

PHYSICS GRAVITATION

OUR GATEWA.

IIT-JEE, NEET AND CBSE EXAMS YOUR GATEWAY TO EXCELLENCE IN

Etosphere

Thermosphere

PRACTICE SET

IIT-JEE

NEET

CBSE

GRAVITION

- 1. Two bodies of mass m and 9m are placed at a distance R. The gravitational potential on the line joining the bodies where the gravitational field equals zero, will be (G = gravitational constant):
 - __20*GM*
- 2. A satellite is orbiting just above the surface of the earth with period T. If d is the density of the earth and G is the universal constant of gravitation, the quantity $\frac{3\pi}{Gd}$ represents:

(2023)

- (a) \sqrt{T}
- (b) T
- (c) T^2
- (d) T^3
- 3. A body of mass 60 g experiences a gravitational force of 3.0 N, when placed at a particular point. The magnitude of the gravitational field intensity at that point is:

(2022)

- (a) 50 N/kg
- (b) 20 N/kg
- (c) 180 N/kg
- (d) 0.05 N/kg
- Match List-I with List-II:

List I	List II
a) Gravitational constant (G)	i) $[L^2T^{-2}]$
b) Gravitational potential energy	ii) $[M^{-1}L^3T^{-2}]$
c) Gravitational potential	iii) [<i>LT</i> ⁻²]
d) Gravitational intensity	iv) $[ML^2T^{-2}]$

Choose the correct answer from the options given below: (2022)

(a) a)
$$-ii$$
; b) $-iv$; c) $-i$; d) $-iii$)

- (b) a) ii; b) iv; c) -iii; d) i
- (c) a) -iv; b) -ii; c) -i; d) -iii)
- (d) a) -ii; b) -i; c) -iv; d) -iii)
- 5. A particle is released from height S from the surface of the Earth. At a certain height its kinetic energy is three times its potential energy. The height from the surface of earth and the speed of the particle at that instant are respectively: (2021)
 - (a) $\frac{S}{4}$, $\frac{\sqrt{3gS}}{2}$
 - (b) $\frac{s}{2}$, $\frac{\sqrt{3gs}}{2}$ (c) $\frac{s}{4}$, $\sqrt{\frac{3gs}{2}}$ (d) $\frac{s}{4}$, $\frac{3gs}{2}$
- The escape velocity from the Earth's surface is v. The escape velocity from the surface of another planet having a radius, four times that of Earth and same mass density is:

(2021)

- (a) 2v
- (b) 3v
- (c) 4v
- (d) v
- 7. A particle of mass 'm' is projected with a velocity v = kVe(k < 1). from the surface of the earth. The maximum height above the surface reached by the particle is:
 - (a) $R\left(\frac{k}{1+k}\right)^2$ (b) $\frac{R^2k}{1+k}$ (c) $\frac{Rk^2}{1+k}$

 - (d) $R\left(\frac{k}{1-k}\right)^2$
- A body weighs 72 N on the surface of the earth. What is the gravitation force on it, at a height equal to half the radius of the earth (2020)
 - (a) 32 N

- (b) 30 N
- (c) 24 N
- (d) 48 N
- 9. What is the depth at which the value of acceleration due to gravity becomes 1/n times the value that at the surface of earth? (radius of earth = R)(2020 Covid Re-NEET)
 - (a) R(n-1)/n
 - (b) Rn/(n-1)
 - (c) R/n
 - (d) R/n^2
- 10. A body weighs 200 N on the surface of the earth. How much will it weigh half way down to the centre of the earth? (2019)
 - (a) 150 N
 - (b) 200 N
 - (c) 250 N
 - (d) 100 N
- 11. The work done to raise a mass m from the surface of the earth to a height h, which is equal to the radius of the earth, is: (2019)
 - (a) mgR
 - (b) 2mgR
 - (c) $\frac{1}{2}mgR$
 - (d) $\frac{3}{2}mgR$
- 12. The kinetic energies of a planet in an elliptical orbit about the Sun, at positions A, B and C are K_A , K_B and K_C , respectively. AC is the major axis and SB is perpendicular to AC at the position of the Sun S as shown in the figure. Then (2018)

- (a) $K_B < K_A < K_C$
- (b) $K_A > K_B > K_C$
- (c) $K_A < K_B < K_C$
- (d) $K_B > K_A > K_C$
- 13. If the mass of the Sun were ten times smaller and the universal gravitational constant were ten times larger magnitude, which of the following is not

- (a) Time period of a simple pendulu Earth would decrease
- (b) Walking on the ground would become more difficult
- (c) Raindrops will fall faster.
- (d) 'g' on the Earth will not change
- 14. The acceleration due to gravity at a height 1 km above the earth is the same as at a depth d below the surface of earth. Then:

(2017-Delhi)

- (a) d = 1 km
- (b) $d = \frac{3}{2} km$
- (c) d = 2 km
- (d) $d = \frac{1}{2} km$
- 15. Two astronauts are floating in gravitational free space after having lost contact with their spaceship. The two will: (2017-Delhi)
 - (a) Move towards each other
 - (b) Move away from each other
 - (c) Will become stationary
 - (d) Keep floating at the same distance between them
- 16. Imagine earth to be a solid sphere of mass M and radius R. If the value of acceleration due to gravity at a depth 'd' below earth's surface is same as its value at a height 'h' above its surface and equal to $\frac{g}{4}$ (where g is the value of acceleration due to gravity on the surface of earth), the ratio of $\frac{h}{d}$ will be:

(2017-Guiarat)

- (a) 1

- (b) $\frac{4}{3}$ (c) $\frac{3}{2}$ (d) $\frac{2}{3}$
- 17. A satellite of mass m is in circular orbit of radius 3RE about earth (mass of earth M_E , radius of earth R_E). How much additional energy is required to transfer the satellite to an orbit of radius $9R_E$? (2017-Gujarat)
 - GM_Em $3R_E$
 - GM_Em 18*R_E*

(2018)

- (d) $\frac{GM_Em}{9R_E}$
- 18. A satellite of mass m is orbiting the earth (of radius R) at a height h from its surface. The total energy of the satellite in terms of g_0 , the value of acceleration due to gravity at the earth's surface, is: (2016 II)
 - (a) $\frac{2mg_0R^2}{R+h}$
 - (b) $-\frac{2mg_0R^2}{R+h}$
 - (c) $\frac{mg_0R^2}{R(R+h)}$
 - (d) $\frac{mg_0R^2}{2(R+h)}$
- 19. Starting from the center of the earth having radius R, the variation of g (acceleration due to gravity) is shown by (2016 II)

- 20. The ratio of escape velocity at earth (v_e) to the escape velocity at a planet (v_p) whose radius and mean density are twice as that of earth is: (2016 I)
 - (a) 1:2
 - (b) $1:2\sqrt{2}$
 - (c) 1:4
 - (d) 1:2

21. At what height from the surface of earth the gravitation potential and the value of gare $-5.4 \times 10^{-7} J kg^{-2}$ and $6.0 ms^{-2}$ respectively. Take the radius of earth as 6400 km:

(2016 - I)

- (a) 2600 km
- (b) 1600 km
- (c) 1400 km
- (d) 2000 km
- 22. Kepler's third law states that square of period of revolution (T) of a planet around the sun, is proportional to third power of average distance r between sun and planet, i.e., $T^2 = Kr^3$ here K is constant. If the masses of sun and planet are M and m respectively then as per Newton's law of gravitation force of attraction between them is $F = \frac{GMm}{r^2}$ here G is gravitational constant. The relation between G and K is described as:
 - (a) $GMK = 4\pi^2$
 - (b) K = G
 - (c) $K = \frac{1}{G}$
 - (d) $GM = 4\pi^2$
- 23. A remote-sensing satellite of earth revolves in a circular orbit at a height of 0.25×10^6 m above the surface of earth. If earth's radius is $6.38 \times 10^6 m$ and $g = 9.8 \, m/s^2$, then the orbital speed of the satellite is: **(2015 Re)**
 - (a) 6.67 km/s
 - (b) 7.76 km/s
 - (c) $8.56 \, \text{km/s}$
 - (d) $9.13 \, \text{km/s}$
- 24. A satellite S is moving in an elliptical orbit around the earth. The mass of the satellite is very small compared to the mass of the earth. Then: (2015 Re)
 - (a) The acceleration of S is always directed towards the center of the earth
 - (b) The angular momentum of S about the center of the earth changes in direction, but its magnitude remains constant.
 - (c) The total mechanical energy of S varies periodically with time.
 - (d) The linear momentum of S remains constant in magnitude

25. Dependence of intensity of gravitational field (E) of earth with distance (r) from center of earth is correctly represented by:

(2014)

26. A black hole is an object whose gravitational field is so strong that even light cannot

escape from it. To what approximate radius would earth (mass = $5.98 \times 10^{24} kg$) have to be compressed to be a black hole? (2014)

- (a) $10^{-2}m$
- (b) $10^{-6} m$
- (c) 10 m
- (d) 100 m
- 27. Infinite number of bodies, each of mass 2 kg are situated on x-axis at distance 1 m, 2 m, 4 m, 8 m, respectively, from the origin. The resulting gravitational potential due to this system at the origin will be: (2013)
 - (a) -4G
 - (b) -G
 - (c) $-\frac{8}{3}G$
 - (d) $-\frac{4}{3}G$
- 28. A body of mass 'm' taken from the earth's surface to the height equal to twice the radius (R) of the earth. The change in potential energy of body will be: (2013)
 - (a) 1/3 mgR
 - (b) 2 mgR
 - (c) 2/3 mgR
 - (d) 3 mgR

PRACTICE SET

V 4 1	nsw	1.00	1.40
7		4.5	4 1 -2

S1.	Ans.	(d)	1
-----	------	-----	---

- S2. Ans. (c)
- S3. Ans. (a)
- S4. Ans. (a)
- S5. Ans. (a)
- S6. Ans. (c)
- S7. Ans. (d)
- S8. Ans. (a)
- S9. Ans. (a)
- S10. Ans. (d)
- S11. Ans. (c)
- S12. Ans. (b)
- S13. Ans. (d)
- S14. Ans. (c)
- S15. Ans. (a)

- S16. Ans. (b)
- S17. Ans. (d)
- S18. Ans. (d)
- S19. Ans. (d)
- S20. Ans. (b)
- S21. Ans. (a)
- S22. Ans. (a)
- S23. Ans. (b)
- S24. Ans. (a)
- S25. Ans. (a)
- S26. Ans. (a)
- S27. Ans. (a)
- S28. Ans. (c)

Solutions

S1. Ans. (d)

Let the gravitational field is zero at a distance x from the mass m.

The find the finds
$$m$$
:
$$\frac{Gm}{x^2} = \frac{G9m}{(R-x)^2}$$

$$\Rightarrow R - x = 3x \text{ or } x = \frac{R}{4}$$
Gravitational potential at $\frac{R}{4}$

$$= -\frac{Gm}{\frac{R}{4}} - \frac{G9m}{\frac{3R}{4}}$$

$$= -\frac{4Gm}{R} - \frac{12Gm}{R}$$

$$= \frac{16Gm}{R}$$

S2. Ans. (c) Time period of satellite

$$T = 2\pi \sqrt{\frac{R^3}{GM}}$$

$$= 2\pi \sqrt{\frac{R^3}{Gd\frac{4}{3}\pi R^3}}$$

$$\Rightarrow T = \sqrt{\frac{3\pi}{Gd}}$$

- $=\frac{3}{60\times10^{-3}}=50 \, N/kg$
- S4. Ans. (a) Gravitational constant = $[M^{-1}L^3T^{-2}]$ Gravitational potential energy = $[ML^2T^{-2}]$ Gravitational potential = $[L^2T^{-2}]$ Gravitational intensity = $[LT^{-2}]$

S5. Ans. (a)

Hint: PE + KE = mgs

At given point

KE = 3PE

So, 4PE = mgs

H = s/4

KE = KE =
$$\frac{3\text{mgs}}{4} = \frac{1}{2}\text{mV}^2$$

$V = \sqrt{\frac{3gs}{4}} = \frac{\sqrt{3gs}}{4}$

S6. Ans. (c) Hint: Ve = $\sqrt{\frac{2GM}{R}} = \sqrt{\frac{2G}{R}} \times \frac{4}{3} \pi R3\rho$ $=\sqrt{\frac{8\pi G\rho}{3}}R$ $\Rightarrow V_e \infty R$ $\Rightarrow V_e/\upsilon = \frac{4R}{R} \Rightarrow V_e = 4v$

- S7. Ans. (d) Hint: $\frac{GMn}{R} + \frac{1}{2} mk^2V_e^2 = \frac{GMm}{r}$ $-\frac{GMn}{R} + \frac{1}{2}mk^2 \frac{2GMm}{R} = \frac{GMn}{r}$ $-\frac{1}{R} + \frac{k^2}{R} = -\frac{1}{r}$ $\frac{1}{r} = \frac{1}{R} - \frac{k^2}{R}$ $\frac{1}{r} = \frac{1 - k^2}{R}$ $r = \frac{R}{1 - k^2}$
- S8. Ans. (a) Hint: $w_s = mg_s = 72 \text{ N}$ $w_h = mg_h = \frac{mg_s}{\left(1 + \frac{h}{R}\right)^2} = \frac{72N}{\left(1 + \frac{R}{2}\right)^2} = \frac{\frac{72}{4}}{\frac{1}{4}}$ $W_{h} = 32 \text{ N}$
- S9. Ans. (a) Hint: Inside the earth at depth d from the surface $g_{eff} = g\left(1 - \frac{d}{R}\right) \Rightarrow \frac{g}{n} = g\left(1 - \frac{d}{R}\right)$ \Rightarrow d = $\frac{(n-1)R}{n}$
 - S10. Ans. (d) Hint:

Acceleration due to gravity at a depth d from surface of earth

$$g' = g\left(1 - \frac{d}{R}\right)$$
(1)

Here g = acceleration due to gravity at earth's surface Multiplying by mass 'm' on both sides of a.

$$mg' = mg \left(1 - \frac{d}{R}\right); \left(\because d = \frac{R}{2}\right)$$

= $200 \left(1 - \frac{R}{2R}\right) = \frac{200}{2} = 100 \text{ N}$

S11. Ans. (c)

Hint:

Initial potential energy

$$U_i = \frac{-GMn}{R}$$

Final potential energy at height h = R

$$U_{\rm f} = \frac{-GMn}{(R+R)}$$

As work done = Change in PE

$$\therefore W = U_f - U_i$$

$$=\frac{GMm}{2R}=\frac{gR^2m}{2R}=\frac{mgR}{2} \quad (: GM=gR^2)$$

S12. Ans. (b)

Hint: As angular momentum is conserved $mvr = constant so v_A > v_B > v_C$

hence

$$K_A > K_B > K_C$$

S13. Ans. (d)

Hint: If universal constant becomes 10 times, then on earth surface

$$g = \frac{GM}{R^2}$$

$$G' = 10 G$$

$$g' = 10 \frac{10GM}{R^2}$$

$$g' = 10g$$

So g on earth surface will change

S14. Ans. (c)

Hint: Acceleration due to gravity at height 1 km above earth surface

$$a_h = g \left[1 - \frac{2R}{R} \right]$$

$$=g\left[1-\frac{2\times1}{R}\right]$$

$$=g\left[1-\frac{2}{R}\right]$$

Acceleration due to gravity at depth 'd' below earth surface

$$a_d = g \left[1 - \frac{d}{R} \right]$$

$$a_h = a_d$$

$$g\left[1-\frac{2}{R}\right] = g\left[1-\frac{d}{R}\right]$$

$$d = 2 \text{ km}$$

S15. Ans. (a)

Hint: Since two astronauts are floating in gravitational free space, the only force acting on the two astronauts is the gravitational pull of their masses

$$F = \frac{Gm_1m_2}{r^2}$$

which is attractive in nature. Hence they move towards each other.

S16. Ans. (b)

Hint:
$$g_d = g \left[1 - \frac{d}{R} \right]$$

$$g_d = \frac{g}{4}$$

$$\frac{g}{4} = g \left[1 - \frac{d}{R} \right]$$

$$\frac{d}{R} = \frac{3}{4}$$
(1)

$$g_h = g \left[\frac{R}{R+h} \right]^2$$

$$g_h = \frac{g}{4}$$

$$\frac{g}{4} = g \left[\frac{R}{R+h} \right]^2$$

$$\frac{h}{R} = 1$$
(2)

From Eqs. (1) and (2), we get

$$\frac{d}{d} = \frac{1}{2}$$

$$\frac{d}{h} = \frac{3}{4} \qquad \qquad \frac{h}{d} = \frac{4}{3}$$

S17. Ans. (d)

Hint: Satellite in a orbit of radius R

$$TE = -\frac{GM_cm}{2R_E}$$

When satellite in a orbit of radii 3RE

$$TE_1 = -\frac{GM_cm}{2(3R_E)}$$

When satellite in a orbit of radii 9RE

$$TE_2 = \frac{-GM_cm}{2(9R_E)}$$

$$\Delta TE = TE_2 - TE_1$$

$$=-\frac{GM_{C}m}{18R_{E}}-\left[-\frac{GM_{C}m}{6R_{E}}\right]$$

$$=\frac{GM_{c}m}{R_{E}}\left[\frac{1}{6}-\frac{1}{18}\right]$$

$$=\frac{GM_cm}{gR_m}$$

S18. Ans. (d)

Hint:

$$PE = -\frac{GMm}{R+h}$$

$$KE = \frac{1}{2} m \left[\sqrt{\frac{GM}{R+h}} \right]^2$$

$$KE = \frac{GMm}{2(R+h)}$$

$$TE = \frac{-GMm}{R+h} + \frac{GMn}{2[R+h]}$$

$$= \frac{-GMn \ R^2}{2(R+h)R^2} \qquad \quad \left[\because g = \frac{GM}{R^2}\right]$$

$$\because g = \frac{GM}{R^2}$$

$$=\frac{-g_0mR^2}{2[R+h]}$$

S19. Ans. (d)

Hint:
$$g = \left(\frac{GM_e}{R_o^3}\right) r$$
 for $0 < r \le R_e \Rightarrow g \propto r$

$$g = \frac{GM_e}{r^2}$$
 for $r > R_e \Rightarrow g \propto \frac{1}{r^2}$

S20. Ans. (b)

Hint: g [in terms of mean density]

$$=\frac{4\pi GdR}{3} \Rightarrow V_e = \sqrt{2gR}$$

$$V_e = \sqrt{2 \times \frac{4}{3} \pi G dR. R}$$

$$V_{\rm e} = \sqrt{\frac{8}{3}\pi G dR^2}$$

$$\frac{V_{\rm e}}{V_{\rm p}} = \frac{1}{\sqrt{8}} \Rightarrow \frac{1}{2\sqrt{2}}$$

S21. Ans. (a)

Hint:

Gravitational Potential

$$= \frac{-GM}{R+h} = -5.4 \times 10^7 \text{J Kg}^{-2} \dots (1)$$

$$g = \frac{GM}{(R+h)^2} = 6 \text{ m/s}^2....(2)$$

$$(1)/(2) = (R + h) = \frac{5.4 \times 10^7}{6} = 0.9 \times 10^7 \text{m}$$

= 9000 km

H = 9000 km - 6400 km = 2600 km

S22. Ans. (a)

Hint:
$$T_p^2 = Kr^3$$
 Given(1)

$$T_{planet} = \frac{2\pi r}{V_p} \left[\because V_p = \sqrt{\frac{GM}{r}} \right]$$

$$= \frac{2\pi r.r^{\frac{1}{2}}}{\sqrt{GM}}$$

$$T_{\rm p} = \frac{2\pi r^{\frac{3}{2}}}{\sqrt{GM}}$$
(2)

Squaring Eq. (2), we have

$$T_P^2 = \frac{4\pi^2 r^3}{GM}$$

$$Kr^3 = \frac{4\pi^2 r^3}{GM} \quad \Rightarrow \quad K = \frac{4\pi^2}{GM}$$

S23. Ans. (b)

Hint: For the satellite revolving around

$$v_0 = \sqrt{\frac{\text{GM}_e}{(\text{R}_e + \text{h})}} \qquad \sqrt{\frac{\text{GM}_e}{\text{R}_e \left(+ \frac{\text{h}}{\text{R}_e} \right)}} = \sqrt{\frac{\text{gR}}{1 + \frac{\text{h}}{\text{R}_e}}}$$

Substituting the values

$$v_0 = \sqrt{60 \times 60^6} \text{ m/s}$$

$$v_0 = 7.76 \times 10^3 \text{ m/s} = 7.76 \text{ km/s}$$

S24. Ans. (a)

Hint:

Acceleration due to earth to the satellite is centripetal, hence directed towards centre. Angular momentum conservation holds good for comparable masses but

 $M_{earth} \gg M_{satelite}$

S25. Ans. (a)

Hint: Gravitational field intensity

$$\vec{E} = \frac{-GM}{R^2}$$

For a point inside the earth $E = \frac{-GMr}{R^3}$

For a point inside the earth $E = \frac{-GM}{R^2}$

Where –ve sign indicates the attractive gravitational field

Accurate graph to show variation of E with r

S26. Ans. (a)

Hint: Escape velocity $(\nu_e) = \sqrt{\frac{2GM}{R}} = c =$ speed of light

$$\Rightarrow R = \frac{2GM}{c^2} = \frac{2 \times 6.6 \times 10^{-11} \times 5.98 \times 10^{24}}{(3 \times 10^8)^2} \text{ m}$$
$$= 10^{-2} \text{m}$$

S27. Ans. (a)

Hint:
$$V = -G(2) \left[\frac{1}{1} + \frac{1}{2} + \frac{1}{4} + \frac{1}{8} + \cdots \right]$$

Because it forms geometric progression

$$S_{GP} = \frac{r^{n}-1}{r-1}; \qquad r = \frac{1}{2}$$

$$\frac{\left(\frac{1}{2}\right)^{n} - 1}{-1/2} = \frac{-1}{-1/2} = 2$$

$$\therefore V = -2G \times S_{GP}$$

$$= -2G \times 2 = -4G$$

S28. Ans. (c)

Hint: Change in P.E. =
$$-\frac{GMm}{3R} - \left(-\frac{GMm}{R}\right)$$

$$= \frac{2}{3} \frac{GMm}{R} = \frac{2}{3} mgR$$