; ——
ACCENTS EDUCATIONAL PRO _ OF LEGACY
22 L PIITS

@ CBSE

OSCILLATION

g

\
Y
/

_ - j‘\
A : P IT-NEET-CBSE @
STUDY CIRC] — | YEARS

00
0
XX

X/

@

W

7’\7'v-
KA
ALY

%

6‘0
&
o
X
p

Ny
S ==aa
: - =‘t } \¢ X
: \¢ ; ( g
. 4 . g ) v LX
/ X
Y& AN N A A \ v
\ X : ‘S s \ / 5 / 2 ;
/ o / /

.5

<\
N

WAYATY
2K

VOUR GATEWAY T0 )

IIT-JEE, NEET AN

\\\\\\\\\\\

L7

ONTACT US:
+91-9939586130
+91-9955930311 -

2 "aepstudycircle@gmail.com

7\
(S0

*=7) www.aepstudycircle.com Q 2ND FLOOR, SATKOUDI COMPLEX, THANA CHOWK, RAMGARH - 829122-JH




@
STUDV EﬂRCL:

ACCENTS EDUCATIONAL PROMOTERS ¢ u"uj[[j

o arione ‘\\'//‘\ﬂulﬁl[lm“wu“u?

When an object moves back and forth repeatedly over the same
path, it is said to be oscillating or vibrating. An important type of oscillatory motion is simple
harmonic motion (S.H.M.) for which displacement-time graph is a sinc curve or cosine curve.
The motion of a mass vibrating up and down on a spring. the motion of the prongs of a vibrating
tuning fork and the motion of a swinging pendulum bob are the familiar examples of motion that
is simple harmonic motion or very ncarly so. The study of simple harmonic motion involves no

new laws or principles of physics. Instead, we usc Newton's second law, Kinematics .md energy
principles to analyse this simple type of motion.

00 PERIODIC AND OSCILLATORY MOTION
1. Periodic motion. The motion which repeats itself after a regular interval of time is called
periodic motion. 7The regular time interval is called the time period of the periodic motion.

Examples. .
(i) The revolution of carth around the sun is a periodic motion. Its period of revolution is
1 year.
(ii) The revolution of moon around the earth is a periodic motion. Its period of revolution
is 27.3 days.
(iif). The motion of the hands of a clock is a periodic motion.

2. Oscillatory motion. If a body in periodic motion moves along the same path to and fro
about a definite point (equilibrium position), then the motion of the body is vibratory motion or
oscillatory motion.

All objects that vibrate or oscillate have one thing in common : each object is subjected to
a restoring force that increases with the increase in displacement from the equilibrium position. A
restoring force is one that tries to pull or push a displaced object back to its equilibrium position.

[0 All oscillatory motions are periodic motions but all periodic motions are not oscillatory.
For example, the motion of moon around the earth is periodic but not osciliatory.

Examples.
(i) The motion of the bob of swinging simple pendulum is oscillatory motion.

(i) When a loaded spring is pulled and then released, the load attached to the spring executes
oscillatory motion.

OO0 SIMPLE HARMONIC MOTION (S.H.M)
A particle'is said to execute SHM, if it moves to and fro about the mean position(equilibrium)
Position inia straight line and the graph between displacement of the particle from equilibrium
Position and time are sine or cosine curve.

In simple harmonic motion, the oscillatory motion of the particle is in a straight line such that
its displacement from the *equilibrium position (or mean position) varies sinusoidally (or
cosinusoidally) with time. Since this is the simplest type of periodic motion (or harmonic motion),
it is called simple harmonic motion.

*  Equilibriu; sition is the position at which the’particle would come to rest if it were to lose all of
its energy. By : - . s

00 ANALYSIS OF S H MConsider a particle [See Fig. 25.1 (i)] executing snmplc harmonic motion

about point O (equilibrium position) with an amplitude a (i.e., maxim=— i~=I~~nman ¢ Fraem M
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The particle is said to have completed 1 vibration (or oscillation) if starting from O, it has moved
through positions O — Q — P — O i.e., when it has returned to its starting position and is moving
in the same direction. The time taken to complete 1 vibration is called time period 7 of the
motion. The number of complete oscillations in one second is called the frequency f of the
motion. Clearly, f = 1/7. If the motion is taken to **start from the equilibrium position (i.e., x =
0 at ¢ = 0), then by definition, displacement x of the particle from the equilibrium position varies
with time (7) according to the relation : .

; . 27t
X = asmwi=a sm—T.

where @ and o(or T) are constants of the motion. In order to give physical significance to these
constants, it is convenient to plot x — ¢ (displacement — time) graph as in Fig. 25.1 (ii).
(i) Since sinwr varies between +1 and —I, the displacement x varies between + a and
— a. The constant « is called the amplitude of the simple harmonic motion; it is simply
the maximum displacement of the particle from the equilibrium position in either the
positive or negative x — direction.
(ii) The constant ® is called the angular frequency of simple harmonic motion and as
we shall see, its value depends on the rate of the oscillations., Let us interpret
constant ®. The displacement x must return to its initial value after one period T of

the motion. Thus in one cycle, the quantity @t incrcases by 27 rad while the time ¢
increases by 7 i.e.,

o(t+T) = or+2n
or ' ol = 21
21 ]
aty - — —=—=2 ... —_-—
. 7 =2 [-1=3)

0 Since, time period T is inversely proportional to w .
This means that larger the angular frequency, the smaller the time period and the more quickly the
Particle completes a cycle.

0 Since, In SHM., the body periodically passes through the equilibrium position and therefore,
there, must act a restoring force on the body to bring it back to the equilibrium position time
and again.

WWW.

~ PERIODIC FUNCTIONS are those which represent periodic motion.

N . e . o . The sines and cosines functions
of time are simple periodic functions. A function is said to be periodic if it repeats itself after time

lzcriod.T ie. t.he same function is obtained when the variable 7 is changed to 7 + 7. Consider the
tollowing periodie functions :

. 2T

1) = sin=—¢
S T

and 0 = cosz—nr
. T

I.{erc T 1s-the time period of the periodic motion and is equal to 27 radians. We shall see
that if the variable ¢ is changed to r + 7, the same function results.

fG+17 = sinlig-(l+T):|=sinli£+27t:|=*mﬂt
T T T
x5 fa+T)= f(1)
Similarly, g+T) =g .
It can be easily verified that :

[+ nT) = f(r)

and g+ nT) =g where n = 1,2, 3, ...
Therefore, infinite sets of periodic function of period 7" may be represented as :
? . 2mnt
[, () =sin
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and g,(t) =cos 2LT"£

Further, a linear combination of sinc and cosine functions like -

. Si) = asinwt + b cos wt (i)
Is also a periodic function with a period 7. |

Leta =Acosd and b = A sin¢
~. Eq. (/) can be written as : f() = A sin (01 + )

where A = /az+b2 : ¢=lun"(’—))

sin (8 + 2m) = sin @ .

JOSHM JIN TERMS OF UNIFORM CIRCULAR MOTION

L. Supposc a particle is moving (anticlockwise) with a
uniform angular specd ® along the circumference of a circle of radius « and centre O. When the
particle is at point 2 then the foot of the perpendicular drawn from the particle on the diameter
AA’ of the circle is at the point M [Sce Fig. 25.2 (i)]. Let us study the motion of M (i.e., foot of
the perpendicular drawn from the particle on the diameter AA’) as the particle moves along the
circle. When the particle was at point B, the foot of the perpendicular was at the point O. As the
particlc moves along the arc BA, the foot of the perpendicular (M) moves along the diameter OA.
When the particle reaches point A, the foot of the perpendicular is also at A. When the particle
moving along the arc AB’ reaches point ', the foot of the perpendicular moving along diameter
AQO reaches point Q. As the particle moves along the arc B°A’B, the foot of the perpendicular moves
from O to A" and then from A" to O. Note that as the particle completes one circle, the foot of the
perpendicular (A7) completes one vibration. Note that M moves to and fro along the straight line
AA’; O being the equilibrium position.

V A
________ e amplitude
a—
0 T 27 ?
period 7
| 1 cycle |
L 1
@ (if)
Fig. 25.2

The motion of M is the simple harmonic motion. To test it, let us find the equation of motion
of M. Suppose the particle starts from point B and rotates through an angle @ rad in time ¢. Then
0= wr. At this instant, the displacement of M is OM (= y).

N %—sinﬁ—sinmt
ow OP
or OM = OPsinwt
or y=asinwt (. OP = a = radius of circle)

This is the displacement equation of simple harmonic motion. The circle is called the reference
circle of simple harmonic motion. Note that the particle is executing circular motion but the foot
of the perpendicular drawn from the particle on the diameter AA” is executing SHM. We arrive at
an important conclusion :

A parrticle travelling around a reference circle of radius a at constant angular speed
(=2nf) can be used to represent simple harmonic motion of amplitude a and frequency f.

Because of this relationship between uniform circular motion and simple harmonic motion

(S.H.M.), we often use the terminology of circular motion in discussing S.H.M. For example, ©
is often called the angular frequency of S.H.M.
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S . 2;
Now ° Yy = asinot=asin2nfr=a sm?r

where o = 21l:f=2?n-

(8|=|GENERAL DISPLACMENT EQUATIONK YT

The displacement equation of SHM., y
the condition when the motion is taken to st
position (ie, at r = Q; y =
reference circle of S.H.M. (S
that timing may commence
oscillation. Suppose the tim

= asin @ represents
art from the equilibrium
0). This corresponds to point B on the
ce Fig. 25.3]. The general case requires
when the particle is at any point of its

€ is measured from the instant when the
particle moving on the reference circle was at a point different from

B, say at P, (See Fig. 25.3) where ZFOB=¢. In time 1, the particle

has reached point P such that ZPOF, = ot . Therefore, displacement
of M from the equilibrium position is OM (= y).

A'

oM . Fig. 25.3

P sin MPO = sin _POB
or °  OM = OPsin(wt + ¢) (. LMPO = ZLPOB = wt + ¢)
or y = asin(wt + ¢) (. OP=a) ()

Eq. (i) is the *general displacement equation of S.H.M. Note that if time is measured from
the instant the particle is at the equilibrium position, then ¢ =0 so that y = a sin ®z. Note that
¢ is called the initial phase (or phase constant) or epoch of M.

Finally, it should be noted that cosines instead of sines could have been used throughout our
discussion because :

cos0 = sin(9+£)
2

This difference in representation is equivalent to adding a 7/2 phase constant. This causes no
difficulty because the choice of phase is arbitrary
However,

at hand.
0 ! y=asin(wr +¢) :
(i) If'@= 0% then y = a sin r. This means that at r = 0, the particle is at the mean position.
(i) If §=90° y=asin (w! + 90°) = q cos 7. This means that at t = 0, the particle is at the extreme

position. Therefore both y = a sinw? and Yy = a cos @t are valid representation of sinusoidal
motion. Motion described by a sine or cosine function of time is known as sinusoidal motion.
Sinusoidal motion and S.H.M. are the same. :

when only one oscillator is being described.
once a choice has been made, that choice must be adhered to throughout the problem

CHARECTERISTIC OF FYTI

Consider a particle moving (anticlockwise) with uniform angular {ipced w along th(’: circum-
ference of a reference circle of radius a and centre O. Suppose the particle starts from pom.t B and
rotates through an ‘angle @rad in time r and assumes the position 2. Then § = w? [See Fig. 2.5.4
(i)]. When the particle is at the point £, then the foot of the perpendicular dri-an from the parucl:c
on the diameter AA® of the reference circle is at the point M. As the particle moves along the

circumference of the reference circle, M cxecutes simple harmonic motion along the dmmc}cr AA’.
Note that O is the equilibrium position for this S.H.M.

(& LYYW XYTIN04: The displacement of

a|particle executing
SHM at any instant is the distance
from the equilibrium position at that

/A
; T T
instant. =
here, M is executing SHM along the diameter S
AA' At the considered instant , the ‘ P Sl —’:
displacement of Miis OM = y. - el
(0] (if)

Fig. 25.4
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-|pISPLAMENT] When the particle is at point , M has a displacement OM = y.

Now . I = sin ¢
orP
or OM = OP sin ot
or y = a sin ot (.OP=a) sl

Equation (i) is the displacement equation of simple harmonic motion. 1t 15 cicar wat the
displacement-time graph for the motion of M [See Fig. 25.4 (ii)] is a sine curve — a test for
S.H.M. In general, if the time is measured from the instant when the particle is at point P’ between
B and A such that ZP’OB=¢, then displacement equation becomes .:

y = a sin(ot +0)

o The maximum displacement of the particle executing S.H.M. on either side
o] ure equibrium position is called amplitude of the motion. Thus referring to Fig. 25.4 (i), the
displacement of M at any time ¢ is given by ;

y = asinot
The value of y will be maximum when sin @7 is maximum. Now the maximum value of
sin @t (or cos w?) is 1.
. Amplitude =a x 1 =a
Note that when the particle reaches point A, the displacement of M is maximum (= OA =
= radius of reference circle). Thus amplitude is equal to the radius of the reference circle.

YA

—R

~NN

T !
2
«—— Period T —>|
[<€——=— ] cycle I
() (i)
Fig. 25.4
H The phase angle of a particle executing S.H.M. is its position at t = 0. The

nstant (or phase angle) tells us what the displacement was at t = 0. If at t = 0, the

particle is at point B (starting point), ¢ = 0. If at # = 0, the particle is at point A, ¢ = 7/2 rad.
. y=asin (ot + ¢)

The quantity (@t + ¢ ) is called the phase of motion i.e., displacement of particle in time

t and is useful in comparing the motion of two systems of particles. Note that function y is
periodic and repeats itself when r increases by 2m radians.

I VAN JHARE .- The velocity of a particle executing S.H.M. at any instant is the time rate of

change of its displacement at that instant. Thus referring to Fig. 25.4 (i), M is executing S.H.M.
along the diameter AA”. At the considered instant, its displacement is given by ;
y = a sin ox
dy

as._ .
Vi ity, V= —=—(asinmt) =aw coswt
elocity, 7 dl( )

= awV1-sin’ ot =aw J1-y*/a?
Vi= a)\ja —y (u)

Eq (ii) gives the instantaneous velocity of the particle executing S.H.M. Thus the ve]ocuy of
the particle executing S.H.M. changes with the displacement y of the particle.
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Eq. (ii) gives the instantaneous velocity of the particle executing S.H.M. Thus the velocity o
the particle executing S.H.M. changes with the displacement y of the particle. .

At equilibrium position, y = 0 so that V = wa
At extreme positions, y = a so that V=10

Thus the velocity of a particle executing S.H.M. is maximum when y = 0 i.e., when the
particle passes through its equilibrium position. However, when the displacement is maximum
(y = a), the velocity of the particle is zero. Note that maximum value of velocity is called velocity
amplitude in S.H.M.

. ACCELERATION: The acceleration of a particle executing S.H.M. at any instant is the time
rate of change of velocity at that instant. Thus referring to Fig. 25.4 (i), M is executing S.H.M.

along the diameter AA'. At the considered instant,

y = asinws

' dv d g
Velocity, V = —==-—(asinmf) =am cos o/
dr i
>

. dv  d ;
. Acceleration, A = — = —(acos ) =— ¥ d sin Of
: dr it
Am ~ "’?,\' (Casinmf=y) .. (i)

Eq. (i) gives the instantancous acceleration of the particle executing S.H.M. Note that accel-
eration of the particle exceuting S.H.M. changes with the displacement y of the particle.
At equilibrium position, v = 0 sothat A = 0

Al extreme positions, y = a so that A = -wla

Thus the acceleration of a particle executing S.H.M. is zero when y = 0 i.e., when the particle
passes through its equilibrium position. However, when the displacecment of the particle is maximum,

its aceeleration is also maximum. Note that maximum value of acceleration is called acceleration
amplitude in S.HM. )

oo A= —@y

or Aec—y (- @ is constant)
Thus we find that the acceleration of a particle executing S.H.M. is proportional to its

displacement ) and its dircction (negative sign) is opposite to the direction of displacement. This
fact provides another definition of S.H.M.

cle is said 10 execute S.H.M. if its acceleration at any instant is directly proportional

10 its cement from the equilibrium position and is abways directed towards the equilibrium
positi
! TIME PERIOD: The time taken by a particle executing S.H.M. to complete *one vibration

is called time period (T) of the motion. This means that the value of y at any time t is equal to
the value of y at time t + T. We can show that time period of motion is given by T = 2n/w by
using the fact that phase increases by 2x radians in a time 7 :

+2n = w(t+7T)

2n
or T = @ e [ '
0] (iv)
Neglecting the negative sign from eq. (iii), we have,
A= @y
or P i
2n 3 displac t
Time period, 7= —=2n P L cn?en
0] A acceleration

1 [ acceleration
Frequency, f = —

l
F 2n \ displacement
‘ﬁhﬁ‘ OSCI 1 ATIONS A E P . PHYSIOS P
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time period (7) and frequency (f) of S.H.M. do not depend on the amplitude

O 0 GRAPHICAL REPRESENTATION OF § H M:
O DISPLACEMNT- TIME O VELOCITY - TIME O ACCELERTION - TIME GRAPH:
Let us suppose,

y = acoswt=a cosO

(D)
Note that we choose a phase constant (¢) equal to zero for. the displacement.
. Velocity. V = ﬂ—i(;zcosmt5°—amsinmt
W elocity, V = —-=—0 -
a o cos| wr+=
V= 5 o (i)
L
| :
5 o (A N L
2 | | I | | | (i)
5 | | I | |
/2 | T | '
E 0 : | ; —» Qor¢?
% —al- | | | | ]
C T 1 . n 1 1
“T LA
= | | | | | I
: | | | I | !/
2l o | : : » Qort (it)
= AR i
EMANVZ BN AN
-(Da = I I
| I I
» |
ey 1
= i
= 1
= i |
E T o : | —» Oorz Gir)
g .
' i
1 1
—_ 0)20 ' I
Fig. 25.5

Comparing eqs. (i) and (ii), we note that phase of the velocity differs from the phase of the
displacement by 7/2 rad or 90°. This means that when y is a maximum or minimum, the velocity
is zero. Likewise, when y = 0, the velocity is maximum. Note that velocity of the particle at a
particular time ¢an be determined by taking the slope of displacement — time graph at that time.

. dv - i
(ii) Acceleration, A = 7 =—a® cosw! =aw cos(wt+ )
A = a ®° cos(wr+ ) ..(iii)

Comparing eqs. (i) and (iii), we note that acceleration (A) is 180° out of phase with the
displacement. Note that acceleration-time graph looks like the displacement-time graph but with
opposite sign. This is expected because in S.H.M., acceleration is proportional to the negative of
"the displacement. In other words, when y is positive, acceleration is directed towards —y.

Important points. The following are the important properties of a particle executing S.H.M. :
(0) The particle moves to and fro about the mean (equilibrium) position in a straight line.

(it) The displacement, velocity and acceleration all vary *sinusoidally with time but are not
in phase. '

@ity The acceleration of the particle is proportional to the displacement but in the opposite

direction.

_L") The frequency and period of motion are independent of the amplitude of the motion.
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OO0 TOTALENERGYINSHM

when a body oscillates 1n simple harmonic motion, it is acted upon by a restoring force which
tends to bring it to the equilibrium position. Due to this force, there is a potential energy in the
body. Moreover, as the body is in motion, it has kinetic energy. During oscillation of the body, its
energy continuously interchanges between kinetic energy and potential energy but their sum
remains- constant (taking friction negligible).

Potential energy. Consider a particle of mass m executing S.H.M. with amplitude a and
constant angular frequency ®. Suppose at any time f, the displacement of the particle from the

jlibrium position is y. If A is the acceleration of the particle at that instant, then by definition

M., we have,
of SH A= -wy

Magnitude of the restoring force acting on the particle at that instant is
F=mA=-mo'y=-ky
where m®’ = k = force constant of S.H.M.
If the particle undergoes a further.very small displacement dy, the small work done against the
restoring force is

dW=—-Fdy=—(-ky)dy=kydy
-, Total work done for displacement y is '

y
W= Ikydy=—12-ky2
0

. This work done is equal to the potential energy E,, of the particle at displacement y i.e,
Cp = %ky2=%mm2 y? - Cok=ma’) -.()
Kinetic energy. Suppose V is the velocity of the particle when its displacement is y. Then
kinetic energy E, of the particle is

1
= -mV~©
Ey 5 |
Now V= w\[az -y where a = amplitude of S.H.M.
B, = %mmz(az— ) i)

Total energy. The total energy E of the particle for displacement y is given by ;
| E= E,+E, =%mm2 y24-12mw2(a2—y2)
or : E= é-maz(oz ..(iiD)
We know that @ = 2xt f where f is the frequency of S.H.M.
E = %rn(12(21tf)2
or E = 2mn’ f’a* ~iv)

Discussion. The following points may be noted :

(i) For a given particle in SSH.M., m, wand a are constants [See eq. (iii)]. Thus the total
energy (Ep + E) of a particle executing S.H.M. remains constant at all times.

(if) The total energy of a particle executing S.H.M. is directly proportional to the square of
the amplitude (@®) and to the square of the frequency (f 2). It is also directly proportional
to the mass (m) of the particle.

(iii) The energy of the particle continuously interchanges between kinetic energy and potential
energy but their sum at all times remains constant. Thus in the position of maximum
displacement (when y = a), the total energy is in the ‘form of potential energy while in

the equilibrium position (when y = 0), the total energy is in the form of kinetic energy.
.
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O O Graphical representation. Fig. 25.6 shows the graph of kinetic energy and potenuar energy
versus displacement. Each curve is a parabola centred at y = 0.

: 1 1
,=-£m(oy E=5mm(a =5")

When the particle is at the mean position, y = 0 so that Ep,= 0 and Ex =%m g)’az . In this
position, the total energy of the particle is in the form of kinetic energy since E, = 0. This is quite
clear from Fig. 25.6. Since the kinetic energy of the particle passing through mean position is
maximum, it is clear that at this position, the speed of the particle will be maximum.

When the particle is at the extreme positions, y

Energy

1 .
= a so that E,,=-£m(n)2a2 and Ex = 0. In this- STotal Energy

position, the total energy of the particle is in the form
of potential energy since E;, = 0. This is also clear .
from Fig. 25.6. Since the kinetic energy of the particle
at the extreme positions is zero, the speed of the
particle at these positions will be zero.

It is clear from Fig. 25.6 that energy is being
continuously transferred between potential energy and_

kinetic energy of the particle. Note that both E, and
Ep are always positive and their sum at all times is a

Displacement

Fig. 25.6

-

constant equal to LA w’a? . This is represented by a
straight line parallel to the displacement axis.

O B DYNAMICS OF SHM(cause):Consider a particle of mass m executing S.H.M. with amplitude
a and constant angular frequency ®. Then acwleratlon A of the particle is given by ;
; A=—w y
Here y is the displacement of the particle from the mean position. The negative sign shows
that acceleration is always directed towards the mean position, Therefore, the particle is subjected
to a force F which tries to bring the particle back to the mean position. For this reason, it is called
restoring force.

Restoring force, F = Mass x Acceleration = m X (- (02)')
or F=-mao y
or F=—ky ()
where k (= m@’) is a constant of proportionality called *force constant for the system.

Eg. (i) is the general expression to produce S.H.M. In other words, the motion of any system
governed by a force of the form of eq. (i) is called simple harmonic motion.

O O TIME PERIOD AND FREQUENCY OF S H M:
(i) As shown abeve, the force constant (k) of the particle executing S.H.M. is‘

>
k=wm or o= [y,

n Mass
Tlmc period, T = \f \/ Force constant
] Force constant

Frequency, f= & 2,[ i Mass

1 { k
= 2n ﬂ = =—_
T \/: s 2n \m

Thus time period (7) and frequency (f) of S.H.M. depend on the mass (m) of the body
‘and its force constant (k).
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(if) The time period and frequency of S.H.M. can also be expressed in the following alternate

form :
Time period. 7' = 2% _on ’m Mass
O Force constant
.N s F Force
ow, y  Displacement
T = 21 n o m X Displacement
a Force/Displacement m x Acceleration
T -‘ - Displacement

Acceleration

1 Acceleration

1
7 2mn | Displacement

Frequency, f =

¥ SHM: The test for S.H.M. is that force (F)
'y must be in the form : F = — k y where y is the displacement of the body from
n positian and k is the force constant.

scillations of a loaded spring

scillations of a simple pendulum

illations of a liquid in a U-tube

lations of a floating cylinder

dropped in a tunnel along earth dnameter

[A] O OSCILLATIONS OF LOADED SPRING:
If load attached to a spring is pulled a little from its mean position and then released, the load
will execute S.H.M. We shall consider the following two cases :

1. Vibrations (oscillations) of a horizontal spring

2. Vibrations of a vertical spring.

1. Vibrations of' a horizontal spring. Fig. 25.7 (i) shows a block of mass m attached to one
end of a horizontal spring while the other end of the spring is fixed to a rigid support. The block
is at rest but is free to move along a frictionless horizontal surface. In Fig. 25.7 (i), the block is
at rest at the mean position x = 0. If the block is displaced
through a small distance x to the right [See Fig. 25.7 (ii)],

-

the spring gets stretched. According to Hooke’s law, the x=0
spring exerts a restoring force F to the left given by ; D6 5000000000 3 s
= - kx ---(i) /1///////////'11//1// (///(/ 7777
Here k is the force constant (generally called *spring U I

constant) and x is the displacement of mass m from the mean
position. Clearly, eq. (i) satisfies the condition to produce

S.HM. Therefore, if the block is released from the displaced »_mm ~ m |
- - - '

I

X 1
| |
| |

position and left to itself, the block will execute S.H.M. The F=—o g4
time period (7) and frequency (f) of the vibrations is given ”””’”””6")’””””””"1
by ;
’ i o . r=i-L L Fig. 25.7
T 2n

We see that incrcasmg the m or using a less stiff spring (smaller k) will increase the lime_|
period of oscillations.
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2. Vibrations of a vertical spring. Suppose that a light spring with a spring constant &
is suspended vertically from a rigid support as shown in Fig. 25.8 (i). Initially, the spring is neither
compressed nor stretched. Suppose a mass m is suspended from the lower end. Due to weight mg,
the spring stretches and comes to equilibrium as shown in Fig. 25.8 (#i). In this position, the spring

is stretched by an amount / and exerts a restoring force F , == kI* on the mass /. Since the mass
m is in equilibrium, the sum of the forces on it is zero i.e.,
-kl +mg=0 .:.(D)

—_————— e i e =

AF
{ ! l+y
_________ At __ L __p
mg
mg
@) : (ii) (iii)
Fig. 25.8

If the mass is displaced downward an additional distance y, then the restoring force exerted
by the spring is F, = — k (I + y) as shown in Fig. 25.8 (iii). Now the net force F on the mass is

Net force, F = — k(I + y) + mg = — ki — ky + mg
But. — kI + mg = 0 so that :
F=—-ky
* We note that restoring force is directly proportional to displacement and is directed towards

the equilibrium position. Therefore, if the pull from the mass is released, it will execute S.H.M.
about the horizontal dashed line AB. According to Newton’s second law, F = ma so that

ma = - ky

k

, m
. . i displacement y
Now Time period, T = 2%, [————— =2n ,|—
acceleration a
= o1 |—2 =2 |2
**ky/m k
T = 21 -L- ‘ - ¥
\/ k -..(if)

11 [k
Frequency, f = —=—_|— .
a %.f T 2n\m (i)
Note that the expressions for T and f are exactly the same as we obtained for a horizontally
vibrating mass. The only difference is that here the mass oscillates about an equilibrium point

displaced a distance / from the end of the unstretched spring. Therefore, we conclude
shifts the equilibrium point but does not otherwise effect the vibration.

or a =

that graviry

*  Downward forces are being considered positive.

**  Magnitude of acceleration.

www.aepstudycircle.com

2ND FLOOR, SATKOUDI COMPLEX, THANA CHOWK, RAMGARH-JH-829122



[ L ]
A cr v .@m
STUDY CIRCLE =™

ACCENTS EDUCATIONAL PROMOTERS ¢ u"uj[[j

Alternate formula. From eq. (i), k = m g /I. Putting this value of k in eq. (ii), we have,

T 27T 171_ - 27T L
- mg /1 . 2

B SPRING IN SERIES AND PARALLEL :

(i) Springs in series. Consider two springs S, and S, of force constants k, and k, connected
in series as shown in Fig. 25.9. When weight mg is attached to this series combination, the
restoring force F in each spring will be the same. Since force constants of the two springs are
different, the extensions in their lengths will be different. Let the extension in the length of spring
S, be y, and that of §, be y,. Then,

yp=-— and y=-—

. k, +k, F
kk,
. klk: \
: B =k +k, )
or =-ky . A
Fig. 259
kk,

where &k L4k = Force constant of series combination
| 2

If the two springs are identical, k| = k,. Therefore, the force constant of the series combination
is k = k/2'and time period is

r=2n/3E
kl

Il B B B BE  vhen the springs are connected in series, the force constant of the
combination is decreased. Therefore, the mass m will oscillate with a longer period as compared
with the case for a single spring.

(fi) Springs im parallel. Consider two springs S, and S, of force constants k, and K,
connected in parallel as shown in Fig. 25.10. When weight m g is attached at the middle of a short
horizontal connecting bar, each spring will undergo the same amount of extension y. Since the
force constants of the two springs are different, the restoring force exerted by each spring will be
different. Let F, and F, be the restoring forces exerted by springs S, and S, respectively. Then,

. Fi,=-ky and F,=-ky

Both the restoring forces will be in the same direction (opposite to displacement). Therefore,

the resultant restoring force F acting on mass m is
F=F+F=0Cky)+-ky ==k +k)y

or F =—ky

where k = k,+ k,= Force constant of parallel combination

The period of pscillation of mass m is

m m
= 2. [—=21¢ |—=
J V k & +k,
m
27n N ¢1
Q&+h G
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If the two springs are identical, k, = k,. Therefore, the force constant of the parallel combination
is k = k, + k; = 2 k, and time period is .

T=2n L
2k,

B B S when the springs are connected in parallel, the force constant of the combination is
increased. Therefore, the period of a parallel system is less than that for a single spring.
Another case.  Consider two springs S, and S, of force constants k, and k, attached to a mass
m and two fixed supports as shown in Fig. 25.11. When the mass is pulled dm;/nward. then length
of the spring S, will be extended by y while that of spring S, will be compressed by y. Since ;he
force constants of the two springs are different, the restoring force exerted :
by each spring will be different. Let F, and F, be the restoring forces
exerted by springs S, and S, respectively. Then,

Fr=-ky and F,=-k,y
Both the restoring forces will be directed upward (opposite to ky S T Fy
displacement). Therefore, the resultant restoring force F is
. F=F + Fy=(k )+ (ky=-k + k) y

or F=-ky -

where k = k,+ k,= Effective force constant of the system

The period of oscillation of mass m is
ky 5 1 s

L= ZR\/E =2m [
k k+k,
m
T= 213/ ...(iii) v
s Fig. 25.11

(8] B OSCILLATIONS OF SIMPLE PENDULUM:

A simple pendulum consists of a small mass (the pendulum bob) suspended from the end of
a light thread. The distance from the point of suspension to the centre of gravity of the bob is
called the ‘effective length’, of the pendulum. The equilibrium or mean position [point O in Fig.
25.15 (i)] is where the-pendulum hangs vertically. When the bob is displaced slightly to one side
from its mean position and released, then it oscillates about the mean position in an arc of a circle.
The linear displacement of the bob is the arc length [See Fig. 25.15 (ii)] from the mean position
0. If we can show that the restoring force is proportional to the linear displacement from mean
position and directed opposite to the displacement, we can conclude that the bob moves with
S.H.M. Indeed, it is so.

5=}

m g cos 0

Fig. 25.15
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Time period of simple pendulum. Suppose 1 is the effective length of a simple pcm'h.lluny and
m is the mass of its bob. The pendulum is suspended from point § and its mean position is 0.
Suppose at any instant, the vibrating bob is in the position B where its lincar displacement is arc
OB = x and the thread makes an angle @ with the vertical. As shown in Fig. 25.15 (i), there are
two forces acting on the mass m : the tension 7" and the wcigh} mg. The lcn.sion T is always
directed along the thread toward the point of suspension and mg is _alwuys vertically downward.
The weight mg can be resolved into two rectangular components viz.

(i) the component mg cos @ in line with the thread and directed opposite to 7 . The net radial
force (= T — mg cos 0 ) along the thread causes the mass m to move in a circular arc whose
radius is the length of the pendulum /.

(ii) the component mg sin@ acts tangent to the arc along which the bob moves. This component
restores the bob toward its equilibrium position and serves as a restoring force. Thqs we

can write : .

Restoring force, F = —m g sin
The negative sign shows that the restoring force points opposite to the direction of the
displacement.

If 0 is small, sin © = 6 so that restoring force can be written as :
Restoring force, F = -m g 0 o . l
The linear displacement x of the bob from its mean position is related to its angular

displacement g as :

x=10 . where 8 must be in the units of radians.
" mgx i
- Restoring force, F = — ! B
. ' 4 mgx g
. Acceleration of bob, g = —=———=—| =[x ()
X m im [
Now g/ is constant for a given pendulum at a place.
*a oc —x

Thus the acceleration a of the bob is directly proportional to its displacement x and its
direction is opposite to the displacement. Therefore, the motion of the bob is simple harmonic. The
time period of a body executing S.H.M. is given by ;

T = 21 displacement

acceleration
From eq. (i) above, displacen.u:nt . (magnitude)
- acceleration (a) g
L3
g

= "7‘.—5 T ()]

Discussion. |

(1) The frequency &1 hence time period) of a simple pendulum depends only on the length
[ and on g. This fact provides a simple method to measure g. A pendulum of known length
(/) is made to oscillate. The frequency f (no. of vibrations per second) is recorded. Then
g can be easily calculated from eq. (iii).

(if) On the moon, g is about one-sixth that on the carth. From eq. (ir) , we see that a

pendulum of given length on the moon would have a period over twice as long as on
the earth.
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Second’s pendulum. A simple pendulum whose time period is two seconds is called second’s

pendulum. 1t is called second's pendulum because it makes a swing from one side to the other in
one second. Let us find the length of such a pendulum. l

NOW, T=2n JZ
g

or 1= I g

" 4n”
Here T=2s;g=98ms™ ,
: (2)"x9.8

l o 0.993 m=99.3 cm
E length of second’s pendulum depends upon the value of g; the value of length
changes from place to place due to change in g.

C] B OSCI LLATIONS OF LIQUID IN U - TUBE:

Consider a liquid filled in a vertical U-tube of uniform area of cross-section upto a height A
as shown in Fig. 25.16. In other words, initially (equilibrium position), the liquid level is at the
same height in both the limbs (at B and C). On pressing down level C
upto D through a distance y, the level B rises up the same distance upto
E. As a result, in the left limb of the U-tube, there is an additional liquid z
column D’E of length 2y as shown in Fig. 25.16. When the pressed Y i =]
level of the liquid is left free, the levels of the liquid in the two limbs _ﬂ B =
will oscillate about their respective initial (undisturbed) positions B, C.
Note that the weight of the liquid column of height 2y serves as the
restoring force and tends to restore the liquid column to its equilibrium
position. If the mass of the liquid per unit length of the tube is m, then
restoring force F acting on the liquid is

Restoring force, F = — (m x 2 y) &

=]
RRARAARARRRRRA(

:._

|

|

|

Lo

HHIHHH
L
R HHHHHN
'
1
H
' .
i
'
ML T
1
HHHI
i
'

The negative sign indicates that the restoring force points opposite to the direction of the
displacement of the liquid.

The mass of the whole liquid in the tube is m x 2 h where 2 h is the length of the whole liquid
column.

. Acceleration a of the liquid column is
Force _—(mx2y)g _ —(é)y

a=

Mass mx2h h =40

Since g/his constant, a o< — ).

Thus the aceeleration a of the liquid column is directly proportional to its displacement y and

its direction is opposite to the displacement. Therefore, motion of the liquid is simple harmonic.
The time period for S.H.M. is

displacement
T=2R,|————
acceleration

From eq. (Dbovll displacement (y) _ h (magnitude only)

acceleration (a) g

e B s 1 1 8
T= ZR\/; i) =T 21[\/; ..(ifi)

, ' The period of oscillation does not depend on the density of the liquid
and the cross-sectional area of the tube. It depends upon the length of liquid column and on g.
In practice, the oscillations are heavily damped due to friction, which we have ignored.
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D] B OSCI LLIATIONS OF A FLOATING CYLINDER:

Consider a wooden cylinder of mass m and cross-sectional area A floating in a liquid of
density p. At equilibrium, the cylinder is floating with a depth & submerged [See Fig. 25.17]. If
the cylinder is pushed downward a small distance y and then
released, it will move up and down with S.H.M. It is desired to (D
find the time period and the frequency of oscillations.

According to the principle of floatation, the weight of the
liquid displaced by the immersed part of the body is equal to the
weight of the body. Therefore, at equilibrium,

Weight of cylinder = Weight of liquid displaced by
the immersed part of cylinder
(PA W) g |

PA A

When the cylinder is pushed down an additional distance y, the restoring force F (upward)
equal to the weight of additional liquid displaced acts on the cylinder.
t

Restoring force, F = — (weight of additional liquid displaced)
or =-(pAyg

The negative sign indicates that the restoring force acts opposite to the direction of the
displacement.

Acceleration a of the cylinder is given by ;

o= E__PAyg =_(£)v 10
m pAh h)

or mg

-, Mass of cylinder, m

Since g/h is constant, a e —y .

Thus the acceleration a of the body (wooden cylinder) is directly proportional to the displace-

ment y and its direction is opposite to the displacement. Therefore, motion of the cylinder is simple
harmonic, The time period for S.H.M. is .

displacement

T=2n,|[——m8M™———

acceleration

displacement (y) _h
From eq. (i) above, B cration (;)_ = ; (magnitude only)

Time period, T = 2=n i

4

|
| —

Frequency, f = ...(iD)

I
N

1
T

= I

’ﬁ
AN & T period and frequecy havethe same o
time peri | same form as
‘:ﬁkmmmmmammummm
pellhlnm.

£] @ BODY DROPPED IN A TUNNEL ALONG EARTH’S DIAMETER:
Suppose earth to be a sphere of radius R with centre O. Let a tunnel be dug along the diameter

of the e.anh as shown in Fig. 25.18. If a body of mass m is dropped at one end of the tunnel, the
body will execute S.H.M. about the centre O of the earth. Suppose

at any instant, the body in the tunnel is at a distance y from the
centre O of the earth. Because the body is inside the earth, only
the inner sphere of radius y will exert gravitational force F on
the body. The force F serves as the restoring force that tends to
bring the body to the equilibrium position O.

(; 7t_v3p)m
Restoring force, F = —-Gx~~—_ 7
y°
where p is the density of the earth. The negative sign is assigned
because the force is of attraction. Fig. 25.18
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Acceleration of the body, a = £=—(§-nGpJ y ..
m

Now the quantity (4/3) t GP is constant so that :
a o< —y

Thus the acceleratlon of the body is directly proportional to the displacement y and its direction
is opposite to the displacement. Therefore, the motion of the body is simple harmonic. The time

period for S.H.M. is
T = 21 fdnsplacenfent
acceleration

displacement (y) 3
acceleration (a) 41tGp

, ’37t ,31: .
d, T = 21 = (= . .
Time perio 41|:Gp Gp T Go (i)

g D AMPED ABD U NDAMPED OSCILLATION:
A system executing simple harmonic motion is called a harmonic oscillator. A harmenic

oscillator produces sinusoidal oscillations. The sinusoidal oscillations can be of two types viZ.,
undamped oscillations and damped oscillations.

(f) Undamped oscillations. 7 oscillations whose amplitude remains constant witly time are
called undamped oscillations. Fig. 25.19 (i) shows waveform of undamped oscillations. Such
oscillations can oceur if frictional forces are absent. For example, it the bob of a pendulum is
displaced in vacuum and thcen released, the bob will continue to execute S.H.M. of constant

AN e
R D=

_(i) (ir)

From eq. (i) above, (magnitude only)

>

Amplitude
Amplirude

(ii)y Damped oscillations. 7he oscillations whose amplitude goes on decreasing with time are
called *damped oscillations [Sce Fig. 25.19 (ii)]. In real oscillating systems. forces like friction
arc always present that dissipate the oscillating energy. Unless energy is somehow added, dissipation
eventually brings the system to rest at equilibrium.

We can define damped motion only if we have a mathematical expression for the damping
force. In many systems—especially those involving friction associated with slow motion through
a viscous fluid—the damping force is dpploxxmald) proportional to the velocity and acts opposite
to motion. I

Damping force, F, = —bV = =—b=
dt
where b is a constant giving the strength of damping. We can write Newton's law, now including

damping toru. along with the restoring force. For a spring-mass x)slun we have,

md X = —kx —bi"
dt? dt
or m l‘+1d—\+k\=0
dem dr

We will not solve this equation but its solution will be stated. Provided the damping force is
not too large, the /solution of this equation is

=01l 2m

X = ae cos(wr + ) . ...(?)
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Eq. (i) describes sinusoidal motion whose amplitude («) decreases exponentially with time.
How fast the amplitude drops depends on the damping constants 5 and .
The frequency of this damped motion is given by ;

W L_(L):
4= 2n \\m 2

_If the frictional forces are absent, » = 0 so that :

1k

- .undampe «cillations
21\ m ped oscillations

O FREE, FORCE D AND RESONANT OSCILLATIONS

(i) Free oscillations. When a body capable of oscillating is displaced from its equilibrium .
position and then left free, it begins Lo oscillate with a definite frequency. This frequency depends
upon the intrinsic properties (shape, elasticity etc.) of the body and is called natural frequency
of the body. Such oscillations are called free oscillatjons.

When a body capable of oscillating is made to vibrate with its own natural frequency,
is said to execute free oscillations. 1

For example, when a simple pendulum-is displaced from its mean position and then left free,
it executes free oscillations. The natural frequency of the simple pendulum depends upon its length
and is given by ; 1 [z

F= 5\

Examples.(a) When a tuning fork is struck with a rubber pad, then its prongs produce free .
oscillations. The frequency of free oscillations (i.e., natural frequency) depends on tuning fork's
length, its thickness and the material of which it is made.

(b) If we pluck the string of a sifar and then left free, it executes free oscillations. The natural

frequency depends upon the length, density and tension of the string.

(¢) When the bob of a simple pendulum is displaced from its mean position and then left free,

it executes free oscillations. The natural frequency depends upon the length of the pendulum.

In the absence of frictional forces, the amplitude of free oscillations would remain constant
(undamped oscillations). However, in actual practice, the amplitude of free oscillations decreases
gradually with time due to the frictional forces. When whole of the originally imparted energy to
the body is used up in overcoming frictional forces, the body stops executing oscillations and
comes to rest at the mean nosition.

* (ii) Foreced oscillations. When a body is maintained in a state of oscillations by an external
periodic foree of frequency other than the natural frequency of the body, the oscillations are called
forced oscillations. ? '

The frequency of forced oscillations is equal to the frequency of the periodic force. The
external applied force on the body is called the driver and the body set into oscillations is called
driven oscillator: ’

Examples.(a) When the stem of a vibrating tuning fork is held in hand, only a feeble sound
is heard. However, if the stem is pressed against a table top, the sound becomes louder. It is
because the tuning fork forces the table to vibrate with fork’s frequency. Since the table has a large
vibrating area than the tuning fork, these forced oscillations produce a more intense sound.

(b) A vibrating violin string stretched tightly between two clamps does not produce intense
sound. When the string is stretched across the wooden bridge of a violin, the wooden
bridge is *forced to vibrate at the same frequency. Since the wooden bridge has a much
larger area ‘than the string, these forced oscillations produce a more intense sound.

Mathematical analysis.Most of the oscillations that occur in systems (e.g., machinery) are
forced oscillations; oscillations that are produced and sustained by an external force. The simplest
driving force is one that itself oscillates as a sine or a cosine. Suppose such an external force F,,,
is applied to an oscillator that moves along x axis such as a block connected to a spring. We can
represent the external force as : '

F

ext

where F, is the maximum magnitude of the force.and ® (= 2nf) is the angular frequency of the
force.

= F,coswt
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Examples. (a) A tuning fork is often mounted on a sound box. The box is constructed in such
a way that the natural frequency of air column inside it has the same frequency as that of the fork.
When the tuning fork is struck, it sets the air column into resonant vibrations. This reinforces the
sound of the fork. .

(b) Soldiers are asked to break step while crossing a bridge. If the soldiers march in step,
there is a possibility that the frequency of the footsteps may become equal to natural
frequency of the bridge. Due to resonance, the bridge may start vibrating violently, thereby
damaging itself

(¢) During earthquake, resonance can cause disaster. If the natural frequency of a building
matches the frequency of earthquake, the building will begin to vibrate with a large
amplitude. Consequently, the building may collapse.

. O COUPLED O SCILLATIONS
A system of nvo bodies connecte j
along the length of the string is called a coupled oscillator. . . o
If the spring is stretched and then released, the two bodies will oscillate along the lc.:\lgt!] of
the spring. Such oscillations arc called coupled oscillations. It can be proved that oscillations

produced by such a system are S.H.M. in nature. '
Fig. 25.22 (i) shows two masses m, and m, connected at the ends of a mus_slcs:s spring of
Jength /.and the system is placed on a frictionless horizoatal surface. When lhc spring 1s strctchcfd
and then released, the system oscillates in S.H.M. We can describe the -motion of the system in
terms of the separate motions of the two masses. Suppose at any time :
&; = distance of mass m; from the origin O
A, = distance of mass m, from the origin O

d by a spring so that both can oscillate in a straight line

The relative separation x, — x, gives the length of the spring at any time. If the spring is
stretched by an amount x, then,
X = (- x) -1 -..(f)

The magnitude of force exerted by spring on each mass is F = k x where k is spring constant.
If the spring exerts a force —F on m,, it exerts a force + F on m,. Let us apply Newton’s second
law of motion separately to the two masses.

2

1 d”x
m 4 'f' =—kx ...(i0) m, 22 =+kx ...(iii)
dr” dt
Multiplying eq. (ii) by m, and eq. (iii) by m and then subtracting eq. (iii) from eq. (ii), we
have,
‘1 —'\.I (1 .‘.\'2
my niy Sy Ny ——= = —m, kx—m kx
dt~ dt” -
or m, 11, d-, (xy—x3) = —k(m+my)x
dt~ :
i, d3
or 1 .

s(n—x) = _ kx s
my+ m, de* : - kx ..(iv)

Taking secondiderivative of both sides of eq. (i), we have,
d’x d* '
= —(-\. _.‘-1)
dr? dr? ! -
Therefore, eq. (iv) becomes :

5
mym, d-x

m s om, di* T~ ke, % «=$¥
: mym, 2 . -
The quantity ———— has the dimensions of mass and is called reduced mass H.
m, +m
1 2

m, m,
M= ny +m,
Note that reduced mass is always smaller than either mass. Therefore, eq. (v) becomes :
2
d*x

dr?

H

=—-kux
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™ d*x _ _k :
a ~
. &
or Acceleration, a = =—Xx (W)

3 F
g.w.af.o.—u.q_@
- X 1?::’.!‘."".:'?‘!.‘.’.’:,‘: e X

(i)
Fig. 25.22
Eq. (vi) is identical in form as for the motion of single mass connected to a spring. Therefore,
the system shown in Fig. 25.22. (i) can be replaced by a single mass equal to the reduced mass
M( = mymy/ m+ m,) as shown in Fig. 25.22 (ii). If one of the masses is very much smaller than

the other, then | is roughly equal to the smaller mass. If the masses are equal, then y is half as
large as either mass.

Since AAL is constant, acceleration, a «<— x. Therefore, the acceleration of the motion of
the system is directly proportional to the relative displacement of the masses from the mean
position. Further, negative sign shows that acceleration is always directed towards the mean

position. Therefore, coupled oscillations are simple harmonic in nature. The time period of
S.H.M. is given by ;

Time period, T=2n,’dls—p]ac—eﬂc—m= = 2n [B
acceleration k

Note that time period of the system is identical in form as for a single oscillating mass except
that now mass is equal to the reduced mass of the system.
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Q1.
Ans.

0.2

Q.7.
Ans.

Q.8.

Ans.

Q.9.

Ans.

Q.10.

Ans.

What is the origin of the name simple harmonic motion?
Of all the periodic or harmonic motions (e.g., circular motion, elliptical motion etc.),
it is the simplest periodic motion. For this reason, it is called simple harmonic motion.
What are the characteristics of simple harmonic motion?

The characteristics of simple harmonic motion are : (i) It is a periodic motion (ii) The
particle moves to and fro about the mean position in a straight line (iii) The acceleration
of the particle is directly proportional to the displacement from mean position and its
direction is opposite to the displacement.

What type of force causes a particle to execute S.H.M.?

When the force on a particle is directly proportional to its displacement from the mean
position and acts opposite to the displacement, the particle will execute S.H.M.

Is the motion of a simple pendulum strictly simple harmonic?

It is not strictly simple harmonic because we make the assumption that sin ® = 8 which
is nearly valid only if © is very small.

- Why do we say that velocity and acceleration of a bo;ly executing S.H.M. are out

of phase?

When a body is executing S.H.M., its acceleration is zero at the mean position and
maximum at the extreme positions. On the other hand, the velocity is maximum at the
mean position and zero at the extreme positions. Further, acceleration is always directed

towards the mean position. For this reason, the velocity and acceleration of a body
executing S.H.M. are out of phase.

- The amplitude of a simple harmonic oscillator is doubled. How does this effect (i) the

period (ii) the total energy (iii) the maximum velocity of the oscillator?
(i) The time period of a simple harmonic oscillator is independent of the amplitude
of the oscillations. Therefore, time period is not affected.

(i) Total energy of oscillator is E = (1/2) m ®> a* where a is the amplitude. When a
18 doubled, E becomes four times.

(iit) WVoue = @ a. When a is doubled, V, e is also doubled.
What is the relation between displacement and velocity of a body executing S.H.M. ?

The veloeity of a body executing S.H.M. is maximum at the point where displacement is

zero (mean position); it decreases with displacement and becomes zero at the extreme
position. .

What is the relation between uniform circul'ar motion and S.H.M.?

Uniform eircular motion can be thought of as two simple harmonic motions operating at
right angles.

What is the most important characteristic of simple harmonic motion?
The most important characteristic of S.H.M. is that acceleration is directly proportional
to the displaccment and is directed opposite to the displacement. Mathematically,
A=- »n
Can simple pendulum experiment be done inside a satellite?
The time period of a simple pendulum is given by ;
!
T =2mx, |—
) g
Inside a satellite, a body is in a state of weightlessness so that the effective value of g for

it is zero. When g = 0, 7 — oo . Therefore, inside the satellite, the pendulum does not
oscillate at all. Consequently, the simple pendulum experiment cannot be performed inside
a satellite.

Which of the following is not a sufficient condition for S.H.M. and why?

(7)) acceleration e« displacement (ii) restoring force o< displacement.

Both the conditions are insufficient because the minus sign is missing. The missing minus

sign implies that the acceleration increases as displacement increases and the object
would then never return to its mean position. ;
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Q.12.

Ans.

Q.13.

Q.14.

Ans.

Q.15.

Ans.

Q.16.
Ans.

= I

Show that time period of S.H.M. is given by 2n/®w where ® is the angular frequency
of S.H.M.

The displacement-time equation of S.H.M. is y = a sin (o + ¢)

Note that function y is periodic i.e. value of y at time 7 equals the value at time 7+ 7 where
T is the time period of the motion. Since the phase increases by 21 radians in time 7,

or+¢+2n= o¢+7)+¢ .. T_E
()

The acceleration of a spring-mass system is given- by ;
a=——x
- m.
What conclusions you draw from this equation?

If the mass is displaced a maximum distance a (amplitude) from the mean position and
then released, its initial acceleration will be — ka/m (i.e. it has a maximum negative value).
When it passes through the mean position (x = 0), the acceleration is zero. At this instant,
the velocity is maximum. It will then travel to the other side of mean position and finally

reaches x = — a at which time its acceleration is ka/m (maximum positive) and its velocity

is zero. In one full cycle of motion, the mass travels a distance of 4 a.

Show that the total energy of a body executing S.H.M. is independent of time.

Let us discuss the total energy of mass-spring system. Assuming initial phase to be zero,
dy

d
y =asin o, V=—=— (asin W) =a w cos ot
dt dt
1 2 1 3.5 2 1, 2. .2 2
B . - nV = mw-a-cos wl=;ka cos“wr  (.omw° =k)
L,as 1. 45 .
PE. = ;ky =;ka sin“ ! (. y=asinmr)

Note that K.E. and P.E. are always positive quantities.

| B 5 - |
Total encrgy = K.E. + PE. ;ka“ (cos"m t + sin" 1) = :;/\'a2

.

Encrg
p = Total Energy
1 » il

7 ka

(0] -
I 2T ar Ar
4 4 4 4
\ Figc. 25.23

Thus total mechanical energy is always constant and is equal to & a® /2. Note that total
energy is independent of time. Fig. 25.23 shows kinetic energy and potential energy
versus time for the mass- spring system. The potential energy oscillates with time and has
a maximum value of ka~ /2. Similarly, K.E. oscillates with time and has a maximum value
of k /2. At any instant, K.E. + P.E. = constant = & a /2. Note that K.E. or P.E. oscillates
at double the frequency of S.H.M.

You have a light spring, a metre scale and a known mass. How will you find the time
period of oscillations of mass without the use of a clock?

Suspend the spring from a rigid support and attach the mass at its lowest end. Measure
the extension (/) in the spring with a metre scale. If & is the force constant of the spring.
then restoring force F is

F=—-—k=—mg - m=L
g

I” =27
Time period, 7 = £TC

Given some practical examples of S.H.M.
Some practical examples off S.H.M. are :
(i) Motion of piston in a gas-filled cylinder.

(ii) Atoms vibrating in a crystal lattice.
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Q.l1.
. Ans.

Q.2

Ans.

Q.3.
Ans.

Q4.
Ans.

-
-

Ans.

Q.6.

Ans.
6,
Ans.
Q.S8.
Ans.

Q..

Ans.

Q.10.
Ans.

Q.11.
Ans.
0.12.

Ans.
Q.13.

Ans.
Q.14.

Ans.

What is a periodic motion? . .

The motion which repeats itsell after a regular interval of time is called a periodic motion ¢.g..
motion of carth around the sun, motion of moon around the carth ctc.

What is an oscillatory motion?

It is a periodic motion (i.e.. having definite time period) in which the body moves to and fro along
the same path about a fixed point (called mean position) e.g.. & pendulum swinging back and forth.

What are the characteristics of oscillatory motion?

() It is a periodic motion (i) 1t is to and fro motion along the same path about a fixed Pm'm called
equilibrium position or mean position (iii) The body is confined within well defined limits called
extreme positions.

What is simple harmonic motion (S.H.M.)?

When the oscillatory motion of a body is along straight line and the graph between displacement

of the body from the mean position and time is a sine curve (or cosine curve), the body is said
to execute S.H.M.

Define (/) displacement (i) amplitude of S.H.M.

(i) The distance of the body at any time from the mean position is called displacement of the body
at that time.

(i) The maximum displacement of the body from its mcan position is called amplitude of the
body.

What is the test for S.IL.M.?

The displacement-time graph for a body executing S.H.M. is a sine curve or cosine curve.
Why is S.H.M. called so? '

It is the simplest type of oscillatory motion.

Is the motion of carth around the sun periodic or oscillatory?

Periodic. Oscillatory motion is to and «fro motion about a mean position.

A particle is executing' S.H.M. What are its velocity and acceleration at (i) mean position
(if) extreme positions?

(1) Weloeity = maximum: Acceleration = zero (if) Velocity = 0; Acceleration = maximum.
How is time period of simple harmonic motion related to its acceleration?

5 displacement
Time period, 7 = 2n‘/p—_— .
acceleration

How are time period and frequency of S.IL.M. affected by the amplitude of motion?

The time period (7)*and [requency (f) of S.H.M. arc independent of amplitude of motion.

A particle is executing S.H.M. What are its K.E. and P.E. at (i) mean position (ii) extreme
positions?

(1) K.E. = maximum ; P.E. = 0 (/) PE. = maximum ; K.E. = 0.

A particle executing S.H.N. has amplitude 0.01 m and frequency 60 Hz. What is the maximum
acceleration of the particle?

-Amplitude. a = 0.0 m : ® = 2/ = 21 x 60 rad s

<. Max. acceleration of particle = wla = 2n x 6()): x 0.01 = 144 1t2 mlsz.

The acceleration of a particle performing S.H.M. is 12 enm/s” at a distance of 3 em from the
mean position. What is its time period?

Acceleration, A = 0)3)' or o = Ay =123 =4 - =2 rad/s

o Time period, 7' = %=%t =71 = 3.14 s,

The length of a simple pendulum is doubled. How will its time period be affected?
Time period, 7 e JI . Therelore, the time period will become J2 times the original value.
What is a seconds pendulum?

A simple pendulum that has a time period of 2 seconds is called a seconds pendulum.

Why does a swinging simple pendulum eventually stop?

Due to friction between air and bob, thc» amplitude of the pendulum goes on decreasing and
eventually it comes to rest. :

A swinging simple pendulum is placed in a lift which is falling freely. What is the frequency
of the pendulum? d

The time period of a simple pendulum falling with acceleration a is (
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T=2r I 1 For a freely falling lift, @ = g so that T = . Hence f= 0.
80

Q.19. A swinging simple pendulum is placed in a lift which is accelerating downwards. How is its
time period affected?

-

Ans. The time period of a simple pendulum falling downwards with acceleration a is

Ta 21

- Therefore, the time period will increase because the effective acceleration due to
g—a o
gravity decreases from g to (g — a).

Q.20. A swinging simple pendulum is placed in a lift which is accelerating upwards. How is its time
period affected?

Ans. The time period of a simple pendulum moving upwards with acceleration a is

T=2n

. Therefore, the time period will decrease because the effective acceleration due to
g+a

gravity increases from g to (g + a). .
Q.21. Ts the tension in the string of a simple pendulum constant throughout the oscillations?
Ans. No. The tension in the string is 7 = mg cos 0 where 0 is the angle which the string makes with
the vertical. As 6 varies, the tension T in the string also varies.
Q.22. When is tension (i) maximum (i) minimum in the string of a simple pendulum?
“Ans. () Tension in the string is 7 = mg cos 6. Therefore, tension in the string is maximum when
cos B8 = I"or 6° = 0° i.e., when the bob is at the mean position.
(ii). Tension in the string is minimum when cos 6 is minimum or 8 is maximum i.e., when the bob
* \is at either extreme position.
Q.23, Will a pendulum clock gain or lose time when taken to the top of a mountain?

Ans. Time period, T = 2m/l/g . As g is less at the top of mountain, value of T will increase. Therefore,
the pendulum will take more time to complete one vibration. As a result, pendulum clock will lose
time.

Q.24. A wrist watch is taken to the top of a mountain. Will it give correct time?

Ans. Yes. It is because the time period of wrist watch (spring controlled) does not depend upon the
value of g but depends upon the potential energy stored in the spring.

Q.25. Will a simple pendulum vibrate at the centre of earth?
Ans. No. It is because g = 0 at the centre of earth.

.26. If the metal bob of a simple pendulum is replaced by a wooden bob, what will be the change
in the time period of the pendulum?

Ans. No change. It is because time period T'(= 21;\[1/_5- ) of a simple pendulum is independent of the
mass of the bob.

Q.27. The length of a seconds pendulum is /L If the length is halved, what will be its time period?
Ans. The time period 7 of seconds pendulum is 2s. Now 7T ec /],

n_ B % 72 2
’ == or == |1==-Zg5
. n \[; 2 l V2

Q.28- A particle is executing S.H.M. What is the phase difference between (i) velocity and
displacement (&) acceleration and velocity?

Ans. (i) The velocity leads the displacement by /2 radians.
(ii) The acceleration leads the velocity by /2 radians.

0.29. A body is executing S.H.M. with amplitude a. In time equal to its period, what is the
(/) distance moved (i) displacement?

Ans. (i) The body reaches its initial position after a time equal to its period. Therefore, the distance
covered in One time period = 4 X a = 4a.

(if) Since body comes to its initial position after one time period, displacement is zero.
Q.30. What is spring constant? -

Ans. In a spring, the magnitude of restoring force is F = kx where k (= F/x) is the spring_ constant. It
is defined as the force required to produce unit extension or compression in the spring.

Q.31. What is the SI unit and dimensional formula of spring constant? o
Ans. The SI unit of spring constant k& (= F/x) is Nm™' and its dimensional formula is [ML'T "]
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Q.32.

F]_[MLT™? .
= BT ) _ppr 4072
[x] (L]
Note that spring constant is dimensional constant.
A body of mass 5 kg hangs from a spring and oscillates with a time period of 2x seconds. What

is the force constant of the spring?

" Time period, T = 2% f% or 27 =2n\/—§ s k=5Nm™!

. A mass m is suspended from a spring of negligible mass and the system oscillates with a

frequency f. What will be the frequency of oscillations if a mass of 4 m is suspended from the
same spring?

’k ,
Frequency, f = i = Therefore, f o< ﬁ
m

£ _ Lo[m 1 . o f
Y & - I am 2 2

- A spring of spring constant K is cut into three equal pieces. What will be the spring constant
of each part?

Let k be the spring constant of each part. We can consider the original spring of spnng constant
K to be made of three springs in series, each of spring constant k.

"y = l+—l—-+-—l-=2 or k=3K
K k k k k )
This means that spring constant of each part will become three times that of the full length of the

spring.

Now

Q.35. Two springs of force constants 100 N/m and 400 N/m are connected in series. What will be

Ans.

Q.36.

Ans.

Q:37.

Ans,

Q.38.
Ans.

Q.39.

Ans.

Q.40.
Ans.

the effective spring constant of the spring system?
The spring constant k of the system is given by ;

R 100 x 400 |
S, L o ;= 100x400 _ o,.,
k = 100 200 ° “T100+400 = 50 NmM

Two unequal springs of the same material are loaded with same load. Which one will have a
larger value of time period?

Time period, T = ZRJ%- The longer spring will have smaller value of k and its time period will
be larger.

There are two springs, one delicate and other stout one. For which spring, the time period will
be less?

Time period, 7 = 21!"%. For stout (stiffer) spring, the spring constant will be larger than the
delicate spring. Therefore, time period for stout spring will be less.

What will be the change in the time period of a loaded spring when taken to moon?

No change. It is because the time period of a loaded spring is independent of acceleration dye (g
gravity.

The spring-mass system oscillating vertically has a time period 7. What will be the effect on
the time period if the spring is made to oscillate horizontally?

The time period will remain the same (. T =2r/k/m).
Is the oscillation of a mass suspended by a spring S.H.M.?
Yes, because (it satisfies the conditions of S.H.M.

- I SHORT TYFNENIRE. i ssiississisasiamonsainnihsssesnsosssbiossssoarosissssstotnsaiinsss ssnemiashssabbss ks

Q:1.

Ans.

Q.2.
Ans.

A restoring force is a must for a body to execute S.H.M. Explain.

In S.H.M., the body oscillates back and forth about the mean position. For this to happen, a

restoring force must act on the body to permit it to perform back and forth journey about the mean

position. When the body is at the extreme position, this restoring force brings it to the mean

position. When  the body reaches mean position. it has momentum and overshoots. The restoring

force slows itjdown till the velocity of the body becomes zero at the other extreme position,

What should be the characteristics of the restoring force in S.H.N.?

(1) The direction of the restoring force should be in a direction opposite to the direction of
displacement of the body.

(fif) The magnitude of the restoring force should be dlru_lly proportional to the displacement of
the body,
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Q.2 Give mathematical equation of restoring force in S.H.M. How is it provided?
Ans. In S H.M,, the restoring force (F) can be expressed mathematically as :
F =—-ky
Here y is the displacement of the body and & is a constant of proportionality. The negative sign
shows that restoring force acts opposite to displacement. The restoring force may be provided due
.to gravity, elasticity etc.
.4. What are the characteristics of S.H.M.?
Ans. The important characteristics of S.H.M. are :
(i) The particle moves to and fro about the mean (equilibrium) position in a straight line.
(if) The displacement, velocity and acceleration all vary sinusoidally with time ‘but are not in
phase.
(iit) The acceleration is always directed towards the mean position.
(iv) The restoring force is directly proportional to displacement but acts in a direction opposite to
dlsplacement
.5. Show that in S.H.M., the acceleration of the partlcle is directly proportional to the displacement
at the given instant.
Ans. In S.HM., the displacement of the particle at any instant is
y =a sin o

; dy
Velocity, V = —=— (asin 1) =awcos wt
4 dt dt
- Vv _d
Acceleration, A = a4 =" (a wcos r) = - w’a sin o
. dt drt
or A=-oy (. asinor=y)

Thus in S.H.M., acceleration (A) is directly proportional to the displacement i.e., A o .
).6. Show that velocity and displacement of a body executing S.H.M. are out of phase by w2

radians.
Ans. In S.H.M., displacement equation is y = a sin r (D)
Velocity, V = %:: =‘LII’-((1 sin wr) = a wcos wr
E V = awsin (o +71/2) ...(iD)
From egs. (i) and (ii), it is clear that velocity (V) and displacement (y) are out of phase by 7/2
radians,

Q.7. The displacement of a particle in S.H.M. may be given by ;
Yy = a sin (ot + ¢)
. Show that if the time ¢ is increased by 2w, the value of y remains the same.
Ans. y = a sin (@f + ¢). Therefore, displacement at any time (¢ + 2Ww) is
y = asin[(t+2n/w)+¢)
asin [(or + ¢) + 2x)
asin (ot + ) [.- sin (21 + 6) =sin 6]
Therefore, the displacements at time ¢ and (t + 2r/w) are the same.

Q.8. A simple pendulum hangs from the ceiling of a car. If the car accelerates with umform
acceleration, will the frequency of the pendulum increase or decrease?

Ans. Frequency of simple pendulum, f = 2—,,% S foes \/8_
T
As the car accelerates with uniform acceleration a, the resultant acceleration = /4% 4+ g2. Since

"az + gz is greater than \/;;— frequency of the simple pendulum will increase.

Q.9. A S.H.M. of amplitude a has a time period 7. What will be the acceleration of the oscillator
when (/) at mean posmon (if) extreme position (iii) its displacement is half of the amplitude ?
Ans. Acceleration, 4 = — ®° Yy ; © = 21/T.

(i) At mean position, y = 0 so that A = 0.

an?

2

(if) At extreme position, y = a so that A = — wa = -

a.

i) Aty=al2, A= -QUT)?xZ =~ 2;“
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Q.10. A S.H.M. of amplitude a has time period 7. What will be the velocity of the oscillator at
(f) equilibrium position (i) half amplitude?

2 2 .0
Ans. Velocity, V = m\/a - y° ;0=2r/T.

(i) At equilibrium position, y = 0 so that V = aw = a 2n/T.

2n [2 2, _+3an
(i) Aty =a/2, V = ?\/a —a /4_——7_ .

Q.11. A particle executing S.H.M. has maximum speed when passing through the mean position.
. 1 2, 2 2
. l 2 ® = — -\
Ans. PE, E, = mo? y° 3 KE, Ey mo-(a y°)

1 2 2
At mean position, y = 0 so that E, = 0 and Ey, = s-m®~a~,

2 - P -
Since K.E. of the particle at mean position is maximum, its speed at this position will also be
maximum. ) o
Q.12. A particle executes S.H.M. with amplitude a. At what distance from the mean position its K.E.
is equal to its P.E.? ' N
Ans. Su;qpose K.E. of the particle is equal to its P.E. at a distance y from the mean position.

1 2.2 _ 2y . I S
K.E. = Em(x)(a -y°): P.E. 2mu) y

1 2.2 2_,2_42 . y=a\2
Now -;—m w?(a® - y2) = 3'" "y~ or a y ¢ 3
Q.13. The bob of a simple pendulum is a hollow sphere full of water. If a fine hole is made at the

bottom of the sphere, how will time period of the pendulum be affected?

i = is the distance between point of suspension
Ans. Time period of simple pendulum, 7= 2n\/l/ g. Here [ is the ic
and centre of gravity (C.G) of the sphere. Initially, when the sphere is full of water, C.G is at
the centre of sphere. As the water starts flowing out of sphere, the C.G of sphere will
down and then comes up. Finally, when all water flows out, the C.G. shifts to the centre of the
sphere. Due to this, length  and hence time period T of the pendulum changes. Therefore, time
period T first increases. then decreases and finally becomes cqual to the inital value,
Q.14. A simple pendulum has metallic bob. What will be th
metallic bob is replaced by ice bob (i) metallic bob pe

first move

e effect on its time period if (;)
ndulum is taken to moon?

Ans. Time period of simple pendulum, T = 2n \[g

(i) T oa~fl. Here [ is the distance between the

point of suspension and centre of gravity (C.G)
of the ice bob. If on melting of ice, / incre

ases, T will increase and vice-versa.
(i) T o< Ju—g At moon, g is less (1/6th that on earth) so that T increases.
Q.15. The amplitude of an oscillating simple pe
(if) total energy (iii) maximum velocity?
Ans. Suppose a i§ the amplitude of the pendulum.
() T= 2nJllg. There will be no affect on the time
(@) of oseillation provided it is small.

ndulum is doubled. How will it affect (¢) time period

period because it is independent of amplitude

1 2 ;
(if) Total encrgy, E = —2-"1 o’ a?. If amplitude (a) is doubled, E will become four times.
(iif) Max. veloeity, Vo = 0a. If amplitude (a) is doubled, L.

- will become 2 times.
Q.16. In S.H.M.,, if displacement is half of the amplitude, then which part of total energy will be the
Kinetic energy?

Ans. In SHM, KB, Eg =%m ®’*(@* - y%) ; Total energy, E=Lm @2 42

2

; E == w” T — .

(SN )

2
For y = maw- a

00 |'W
ml,‘:’

1]
&lw [ R
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