) \cdot \vec{b} = 0 \ \Rightarrow \left(2\vec{a} + \vec{b}\right) \perp \vec{b}$$

95. Given
$$\vec{a} = \hat{i} + \hat{j} + \hat{k}$$
 and $\vec{b} = \hat{j} - \hat{k}$

Let
$$\vec{c} = x\hat{i} + y\hat{j} + z\hat{k}$$

Now we have, $\vec{a} \times \vec{c} = \vec{b}$

$$\Rightarrow \ (\hat{i} + \hat{j} + \hat{k}) \times (x\hat{i} + y\hat{j} + z\hat{k}) = \hat{j} - \hat{k}$$

$$\Rightarrow \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ 1 & 1 & 1 \\ x & y & z \end{vmatrix} = \hat{j} - \hat{k}$$

$$\Rightarrow$$
 $\hat{i}(z-y) - \hat{j}(z-x) + \hat{k}(y-x) = \hat{j} - \hat{k}$

$$\Rightarrow$$
 $z-y=0$, $x-z=1$ and $y-x=-1$

$$\Rightarrow y = z, x - z = 1, x - y = 1 \qquad \dots (i)$$

Also, we have $\vec{a} \cdot \vec{c} = 3$

$$\Rightarrow$$
 $(\hat{i} + \hat{j} + \hat{k}) \cdot (x\hat{i} + y\hat{j} + z\hat{k}) = 3$

$$\Rightarrow x + y + z = 3$$

$$\Rightarrow x+x-1+x-1=3$$

[Using (i)]

$$\Rightarrow$$
 3x - 2 = 3 \Rightarrow x = $\frac{5}{3}$, y = $\frac{2}{3}$, z = $\frac{2}{3}$

Hence,
$$\vec{c} = \frac{5}{3}\hat{i} + \frac{2}{3}\hat{j} + \frac{2}{3}\hat{k}$$

96. Here
$$\vec{a} = \hat{i} - \hat{j} + 7\hat{k}$$
; $\vec{b} = 5\hat{i} - \hat{j} + \lambda\hat{k}$

$$\vec{a} + \vec{b} = 6\hat{i} - 2\hat{j} + (7 + \lambda)\hat{k}$$

$$\vec{a} - \vec{b} = -4\hat{i} + (7 - \lambda)\hat{k}$$

For $\vec{a} + \vec{b}$ and $\vec{a} - \vec{b}$ to be perpendicular,

$$(\vec{a} + \vec{b}) \cdot (\vec{a} - \vec{b}) = 0$$

$$\Rightarrow \left[6\hat{i} - 2\hat{j} + (7 + \lambda)\hat{k}\right] \cdot \left[-4\hat{i} + (7 - \lambda)\hat{k}\right] = 0$$

$$\Rightarrow$$
 $6 \times (-4) + (7 + \lambda) \times (7 - \lambda) = 0$

$$\Rightarrow$$
 $-24 + 49 - \lambda^2 = 0 \Rightarrow \lambda^2 = 25 \Rightarrow \lambda = \pm 5$

97. Refer to answer 83.

98. Let the required vector be $\vec{r} = x \hat{i} + y \hat{j} + z \hat{k}$. Also let,

$$\vec{a} = \hat{i} - \hat{j} + \hat{k}, \ \vec{b} = 2\hat{i} + \hat{j} - 3\hat{k} \text{ and } \vec{c} = \hat{i} + \hat{j} + \hat{k}$$

$$\vec{r} \cdot \vec{a} = 4$$
, $\vec{r} \cdot \vec{b} = 0$, $\vec{r} \cdot \vec{c} = 2$ (Given)

$$\Rightarrow x - y + z = 4$$
 ...(i)

$$x + y + z = 2 \qquad \dots (iii)$$

Now (iii) – (i)
$$\Rightarrow$$
 2 $y = -2 \Rightarrow y = -1$

From (ii) and (iii)

$$2x - 3z - 1 = 0$$
, $x + z - 3 = 0 \implies x = 2$, $z = 1$

$$\therefore \quad \text{The required vector is } \vec{r} = 2\hat{i} - \hat{j} + \hat{k}.$$

99. Here, $\vec{a} = 2\lambda^2 \hat{i} + 4\lambda \hat{j} + \hat{k}$ and

$$\vec{b} = 7\hat{i} - 2\hat{j} + \lambda\hat{k}$$

If θ is the angle between the vectors \vec{a} and \vec{b} ,

then
$$\cos \theta = \frac{\vec{a} \cdot \vec{b}}{|\vec{a}| |\vec{b}|}$$

For θ to be obtuse, $\cos \theta < 0 \Rightarrow \vec{a} \cdot \vec{b} < 0$

$$\Rightarrow (2\lambda^2 \hat{i} + 4\lambda \hat{j} + \hat{k}) \cdot (7\hat{i} - 2\hat{j} + \lambda \hat{k}) < 0$$

$$\Rightarrow 2\lambda^2 \cdot 7 + 4\lambda \cdot (-2) + 1 \cdot \lambda < 0$$

$$\Rightarrow 14\lambda^2 - 7\lambda < 0 \Rightarrow \lambda(2\lambda - 1) < 0$$

$$\Rightarrow$$
 Either $\lambda < 0$, $2\lambda - 1 > 0$ or $\lambda > 0$, $2\lambda - 1 < 0$

$$\Rightarrow$$
 Either $\lambda < 0, \lambda > \frac{1}{2}$ or $\lambda > 0, \lambda < \frac{1}{2}$

First alternative is impossible.

$$\therefore \lambda > 0, \lambda < \frac{1}{2} i.e., 0 < \lambda < \frac{1}{2} i.e., \lambda \in \left] 0, \frac{1}{2} \right[$$

100. Given,
$$|\vec{a}| = 3$$
, $|\vec{b}| = 4$, $|\vec{c}| = 5$...(i)

and
$$\vec{a} \cdot (\vec{b} + \vec{c}) = 0$$
, $\vec{b} \cdot (\vec{c} + \vec{a}) = 0$, $\vec{c} \cdot (\vec{a} + \vec{b}) = 0$

$$\vec{a} \cdot \vec{b} + \vec{a} \cdot \vec{c} + \vec{b} \cdot \vec{c} + \vec{b} \cdot \vec{a} + \vec{c} \cdot \vec{a} + \vec{c} \cdot \vec{b}$$
$$= 0 + 0 + 0 = 0$$

$$\Rightarrow 2(\vec{a} \cdot \vec{b}) + 2(\vec{b} \cdot \vec{c}) + 2(\vec{c} \cdot \vec{a}) = 0 \qquad \dots (ii)$$

Now
$$|\vec{a} + \vec{b} + \vec{c}|^2 = (\vec{a} + \vec{b} + \vec{c}) \cdot (\vec{a} + \vec{b} + \vec{c})$$

$$= (\vec{a} + \vec{b} + \vec{c}) \cdot \vec{a} + (\vec{a} + \vec{b} + \vec{c}) \cdot \vec{b} + (\vec{a} + \vec{b} + \vec{c}) \cdot \vec{c}$$

$$= \vec{a} \cdot \vec{a} + \vec{b} \cdot \vec{a} + \vec{c} \cdot \vec{a} + \vec{a} \cdot \vec{b} + \vec{b} \cdot \vec{b} + \vec{c} \cdot \vec{b} + \vec{a} \cdot \vec{c} + \vec{b} \cdot \vec{c} + \vec{c} \cdot \vec{c} + \vec{c} \cdot \vec{c}$$

$$= |\vec{a}|^2 + |\vec{b}|^2 + |\vec{c}|^2 + 2(\vec{a} \cdot \vec{b}) + 2(\vec{b} \cdot \vec{c}) + 2(\vec{c} \cdot \vec{a})$$

$$= 3^{2} + 4^{2} + 5^{2} + 0$$
 [Using (i) and (ii)]

$$= 50$$

$$\therefore \left| \vec{a} + \vec{b} + \vec{c} \right| = 5\sqrt{2} .$$

101. Here
$$\vec{a} = 3\hat{i} - \hat{j}$$
, $\vec{b} = 2\hat{i} + \hat{j} - 3\hat{k}$

We have to express : $\vec{b} = \vec{b_1} + \vec{b_2}$, where

$$\vec{b}_1 \parallel \vec{a}$$
 and $\vec{b}_2 \perp \vec{a}$

Let
$$\vec{b}_1 = \lambda \vec{a} = \lambda (3\hat{i} - \hat{j})$$
 and $\vec{b}_2 = x\hat{i} + y\hat{j} + z\hat{k}$

Now
$$\vec{b}_2 \perp \vec{a} \Rightarrow \vec{b}_2 \cdot \vec{a} = 0$$

$$\Rightarrow (x\hat{i} + y\hat{j} + z\hat{k}) \cdot (3\hat{i} - \hat{j}) = 0$$

$$\Rightarrow 3x - y = 0 \qquad ...(i)$$

Now,
$$\vec{b} = \vec{b}_1 + \vec{b}_2$$

$$\Rightarrow 2\hat{i} + \hat{j} - 3\hat{k} = \lambda (3\hat{i} - \hat{j}) + (x\hat{i} + y\hat{j} + z\hat{k})$$

On comparing, we get

$$2 = 3\lambda + x$$

$$1 = -\lambda + y$$

$$\Rightarrow x + 3y = 5 \qquad \dots(ii)$$

and
$$-3 = z \Rightarrow z = -3$$

Solving (i) and (ii), we get
$$x = \frac{1}{2}$$
, $y = \frac{3}{2}$

$$\therefore 1 = -\lambda + y = -\lambda + \frac{3}{2} \Rightarrow \lambda = \frac{1}{2}$$

Hence,
$$\vec{b}_1 = \lambda (3\hat{i} - \hat{j}) = \frac{3}{2}\hat{i} - \frac{1}{2}\hat{j}$$

and
$$\vec{b}_2 = \frac{1}{2}\hat{i} + \frac{3}{2}\hat{j} - 3\hat{k}$$

102. We have,

$$|\vec{a}| = 5$$
, $|\vec{b}| = 12$, $|\vec{c}| = 13$ and $\vec{a} + \vec{b} + \vec{c} = \vec{0}$

$$\Rightarrow$$
 $(\vec{a} + \vec{b} + \vec{c})^2 = |\vec{0}|^2$ (Squaring on both sides)

$$\Rightarrow |\vec{a}|^2 + |\vec{b}|^2 + |\vec{c}|^2 + 2[\vec{a} \cdot \vec{b} + \vec{b} \cdot \vec{c} + \vec{c} \cdot \vec{a}] = 0$$

$$\Rightarrow 25 + 144 + 169 + 2[\vec{a} \cdot \vec{b} + \vec{b} \cdot \vec{c} + \vec{c} \cdot \vec{a}] = 0$$

$$\Rightarrow 2[\vec{a}\cdot\vec{b}+\vec{b}\cdot\vec{c}+\vec{c}\cdot\vec{a}] = -338$$

$$\Rightarrow \vec{a} \cdot \vec{b} + \vec{b} \cdot \vec{c} + \vec{c} \cdot \vec{a} = \frac{-338}{2} = -169$$

103. Refer to answer 82.

104. Refer to answer 76.

105. Refer to answer 91.

106. We have
$$|\vec{a}| = 2$$
, $|\vec{b}| = 1$ and $\vec{a} \cdot \vec{b} = 1$

Now,
$$(3\vec{a} - 5\vec{b}) \cdot (2\vec{a} + 7\vec{b})$$

$$= 6|\vec{a}|^2 + 21 \vec{a} \cdot \vec{b} - 10\vec{a} \cdot \vec{b} - 35|\vec{b}|^2$$

$$= 6 |\vec{a}|^2 + 11\vec{a} \cdot \vec{b} - 35 |\vec{b}|^2$$

$$= 6(2)^{2} + 11(1) - 35(1)^{2} = 24 + 11 - 35 = 0$$

107. Refer to answer 80.

108. Refer to answer 97.

Also the angle between them is given as

$$\alpha = \cos^{-1}\left(\frac{|\vec{a}|}{|\vec{a} + \vec{b} + \vec{c}|}\right),\,$$

$$\beta = \cos^{-1} \left(\frac{|\vec{b}|}{|\vec{a} + \vec{b} + \vec{c}|} \right),$$

$$\gamma = \cos^{-1} \left(\frac{|\vec{c}|}{|\vec{a} + \vec{b} + \vec{c}|} \right)$$

109. Refer to answer 100.

110. Since the vectors are coplanar.

$$\begin{vmatrix} 1 & 3 & 1 \\ 2 & -1 & -1 \\ 0 & \lambda & 3 \end{vmatrix} = 0$$

$$\Rightarrow$$
 1(-3 + λ)-3 (6 - 0) + 1(2 λ - 0) = 0

$$\Rightarrow$$
 $-3 + \lambda - 18 + 2\lambda = 0$

$$\Rightarrow$$
 $3\lambda - 21 = 0 \Rightarrow \lambda = 7$

111. Here
$$\vec{a} = 2\hat{i} + \hat{j} + 3\hat{k}$$
, $\vec{b} = -\hat{i} + 2\hat{j} + \hat{k}$, $\vec{c} = 3\hat{i} + \hat{j} + 2\hat{k}$

Now,
$$\vec{b} \times \vec{c} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ -1 & 2 & 1 \\ 3 & 1 & 2 \end{vmatrix} = 3\hat{i} + 5\hat{j} - 7\hat{k}$$

$$\vec{a} \cdot (\vec{b} \times \vec{c}) = (2\hat{i} + \hat{j} + 3\hat{k}) \cdot (3\hat{i} + 5\hat{j} - 7\hat{k})$$

$$=2\times 3+1\times 5+3\times (-7)$$

$$= 6 + 5 - 21 = -10$$

112. Given, $\vec{a} = \hat{i} - \hat{j} + 2\hat{k}$, $\vec{b} = 3\hat{i} + 4\hat{j} - 5\hat{k}$ and $\vec{c} = 2\hat{i} - \hat{j} + 3\hat{k}$

$$\therefore \quad 2\vec{a} = 2\hat{i} - 2\hat{j} + 4\hat{k}$$

$$-\vec{b} = -3\hat{i} - 4\hat{j} + 5\hat{k}$$

$$3\vec{c} = 6\hat{i} - 3\hat{j} + 9\hat{k}$$

Now,
$$2\vec{a} \cdot (-\vec{b} \times 3\vec{c}) = \begin{vmatrix} 2 & -2 & 4 \\ -3 & -4 & 5 \\ 6 & -3 & 9 \end{vmatrix}$$

= $2(-36 + 15) + 2(-27 - 30) + 4(9 + 24)$
= $2(-21) - 2(57) + 4(33)$
= $-42 - 114 + 132 = -24$

.. Volume of parallelepiped $|2\vec{a} \cdot (-\vec{b} \times 3\vec{c})| = |-24| = 24$ cubic units

113. Given,
$$\vec{a} = 2\hat{i} + 3\hat{j} + \hat{k}$$
, $\vec{b} = \hat{i} - 2\hat{j} + \hat{k}$ and $\vec{c} = -3\hat{i} + \hat{j} + 2\hat{k}$

Now,
$$\vec{b} \times \vec{c} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ 1 & -2 & 1 \\ -3 & 1 & 2 \end{vmatrix}$$
$$= \hat{i} (-4-1) - \hat{j} (2+3) + \hat{k} (1-6)$$
$$= -5 \hat{i} - 5 \hat{j} - 5 \hat{k}$$

$$\vec{a} \cdot (\vec{b} \times \vec{c}) = (2\hat{i} + 3\hat{j} + \hat{k}) \cdot (-5\hat{i} - 5\hat{j} - 5\hat{k})$$
$$= -10 - 15 - 5 = -30$$

114. Given points are A(x, -1, -1), B(4, 5, 1), C(3, 9, 4) and D(-4, 4, 4).

$$\overrightarrow{AB} = (4-x)\hat{i} + (5+1)\hat{j} + (1+1)\hat{k}$$

$$= (4-x)\hat{i} + 6\hat{j} + 2\hat{k}$$

$$\overrightarrow{AC} = (3-x)\hat{i} + (9+1)\hat{j} + (4+1)\hat{k}$$

$$= (3-x)\hat{i} + 10\hat{j} + 5\hat{k}$$

$$\overrightarrow{AD} = (-4 - x)\hat{i} + (4 + 1)\hat{j} + (4 + 1)\hat{k}$$
$$= -(4 + x)\hat{i} + 5\hat{j} + 5\hat{k}$$

The given points will be coplanar iff $[\overrightarrow{AB} \ \overrightarrow{AC} \ \overrightarrow{AD}] = 0$

Now,
$$[\overrightarrow{AB} \ \overrightarrow{AC} \ \overrightarrow{AD}] = 0 \Rightarrow \begin{vmatrix} 4-x & 6 & 2 \\ 3-x & 10 & 5 \\ -(4+x) & 5 & 5 \end{vmatrix} = 0$$

$$\Rightarrow (4-x)(50-25) - 6(15-5x+20+5x)$$

$$\Rightarrow (4-x)(50-25) - 6(15-5x+20+5x) + 2(15-5x+40+10x) = 0$$

$$\Rightarrow$$
 $(4-x)(25) - 6(35) + 2(55 + 5x) = 0$

$$\Rightarrow 100 - 25x - 210 + 110 + 10x = 0$$

$$\Rightarrow$$
 $-15x = 0$

$$\implies x = 0$$

115. We have, $\vec{a} = \hat{i} + \hat{j} + \hat{k}$, $\vec{b} = \hat{i}$, $\vec{c} = c_1 \hat{i} + c_2 \hat{j} + c_3 \hat{k}$

(a)
$$c_1 = 1, c_2 = 2$$
 \therefore $\vec{c} = \hat{i} + 2\hat{j} + c_3\hat{k}$

Given that \vec{a} , \vec{b} and \vec{c} are coplanar

$$\begin{vmatrix} 1 & 1 & 1 \\ 1 & 0 & 0 \\ 1 & 2 & c_3 \end{vmatrix} = 0$$

$$\Rightarrow$$
 $-1(c_3) + 1(2) = 0 \Rightarrow c_3 = 2$

(b)
$$c_2 = -1, c_3 = 1$$
 : $\vec{c} = c_1 \hat{i} - \hat{j} + \hat{k}$

Let \vec{a} , \vec{b} and \vec{c} are coplanar.

$$\begin{array}{c|cccc} & 1 & 1 & 1 \\ 1 & 0 & 0 \\ c_1 & -1 & 1 \end{array} = 0$$

 \Rightarrow -1(1) + 1(-1) = 0 \Rightarrow -2 = 0, which is false. So, no value of c_1 can make \vec{a} , \vec{b} and \vec{c} coplanar.

116. Let *A*, *B*, *C*, *D* be the given points. The given points will be coplanar iff any one of the following triads of vectors are coplanar.

 \overrightarrow{AB} , \overrightarrow{AC} , \overrightarrow{AD} ; \overrightarrow{BC} , \overrightarrow{BA} , \overrightarrow{BD} etc.

If \overrightarrow{AB} , \overrightarrow{AC} , \overrightarrow{AD} are coplanar, then their scalar triple product $[\overrightarrow{AB} \ \overrightarrow{AC} \ \overrightarrow{AD}] = 0$ where, $A(3\hat{i} + 6\hat{j} + 9\hat{k})$, $B(\hat{i} + 2\hat{j} + 3\hat{k})$, $C(2\hat{i} + 3\hat{j} + \hat{k})$ and $D(4\hat{i} + 6\hat{j} + \lambda\hat{k})$.

Now,
$$\overrightarrow{AB} = (\hat{i} + 2\hat{j} + 3\hat{k}) - (3\hat{i} + 6\hat{j} + 9\hat{k})$$

= $-2\hat{i} - 4\hat{j} - 6\hat{k}$

$$\overrightarrow{AC} = (2\hat{i} + 3\hat{j} + \hat{k}) - (3\hat{i} + 6\hat{j} + 9\hat{k}) = -\hat{i} - 3\hat{j} - 8\hat{k}$$

$$\overrightarrow{AD} = (4\hat{i} + 6\hat{j} + \lambda\hat{k}) - (3\hat{i} + 6\hat{j} + 9\hat{k}) = \hat{i} + (\lambda - 9)\hat{k}$$

$$\therefore [\overrightarrow{AB} \ \overrightarrow{AC} \ \overrightarrow{AD}] = \begin{vmatrix} -2 & -4 & -6 \\ -1 & -3 & -8 \\ 1 & 0 & \lambda - 9 \end{vmatrix} = 0$$

$$\Rightarrow$$
 $-2(-3\lambda + 27) + 4(-\lambda + 9 + 8) - 6(0 + 3) = 0$

$$\Rightarrow 2(3\lambda - 27) - 4(\lambda - 17) - 6(3) = 0$$

$$\Rightarrow 6\lambda - 54 - 4\lambda + 68 - 18 = 0$$

$$\Rightarrow$$
 $2\lambda - 4 = 0 \Rightarrow \lambda = 2$

117. Since, $\vec{a} + \vec{b}$, $\vec{b} + \vec{c}$ and $\vec{c} + \vec{a}$ are coplanar.

$$\therefore \quad (\vec{a} + \vec{b}) \cdot \left[(\vec{b} + \vec{c}) \times (\vec{c} + \vec{a}) \right] = 0$$

$$\Rightarrow (\vec{a} + \vec{b}) \cdot [\vec{b} \times \vec{c} + \vec{b} \times \vec{a} + \vec{c} \times \vec{c} + \vec{c} \times \vec{a}] = 0$$

$$\Rightarrow (\vec{a} + \vec{b}) \cdot (\vec{b} \times \vec{c} + \vec{b} \times \vec{a} + \vec{c} \times \vec{a}) = 0 \left[\because \vec{c} \times \vec{c} = 0 \right]$$

$$\Rightarrow \vec{a} \cdot (\vec{b} \times \vec{c}) + \vec{a} \cdot (\vec{b} \times \vec{a}) + \vec{a} \cdot (\vec{c} \times \vec{a}) + \vec{b} \cdot (\vec{b} \times \vec{c}) + \vec{b} \cdot (\vec{b} \times \vec{a}) + \vec{b} \cdot (\vec{c} \times \vec{a}) = 0$$

$$\Rightarrow 2[\vec{a}\cdot(\vec{b}\times\vec{c})]=0 \Rightarrow \vec{a}\cdot(\vec{b}\times\vec{c})=0$$

$$\Rightarrow$$
 \vec{a} , \vec{b} and \vec{c} are coplanar.

118. Here position vectors of A, B, C and D are $4\hat{i}+5\hat{j}+\hat{k}$, $-\hat{j}-\hat{k}$, $3\hat{i}+\lambda\hat{j}+4\hat{k}$ and $-4\hat{i}+4\hat{j}+4\hat{k}$ respectively.

$$\Rightarrow \ \overrightarrow{AB} = -\hat{j} - \hat{k} - \left(4\hat{i} + 5\hat{j} + \hat{k}\right) = -4\hat{i} - 6\hat{j} - 2\hat{k}$$

$$\overrightarrow{AC} = (3\hat{i} + \lambda\hat{j} + 4\hat{k}) - (4\hat{i} + 5\hat{j} + \hat{k}) = -\hat{i} + (\lambda - 5)\hat{j} + 3\hat{k}$$

$$\overrightarrow{AD} = (-4\hat{i} + 4\hat{j} + 4\hat{k}) - (4\hat{i} + 5\hat{j} + \hat{k}) = -8\hat{i} - \hat{j} + 3\hat{k}$$

$$\therefore$$
 For points A, B, C, D to be coplanar

$$\Leftrightarrow$$
 Vectors $\overrightarrow{AB}, \overrightarrow{AC}, \overrightarrow{AD}$ will be coplanar

$$\Leftrightarrow [\overrightarrow{AB} \ \overrightarrow{AC} \ \overrightarrow{AD}] = 0$$

$$\Rightarrow \begin{vmatrix} -4 & -6 & -2 \\ -1 & \lambda - 5 & 3 \\ -8 & -1 & 3 \end{vmatrix} = 0$$

$$\Rightarrow$$
 $-4(3\lambda - 15 + 3) + 6(-3 + 24) - 2(1 + 8\lambda - 40) = 0$

$$\Rightarrow$$
 -12 λ + 48 + 126 + 78 - 16 λ = 0

$$\Rightarrow$$
 28 λ = 252 \Rightarrow λ = 9.

119. We know that
$$[\vec{a}, \vec{b}, \vec{c}] = \vec{a} \cdot (\vec{b} \times \vec{c})$$

$$\therefore \quad \text{L.H.S.} = [\vec{a}, \vec{b} + \vec{c}, \vec{d}] = \vec{a} \cdot [(\vec{b} + \vec{c}) \times \vec{d}]$$

$$= \vec{a} \cdot [\vec{b} \times \vec{d} + \vec{c} \times \vec{d}] = \vec{a} \cdot (\vec{b} \times \vec{d}) + \vec{a} \cdot (\vec{c} \times \vec{d})$$

$$=[\vec{a}, \vec{b}, \vec{d}] + [\vec{a}, \vec{c}, \vec{d}] = \text{R.H.S.}$$

120. We have,
$$[\vec{a} + \vec{b} \ \vec{b} + \vec{c} \ \vec{c} + \vec{a}]$$

$$= (\vec{a} + \vec{b}) \cdot \{ (\vec{b} + \vec{c}) \times (\vec{c} + \vec{a}) \}$$

$$= (\vec{a} + \vec{b}) \cdot \{ (\vec{b} \times \vec{c}) + (\vec{b} \times \vec{a}) + (\vec{c} \times \vec{c}) + (\vec{c} \times \vec{a}) \}$$

$$= (\vec{a} + \vec{b}) \cdot \{ (\vec{b} \times \vec{c}) + (\vec{b} \times \vec{a}) + (\vec{c} \times \vec{a}) \} \quad [\because \vec{c} \times \vec{c} = 0]$$

$$= \vec{a} \cdot (\vec{b} \times \vec{c}) + \vec{a} \cdot (\vec{b} \times \vec{a}) + \vec{a} \cdot (\vec{c} \times \vec{a}) +$$

$$\vec{b} \cdot (\vec{b} \times \vec{c}) + \vec{b} \cdot (\vec{b} \times \vec{a}) + \vec{b} \cdot (\vec{c} \times \vec{a})$$

$$= [\vec{a} \ \vec{b} \ \vec{c}] + [\vec{b} \ \vec{c} \ \vec{a}]$$

[: Scalar triple product with two equal vectors is 0]

$$= [\vec{a} \ \vec{b} \ \vec{c}] + [\vec{a} \ \vec{b} \ \vec{c}] \qquad (\because \ [\vec{b} \ \vec{c} \ \vec{a}] = [\vec{a} \ \vec{b} \ \vec{c}])$$

$$= 2[\vec{a} \ \vec{b} \ \vec{c}]$$

121. *Refer to answer 118.*

122. If the vectors $\vec{a} + \vec{b}$, $\vec{b} + \vec{c}$ and $\vec{c} + \vec{a}$ are coplanar, then $\begin{bmatrix} \vec{a} + \vec{b} & \vec{b} + \vec{c} & \vec{c} + \vec{a} \end{bmatrix} = 0$

$$\Leftrightarrow (\vec{a} + \vec{b}) \cdot [(\vec{b} + \vec{c}) \times (\vec{c} + \vec{a})] = 0$$

$$\Leftrightarrow (\vec{a} + \vec{b}) \cdot [\vec{b} \times \vec{c} + \vec{b} \times \vec{a} + \vec{c} \times \vec{c} + \vec{c} \times \vec{a}] = 0$$

$$\Leftrightarrow (\vec{a} + \vec{b}) \cdot [\vec{b} \times \vec{c} + \vec{b} \times \vec{a} + \vec{0} + \vec{c} \times \vec{a}] = 0$$

$$\Leftrightarrow \vec{a} \cdot (\vec{b} \times \vec{c}) + \vec{a} \cdot (\vec{b} \times \vec{a}) + \vec{a} \cdot (\vec{c} \times \vec{a})$$

$$+\vec{b}\cdot(\vec{b}\times\vec{c})+\vec{b}\cdot(\vec{b}\times\vec{a})+\vec{b}\cdot(\vec{c}\times\vec{a})=0$$

$$\Leftrightarrow \left[\vec{a} \ \vec{b} \ \vec{c} \right] + \left[\vec{a} \ \vec{b} \ \vec{a} \right] + \left[\vec{a} \ \vec{c} \ \vec{a} \right] +$$

$$\begin{bmatrix} \vec{b} \ \vec{b} \ \vec{c} \end{bmatrix} + \begin{bmatrix} \vec{b} \ \vec{b} \ \vec{a} \end{bmatrix} + \begin{bmatrix} \vec{b} \ \vec{c} \ \vec{a} \end{bmatrix} = 0$$

$$\Leftrightarrow \begin{bmatrix} \vec{a} & \vec{b} & \vec{c} \end{bmatrix} + 0 + 0 + 0 + 0 + \begin{bmatrix} \vec{a} & \vec{b} & \vec{c} \end{bmatrix} = 0$$

$$\Leftrightarrow 2\left[\vec{a}\ \vec{b}\ \vec{c}\right] = 0 \Leftrightarrow \left[\vec{a}\ \vec{b}\ \vec{c}\right] = 0$$

$$\therefore$$
 The vectors $\vec{a}, \vec{b}, \vec{c}$ are coplanar.

Hence the vectors $\vec{a}, \vec{b}, \vec{c}$ are coplanar if and only if $\vec{a} + \vec{b}, \vec{b} + \vec{c}$ and $\vec{c} + \vec{a}$ are coplanar.

123. Refer to answer 122.